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Abstract In this paper, we construct combinatorial bases of Feigin–Stoyanovsky’s
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� . We prove
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1 Introduction

Let g be a simple complex Lie algebra, h ⊂ g its Cartan subalgebra, and R the
corresponding root system. Let g = h + ∑

α∈R gα be a root decomposition of g. Fix
root vectors xα ∈ gα . Let

g = g−1 ⊕ g0 ⊕ g1 (1)

be a Z-gradation of g, where h ⊂ g0. Such gradations correspond to a choice of a
minuscule coweightω ∈ h. Denote byΓ ⊂ R a set of roots such thatg1 = ∑

α∈Γ gα =∑
ω(α)=1 gα . We call Γ the set of colors.
Affine Lie algebra associated with g is x = g ⊗ C[t, t−1] ⊕ Cc ⊕ Cd, where c is

the canonical central element and d is the degree operator. Elements xα(n) = xα ⊗ tn

are fixed real root vectors. The Z-gradation of g induces analogous gradation of g̃:

g̃ = g̃−1 ⊕ g̃0 ⊕ g̃1,

where g̃1 = g1 ⊗ C[t, t−1] is a commutative Lie subalgebra with a basis

Γ̃ = {xγ (n) | n ∈ Z, γ ∈ Γ }.

For a standard g̃-module L(Λ) of level k = Λ(c), define a Feigin–Stoyanovsky;s
type subspace W (Λ) as a g̃1-submodule generated with a highest weight vector vΛ,

W (Λ) = U (g̃1) · vΛ ⊂ L(Λ).

In this paper, for a Lie algebra g of typeC�, we construct a basis of W (Λ) consisting
of monomial vectors x(π)vΛ, where x(π) are monomials in Γ̃ . Poincare–Birkhoff–
Witt’s theorem gives a spanning set of W (Λ)

{xγ1(−n1)xγ2(−n2) · · · xγt (−nt )vΛ | t ∈ Z+, γi ∈ 
, ni ∈ N}. (2)

In order to obtain a basis of W (Λ), we find relations for standard modules upon
which we reduce the spanning set. Finally, we prove linear independence by using
intertwining operators.

The notion of Feigin–Stoyanovsky’s type subspaces is similar to a notion of princi-
pal subspaces that were introduced by Feigin and Stoyanovsky for sl2(C) and sl3(C)

[31]. In this case, one looks at a triangular decomposition of g instead of (1). Many
different authors have studied these spaces, their bases, character formulas, exact
sequences etc. [1,4–9,17,29,30].

Another type of principal subspaces, the so-called Feigin–Stoyanovsky’s type sub-
spaces W (Λ) defined above, was implicitly studied in [24] for sl�+1(C). It turned
out that in this case, bases are parameterized by (k, � + 1)-admissible configurations,
studied by Feigin et al. [12,13]. The Z-gradations (1) are closely related to simple
current operators [11]. We hope that this kind of construction of combinatorial bases
will be possible for all affine Lie algebras. Up to now, this was done for the type A(1)

�
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Fig. 1 Z-gradation of sl�+1(C)
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Fig. 2 Difference conditions for sl�+1(C) level 1

in [26,32,33], for B(1)
2 in [27], for D(1)

4 , levels 1 and 2, in [2], and for all classical
types, level 1, in [25].

The first general case beyond admissible configurations was given in [32,33] where
a new kind of combinatorial conditions emerged. The minuscule coweight ω that was
considered in these papers corresponds to aαm , 1 ≤ m ≤ �. If g = sl�+1(C) represents
matrices of trace 0 then in the Z-gradation (1) the subalgebra g0 consists of block-
diagonal matrices, while g1 and g−1 consist of matrices with nonzero entries only in
the upper right or lower left block, respectively. This is illustrated on the Fig. 1.

The set of colors Γ corresponds to a rectangle with rows 1, . . . , m and columns
m, . . . , �. Monomial basis of W (Λ) is described in terms of difference and initial
conditions.

