
Ramanujan J (2018) 45:391–397
https://doi.org/10.1007/s11139-016-9848-3

Some sequences converging towards Ioachimescu’s
constant related to Ramanujan’s formula

Xu You1

Received: 25 April 2016 / Accepted: 19 August 2016 / Published online: 17 November 2016
© Springer Science+Business Media New York 2016

Abstract The purpose of this paper is to give some sequences that converge quickly
to Ioachimescu’s constant related to Ramanujan’s formula by the multiple-correction
method.
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1 Introduction

In 1895, Ioachimescu (see [1]) introduced a constant �, which today bears his names,
as the limit of the sequence defined by

In = 1 + 1√
2

+ · · · + 1√
n

− 2(
√
n − 1), n ∈ N.

The sequence I (n)n≥1 has attracted much attention lately and several generalizations
have been given (see, e.g., [2,3]). Recently, Chen et al. [4] have obtained the complete
asymptotic expansion of Ioachimescu’s sequence,
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In ∼ � + 1

2
√
n

−
∞∑

k=1

b2k

(2k)!
(4k − 3)!!

22k−1n2k−1/2 , n ∈ N,

where bn denotes the nth Bernoulli number.
One easily obtains the following representations of the Ioachimescu’s constant:

� =
∫ ∞

0

1 − x + �x�
2(1 + x)3/2

dx

and

� = 2 −
∞∑

k=1

1
(√

k + √
k − 1

)2 √
k
.

A representation of the Ioachimescu’s constant has also been given by Ramanujan
(1915) [20]:

� = 2 −
(√

2 + 1
) ∞∑

k=1

(−1)k+1

√
k

.

From this, one easily obtains a representation of the Ioachimescu’s constant in terms
of the extended ζ function

� = ζ

(
1

2

)
+ 2.

From [2], we have � = 0.539645491 . . . .

Let a ∈ (0,+∞) and s ∈ (0, 1). The sequence

yn(a, s)= 1

as
+ 1

(a + 1)s
+· · · 1

(a+n−1)s
− 1

1 − s

[
(a + n − 1)1−s − a1−s

]
, n ∈ N,

is convergent [3], and its limit is a generalized Euler constant denoted by �(a, s).
Clearly, �(1, 1/2) = �. Furthermore, Sîntămărian has proved that

lim
n→∞ ns

(
yn(a, s) − �(a, s)

) = 1

2
.

Also in [3], considering the sequence

un(a, s) = yn(a, s) − 1

2(a + n − 1)s
,

she has proved that

lim
n→∞ ns+1(�(a, s) − un(a, s)

) = s

12
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and, for the sequence

αn(a, s) = 1

as
+ 1

(a + 1)s
+ · · · 1

(a + n − 1)s

− 1

1 − s

((
a + n − 1

2

)1−s

− a1−s

)
, n ∈ N,

she has proved that

lim
n→∞ ns+1(αn(a, s) − �(a, s)

) = s

24
.

In [9,10], Sîntămărian has obtained some new sequences that converge to �(a, s)
with the rate of convergence of n−s−15. Other results regarding �(a, s) can be found in
[6–8] and some of the references therein. In this paper, we will give some sequences
that converge quickly to Ioachimescu’s constant � by multiple-correction method [11–
13], based on the sequence

I (n) = 1 + 1√
2

+ · · · + 1√
n

− 2(
√
n − 1), n ∈ N.

This method could be used to solve other problems, such as Euler–Mascheroni
constant, Glaisher–Kinkelin’s and Bendersky–Adamchik’s constants, and Somos’
quadratic recurrence constant [14–17].

2 Main result

The following lemma gives a method for measuring the rate of convergence; for its
proof, see Mortici [18,19].

Lemma 2.1 If the sequence (xn)n∈N is convergent to zero and the limit

lim
n→+∞ ns(xn − xn+1) = l ∈ [−∞,+∞], (2.1)

exists when s > 1, then

lim
n→+∞ ns−1xn = l

s − 1
. (2.2)

Now we apply the multiple-correction method to study sequences with faster rate
of convergence for Ioachimescu’s constant.
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Theorem 2.2 For Ioachimescu’s constant,wehave the following convergent sequence:

Ii (n) =
n∑

k=1

1√
k

− 2
(√

n − 1
)

+ a

6

√
n3 + b2n2 + b1n + b0 + u1

n+v1+ u2
n+v2+ u3

n+v3+ u4
n+v4+···

, (2.3)

where

a = −1

2
, b2= 1

2
, b1= 7

48
, b0= 1

864
; u1 = − 7

576
, v1= 23

42
; u2 = 67483

84672
,

v2 = − 735611

14171430
;

u3 = 106772389611377

196730868484800
, v3 = 5732111704318866731

10293315954492220130
;

u4 = 3960720843020595280578879811

2093940584692105796281439289
,

v4 = − 330844832640429778096837755246211177

53714560364565453879762494412621881220
; . . . .

