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Broken 2-diamond partitions modulo 5
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Abstract We consider Aj(n), the number of broken 2-diamond partitions of n, and
give simple proofs of two congruences given by Song Heng Chan.
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1 Introduction

Andrews and Paule [1] introduced the concept of broken k-diamond partitions and
showed that the generating function for Ag(n), the number of broken k-diamond
partitions of n, is
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The following congruences were proved by Chan [2] and again by Radu [4]:
Ar(25n 4+ 14) =0 (mod 5) (1.2)
and
Ay(25n4+24) =0 (mod 95). (1.3)
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Indeed, Chan generalised these to

11x5%+1
As (5“+1n n XTJF) =0 (mod 5) (1.4)

and 19 x 5% + 1
A, (S“Hn + XTJF) =0 (mod5). (1.5)

The object of this note is to give as simple a proof as I can of (1.2)—(1.5).

2 Proofs

We start by noting that the 5—dissection of ¥ (¢) = Z q(”2+”)/ Zis

n>0
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where
a=(—4¢"-4"4"¢")0. b=(-4".—4". 470, c=v(>). 2.2)
Note that by [3, (34.1.21)]

ab +¢>c* = ¥ (g°). (2.3)

We have, modulo 5,
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Alternatively,
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or, again, by [3, (34.1.23)],
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n>0
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Thus, we have
3 3.3
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It follows that
be+qg°c  clab+ ¢°c?)
Ar(5n +4)g™" =1 -
g 2ot e V(g% V(g
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and

D MGn+Ag" =Y @OW (@) =V ) a+ab+a YD), (29)

n>0

It is now an easy induction (replace n by 5n + 3) to deduce that for « > 1,

3x5%+1
Z Ay (S“n + XT+) "= v @V (q)
n>0
=¥ (g°)a+qgb+q ¥(g>)). (2.10)

Since there are no terms on the right in which the power of g is congruent to 2 or
4 modulo 5, we have that for o > 1,

3% 5% 41
A, (5“(5n+2)+XT+) =0 @2.11)
and 35 o
Ay (5“(5;1 4+ XTJF) =0, (2.12)
as claimed.
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