In the level 1 case, a monomial vector (2) satisfies difference conditions for W (Λr ),
if colors of elements of the same degree −n lie on a diagonal path in Γ as shown in
Fig. 2. Furthermore, colors of elements of degree −n − 1 lie on a diagonal path that
lies below or to the left of the preceding path.

A monomial vector (2) satisfies initial conditions for W (Λr ) if a diagonal path of
colors of degree −1 lies either below the r -th row (if 1 ≤ r ≤ m) or on the left of the
r -th column (if m ≤ r ≤ �).
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Fig. 3 Difference conditions for
C� level 1 1
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In the case considered in this paper, when g is a simple Lie algebra of type C�,
similar combinatorics appear. The set of colors Γ can be represented as a triangle with
rows and columns ranging from 1 to � (cf. Fig. 4).

For a fundamental weightΛr , a monomial vector (2) satisfies difference conditions
for W (Λr ), if colors of elements of two consecutive degrees lie on diagonal paths that
are related in a way shown in Fig. 3, i.e., if (−n)-path ends in the i th column, then
(−n−1)-path lies below the i th row. Amonomial vector (2) satisfies initial conditions
for W (Λr ) if a diagonal path of colors of degree −1 lies below the r -th row.

In the proof of linear independence, we follow ideas of Georgiev (cf. [17]), and of
Caparelli, Lepowsky and Milas (cf. [8,9]). Start from a relation of linear dependence

∑
cπ x(π)vΛ = 0, (3)

where x(π) are somemonomials that satisfy difference and initial conditions forW (Λ)

and cπ ∈ C. The main idea is to use intertwining operators between standard modules
(cf. [10,15]) and simple current operators (cf. [11]) to reduce this relation to a relation
of linear dependence on another standard module and proceed inductively.

More concretely, let x(μ) be, in some sense, the smallest monomial in (3). Then
there is a coefficient of intertwining operator w that commutes with g̃1 and which
sends vΛ to a vector v′ from the top of a standard module L(Λ′) that is annihilated by
almost all monomials greater than x(μ). Furthermore, for the remaining monomials,
the action of x(π) on v′ yields x(π2)[ω]vΛ′′ , where [ω] is a simple current operator
and x(π2) is a submonomial of x(π). On the other side, commutation of a monomial
with [ω] raises degrees of factors by 1; thus we obtain

0 =
∑

cπ [ω]x(π+
2 )vΛ′′ , (4)
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Fig. 4 The set of colors Γ
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where x(π+
2 ) is obtained from x(π2) by raising degrees of factors by 1. Finally, simple

current operator [ω] is a linear injection, hence

0 =
∑

cπ x(π+)vΛ′′ . (5)

This is a relation of linear dependence on L(Λ′′) with monomials of higher degree
than in (3). Since they are obtained from the ones from (3) by raising their degrees, it
turns out that they also satisfy difference and initial conditions, this time for W (Λ′′).
This enables us to use inductive argument to obtain cμ = 0.

In the higher level case, difference and initial conditions are again given in terms
of certain paths in Γ . Moreover, just like in the A� case considered in [32], in the
C� case one can embed L(Λ) into a tensor product of level 1 modules and factorize
monomial vectors from the basis into a tensor product of level 1 monomial vectors
from the corresponding bases (see Proposition 5 below). This fact is crucial for an
easy transfer of the proof of linear independence from the level 1 case to higher levels.
In this sense, this proof is different from the proof given in [27]. In the D4-case (cf.
[2]) it seems that this property does not hold and it remains to see what would be a
good way to capture phenomenons that are happening there.