Proof (Step 1) The initial-correction. We choose η0(n) = 0, and let

I0(n) := I (n) + η0(n) =
n∑

k=1

1√
k

− 2
(√

n − 1
) + η0(n). (2.4)

Developing the expression (2.4) into power series expansion in 1/n, we easily
obtain

I0(n) − I0(n + 1) = 1

4

1

n
3
2

+ O

(
1

n
5
2

)
. (2.5)

By Lemma 2.1, we get the rate of convergence of the (I0(n) − �)n∈N as n− 1
2 , since

lim
n→∞ n

1
2 (I0(n) − �) = 1

2
.

(Step 2) The first-correction. Ramanujan [20] made the claim (without proof) for the
gamma function

�(x + 1) = √
π

( x
e

)x
(
8x3 + 4x2 + x + θx

30

) 1
6

,
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where θx → 1 as x → +∞ and 3
10 < θx < 1. This open problem was solved by

Karatsuba [21]. This formula provides a more accurate estimation for the factorial
function. Motivated by his idea, we let

η1(n) = a
6
√
n3 + b2n2 + b1n + b0

(2.6)

and define

I1(n) :=
n∑

k=1

1√
k

− 2
(√

n − 1
) + η1(n). (2.7)

Developing (2.7) into power series expansion in 1/n, we have

I1(n) − I1(n + 1) =1

4
(2a + 1)

1

n
3
2

− 1

8

(
2 + a(3 + 2b2)

) 1

n
5
2

+ 5

576

(
27 + 4a(9 − 12b1 + 9b2 + 7b22)

) 1

n
7
2

− 7

10368

(
324 + a

(
405 + 864b0 + 540b2 + 630b22

+ 364b23 − 72b1(15 + 14b2)
)) 1

n
9
2

+ 7

13824

(
405 + 2a

(
243 + 432b21 + 405b2 + 630b22

+ 546b32 + 247b42 + 432b0(3 + 2b2)

− 72b1(15 + 21b2 + 13b22)
)) 1

n
11
2

+ O

(
1

n
13
2

)
. (2.8)

(i) If a 
= − 1
2 , then the rate of convergence of the (I1(n) − �)n∈N is n− 1

2 , since

lim
n→∞ n

1
2 (I1(n) − �) = 1

2
(2a + 1) 
= 0.

(ii) If a1 = − 1
2 , b2 = 1

2 , b1 = 7
48 , and b0 = 1

864 , from (2.8) we have

I1(n) − I1(n + 1) = 7

1536

1

n
11
2

+ O

(
1

n
13
2

)
.

Hence the rate of convergence of the (I1(n) − �)n∈N is n− 9
2 , since

lim
n→∞ n

9
2 (I1(n) − �) = 7

6912
.
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(Step 3) The second-correction. We set the second-correction function in the form of

η2(n) = a

6
√
n3 + b2n2 + b1n + b0 + u1

n+v1

(2.9)

and define

I2(n) :=
n∑

k=1

1√
k

− 2
(√

n − 1
) + η2(n). (2.10)

Developing (2.10) into power series expansion in 1/n, we have

I2(n) − I2(n + 1) =
(

7

1536
+ 3u1

8

)
1

n
11
2

− 11

41472

(
71 + 288u1(17 + 6v1)

) 1

n
13
2

(2.11)

+
(

1132703

23887872
+ 13

576
u1(141 + 80v1 + 24v21)

)
1

n
15
2

+ O

(
1

n
17
2

)
.

By the same method as above, we find u1 = − 7
576 , v1 = 23

42 .

Applying Lemma 2.1 again, one has

lim
n→∞ n

15
2
(
I2(n) − I2(n + 1)

) = − 877279

167215104
, (2.12)

lim
n→∞ n

13
2
(
I2(n) − �

) = − 67483

83607552
. (2.13)

(Step 4) The third-correction. Similarly, we set the third-correction function in the
form of

η3(n) = a

6

√
n3 + b2n2 + b1n + b0 + u1

n+v1+ u2
n+v2

(2.14)

and define

I3(n) :=
n∑

k=1

1√
k

− 2
(√

n − 1
) + η3(n). (2.15)

By the same method as above, we find u2 = 67483
84672 , v2 = − 735611

14171430 .

Applying Lemma 1 again, one has

lim
n→∞ n

19
2
(
I3(n) − I3(n + 1)

) = 259304374770487

69639491498803200
, (2.16)

lim
n→∞ n

17
2
(
I3(n) − �

) = 15253198515911

34819745749401600
. (2.17)
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Similarly, by repeating the above approach for Ioachimescu’s constant (the details
are omitted here), we can prove Theorem 2.2. ��
Remark 2.3 It is worth to point out that Theorem 2.2 provides some sequences with
faster rate of convergence for Ioachimescu’s constant related to Ramanujan’s formula
by multiple-correction method. Similarly, by repeating the above approach step by
step, we can get some sequences with faster rate of convergence for Ioachimescu’s
constant. Meanwhile, parameters that need to be calculated are also greatly increased,
this will lead to dramatic increase in computing.
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6. Sîntămărian, A.: A generalisation of Ioachimescu’s constant. Math. Gaz. 93(528), 456–467 (2009)
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9. Sîntămărian, A.: Sequences that converge quickly to a generalized Euler constant. Math. Comput.

Model. 53, 624–630 (2011)
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