We give a brief outline of the paper. In Sects. 2 and 3, we introduce the setting and
pose themain problem. InSect. 4,wefind relations betweenmonomials anduse them to
reduce the spanning set in terms of difference and initial conditions. The existence and
some properties of intertwining operators and a simple current operator are established
in Sects. 5 and 6. In Sect. 7, we explore the action of monomials of higher degree on
the vectors from the top of Feigin–Stoyanovsky’s type subspaces. This will enable us
to find suitable coefficients of intertwining operators having properties that we have
discussed above, and prove linear independence in the final section.
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2 Affine Lie algebra C(1)
�

Let g be a complex simple Lie algebra of type C� and let h be a Cartan subalgebra
of g. Let g = h + ∑

gα be a root space decomposition of g. The corresponding root
system R may be realized in R

� with the canonical basis ε1, . . . , ε� as

R = {±εi ± ε j | 1 ≤ i ≤ j ≤ �}\{0}.

We fix simple roots

α1 = ε1 − ε2, . . . , α�−1 = ε�−1 − ε�, α� = 2ε�

and let g = n− + h + n+ be the corresponding triangular decomposition. Let θ =
2α1 + · · · + 2α�−1 + α� = 2ε1 be the maximal root and

ωr = ε1 + · · · + εr , r = 1, . . . , �

the fundamental weights. We fix root vectors xα ∈ gα and denote by α∨ ∈ h dual
roots. We identify h and h∗ via the Killing form 〈 , 〉 normalized in such a way that
〈θ, θ〉 = 2. We fix

ω = ω� = ε1 + · · · + ε� ∈ h∗.

This is the minuscule coweight, that is

〈ω, α〉 ∈ {−1, 0, 1} for all α ∈ R,

and hence we have a Z-gradation of g

g = g−1 + g0 + g1, g0 = h +
∑

〈ω,α〉=0

gα, g±1 =
∑

〈ω,α〉=±1

gα.

Note that
Γ = { α ∈ R | 〈ω, α〉 = 1} = {εi + ε j | 1 ≤ i ≤ j ≤ �}. (6)

We say that Γ is the set of colors and we write

(i j) = εi + ε j ∈ Γ and xi j = xεi +ε j (7)

(see Fig. 4).
The subspaces g±1 ⊂ g are commutative subalgebras, g0 is reductive, and [g0, g0]

is a simple algebra of type A�−1 with root basis α1, . . . , α�−1. We identify [g0, g0]
with the Lie algebra sl(�,C) acting on the canonical basis e1, . . . , e� of the vector
space C� by the rule

ei
x−αi−−→ ei+1. (8)
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The subalgebra g0 acts on g1 by adjoint action. For a suitably chosen root vectors xi j ,
this action is given by

xi j
x−αi−−→ xi+1, j for i < j, (9)

xi j

x−α j−−→ xi, j+1 for i < j, (10)

xii
x−αi−−→ 2xi,i+1 (11)

(cf. [19]).
We identify the Weyl group W of [g0, g0] with the group of permutations

σ : i → σ(i), i = 1, . . . , �,

so that for α = εi − ε j , i �= j , we have σα = εσ(i) − εσ( j). For each σ ∈ W , we have
an automorphism σ of g0 and a linear map σ on the vector representation V1 = C

� of
g0,

σ : g0 → g0, σ : V1 → V1, (12)

such that
σ xα ∈ C

×xσα, σ ei ∈ C
×eσ(i) (13)

and
σ(xv) = (σ x)(σv) (14)

for x ∈ g0 and v ∈ V1. For simple reflection σi ∈ W , the linear map σi is
(exp x−αi )(exp−xαi )(exp x−αi ) and formula (14) holds in general for integrable g0-
modules (cf. [20]). Since g1 ∼= S2(C�), we also have a linear map σ on g1 such
that

σ xi j ∈ C
×xσ(i)σ ( j). (15)

To abbreviate expressions like the ones in (13) and (15), we introduce the following
notation: for two vectors, monomials, etc., we write x ∼ y if the two are equal up to
a nonzero scalar, i.e.,

x = Cy, for some C ∈ C
×. (16)

In this way, relations (13) and (15) can be rewritten in the following way:

σ xα ∼ xσα, σ ei ∼ eσ(i),

σ xi j ∼ xσ(i)σ ( j).

Denote by g̃ the affine Lie algebra of type C (1)
� associated to g,

ĝ = g ⊗ C[t, t−1] + Cc, g̃ = ĝ + Cd,

with the canonical central element c and the degree element d . Set

x(n) = x ⊗ tn
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for x ∈ g and n ∈ Z and denote by x(z) = ∑
n∈Z

x(n)z−n−1 a formal Laurent series
in formal variable z. The commutation relations in g̃ are

[x(i), y( j)] = [x, y](i + j) + i〈x, y〉δi+ j,0c, [c, g̃] = 0, [d, x( j)] = j x( j).

We have a triangular decomposition

g̃ = ñ− + h̃ + ñ+,

where

ñ− = n− + g ⊗ t−1
C[t−1], h̃ = h + Cc + Cd, ñ+ = n+ + g ⊗ tC[t].

We also have the induced Z-gradation

g̃ = g̃−1 + g̃0 + g̃1

of affine Lie algebra g̃, where

g̃0 = g0 ⊗ C[t, t−1] ⊕ Cc ⊕ Cd, g̃±1 = g±1 ⊗ C[t, t−1].

The subspace g̃1 ⊂ g̃ is a commutative subalgebra and g0 acts on g̃1 by adjoint action.
We denote by Λ0, . . . , Λ� the fundamental weights of g̃,

Λr = Λ0 + ωr , r = 1, . . . , �. (17)

3 Feigin–Stoyanovsky’s type subspaces

Denote by L(Λ) a standard (i.e., integrable highest weight) g̃-module with the highest
weight

Λ = k0Λ0 + k1Λ1 + · · · + k�Λ�,

ki ∈ Z+ for i = 0, . . . , �. Throughout the paper, we denote by k = Λ(c) the level of
g̃-module L(Λ),

k = k0 + k1 + · · · + k�,

and by vΛ a fixed highest weight vector of L(Λ).
For each integral dominant Λ, we have a Feigin–Stoyanovsky’s type subspace

W (Λ) = U (̃g1)vΛ ⊂ L(Λ).

This space has a Poincare–Birkhoff–Witt spanning set

{xγ1(−n1)xγ2(−n2) · · · xγt (−nt )vΛ | t ∈ Z+, γi ∈ Γ, ni ∈ N}. (18)
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The main problem considered in this paper is to reduce this PBW spanning set to a
basis of W (Λ). The main three steps in our construction are as follows:

– find relations for standard modules,
– reduce the spanning set, and
– prove linear independence by using intertwining operators.

4 Difference and initial conditions

Start from the vertex operator algebra relation on L(Λ)

xθ (z)
k+1 =

∑

N∈Z

⎛

⎝
∑

n1+···+nk+1=N

xθ (−n1) · · · xθ (−nk+1)

⎞

⎠ zN−k−1 = 0 (19)

(cf. [21–23]).Adjointg0-actionon (19) gives us the spaceof relationsU (g0)·xθ (z)k+1 =
0. This is a finite-dimensional g0-module with the highest weight 2(k + 1)ω1. Hence,
as a vector space, it is isomorphic to S2(k+1)(C�). The basis of S2(k+1)(C�) is given by
em1
1 · · · em�

� , m1 + · · · + m� = 2(k + 1), which we view as multisets {1m1 , . . . , �m�}.
Since relations (9)–(11) hold, one can easily see that the corresponding “basis” of the
set of relations is given by the following proposition:

Proposition 1 On L(Λ), the following relations hold

∑

{i1,...,ik+1}∪{ j1,..., jk+1}={1m1 ,...,�m� }
Cijxi1 j1(z)xi2 j2(z) · · · xik+1 jk+1(z) = 0, (20)

for some Cij ∈ C
×, where the sum runs over all such partitions of the multiset

{1m1 , . . . , �m�}.
For each power of z from (20), we obtain a relation between monomials

∑

n1+···+nk+1=N
{i1,...,ik+1, j1,..., jk+1}={1m1 ,...,�n� }

Cijxi1 j1(−n1)xi2 j2(−n2) · · · xik+1 jk+1(−nk+1) = 0.

(21)
We find the smallest monomials in these relation, the leading terms of relations. Since
they can be expressed as a sumof higher terms, we can exclude them from the spanning
set (18).

We introduce a linear order on monomials in the following way. First, define a
linear order on the set of colors Γ : (i ′ j ′) < (i j) if i ′ > i or i ′ = i, j ′ > j . On the set
of variables Γ̃ = {xγ (n) | γ ∈ Γ, n ∈ Z}, define a linear order by xα(n) < xβ(n′) if
n < n′ or n = n′, α < β. Assume that variables inmonomials are sorted descendingly
from right to left. The order < on the set of monomials is defined as a lexicographic
order, where we compare variables from right to left (from the greatest to the lowest
one).
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Fig. 5 Difference conditions for
level k
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Order < is compatible with multiplication (see [24,33]):

if x(π) < x(π ′) then x(π)x(π1) < x(π ′)x(π1) (22)

for monomials x(π), x(π ′), x(π1) ∈ C[Γ̃ ].
The leading terms can be most conveniently described in terms of exponents:

Proposition 2 A monomial

x(π ′) = xit jt (−n − 1)bit jt · · · xi1 j1(−n − 1)bi1 j1

×xis js (−n)ais js · · · xit+1 jt+1(−n)
ait+1 jt+1 ,

where i1 ≤ · · · ≤ it ≤ jt ≤ · · · ≤ j1 ≤ it+1 ≤ · · · ≤ is ≤ js ≤ · · · ≤ jt+1,
(iν, jν) �= (iν+1, jν+1), and

bi1 j1 + · · · + bit jt + ait+1 jt+1 + · · · + ais js = k + 1, (23)

is a leading term of a relation (21) corresponding to the multiset

{i1bi1 j1 , . . . , it
bit jt , jt

bit jt , . . . , j1
bi1 j1 ,

it+1
ait+1 jt+1 , . . . , is

ais js , js
ais js , . . . , jt+1

ait+1 jt+1 }

and a degree N = (k + 1)n + m, where m = bi1 j1 + · · · + bit jt .

The colors of leading terms lie on diagonal paths in Γ , see Fig. 5.

Proof Consider a relation (21) corresponding to a multiset {p1 ≤ · · · ≤ p2k+2} and a
total degree −n1 − · · · − nk+1 = −N ∈ −N.
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First consider the case N = (k + 1)n. In this case the leading term has all factors
of the same degree −n so we need to find minimal configuration of colors whose
rows and columns joined give {p1, . . . , p2k+2}. It is clear that rows of the minimal
configuration are {p1, . . . , pk+1} and its columns are {pk+2, . . . , p2k+2}. Otherwise
there would exist a leading term x(π) = x(π1)xi j (−n)xi ′ j ′(−n), i ≤ j < i ′ ≤ j ′, and
it is clear that a monomial x(π ′) = x(π1)xi j ′(−n)x ji ′(−n) from the same relation is
smaller than x(π). By a similar argument we conclude that the minimal configuration
is obtained by pairing maximal rows with minimal columns, i.e., it consists of colors
{(p1 p2k+2), (p2 p2k+1), . . . , (pk+1 pk+2)} (if x(π) = x(π1)xi j (−n)xi ′ j ′(−n), i <

i ′ < j < j ′, then x(π ′) = x(π1)xi j ′(−n)xi ′ j (−n) is smaller than x(π)). Hence it is
a configuration whose colors lie on a diagonal path as shown in Fig. 5.

Next, consider the case N = (k+1)n+m. In this case, the leading termhasm factors
of degree−n−1 and k+1−m factors of degree−n. The leading term is obtainedfirst by
choosing theminimal possible (−n)-part, and then theminimal possible (−n−1)-part.
Hence (−n)-part corresponds to {p2m+1,...,p2k+2}, while (−n − 1)-part corresponds to
{p1, . . . , p2m}, and colors of these parts lie on diagonal paths as shown in Fig. 5. ��

We say that a monomial x(π) satisfies difference conditions, or shortly, that x(π)

satisfies DC , if it does not contain leading terms. More precisely, x(π) satisfies dif-
ference conditions if for any n ∈ N and i1 ≤ · · · ≤ it ≤ jt ≤ · · · ≤ j1 ≤ it+1 ≤
· · · ≤ is ≤ js ≤ · · · ≤ jt+1,

bi1 j1 + · · · + bit jt + ait+1 jt+1 + · · · + ais js ≤ k, (24)

where ai j ’s and bi j ’s denote exponents of xi j (−n) and xi j (−n − 1) in x(π), respec-
tively.

Note that in the case of level k = 1, difference conditions imply that if x(π) =
x(π ′)xi j (−n) then x(π ′) does not contain factors xi ′ j ′(−n), i ≤ i ′ ≤ j ′ ≤ j or
i ′ ≤ i ≤ j ≤ j ′, nor it contains factors xi ′ j ′(−n − 1), i ′ ≤ j ′ ≤ i . Hence,
x(π) = . . . xi ′s j ′s (−n − 1) · · · xi ′1 j ′1(−n − 1)xit jt (−n) · · · xi1 j1(−n) . . . satisfies dif-
ference conditions for level k = 1 if

i1 < · · · < it , j1 < · · · < jt , i ′1 < · · · < i ′s, it < j ′1 < · · · < j ′s . (25)

Its colors lie on diagonal paths and a diagonal path of (−n − 1)-part lies below it -th
row, where it is the column of the smallest color of the (−n)-part; see Fig. 3.

Remark 1 Similar difference conditions appear in another construction of combina-
torial bases for C (1)

� (cf. [28]).

Lemma 3 On L(Λr )

xi j (−1)vΛr = 0, if j ≤ r,

xi j (−1)vΛr �= 0, if j > r.
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Fig. 6 Initial conditions for
W (Λr )
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•

•
•
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Proof For α ∈ R denote by sl2(α) ⊂ g a subalgebra generated by xα and x−α , and
let

s̃l2(α) = sl2(α) ⊗ C[t, t−1] ⊕ Cc ⊕ Cd ⊂ g̃

be the corresponding affine Lie algebra of type A(1)
1 . It has a canonical central element

c′ = 〈xα, x−α〉c = 2c/〈α, α〉. Hence the restriction of L(Λr ) is a level 1 representation
if α is a long root, and a level 2 representation if α is a short root.

Consider α = ( j j) = 2ε j , j ≤ r . Then ( j j)∨ = ( j j) = 2ε j and 〈ωr , ( j j)∨〉 =
δ j>r . Hence, by (17), if j ≤ r , then U (s̃l2(α))vΛr is a level 1 representation with 2-

dimensional sl2(α)-module on top, and therefore it must be the standard A(1)
1 -module

L(Λ1). If j > r , then the sl2(α)-module on top is 1-dimensional, henceU (s̃l2(α))vΛr

must be the standard A(1)
1 -module L(Λ0) (cf. [20]). Therefore

x j j (−1)vΛr = 0, if j ≤ r, (26)

x j j (−1)vΛr �= 0, if j > r, (27)

which proves the lemma for i = j . For i < j , action by xαi (0) · · · xα j−1(0) on (26)
and (27) gives the claim. ��

A monomial x(π) satisfies initial conditions for W (Λr ) if it does not contain a
factor xi j (−1), i ≤ j ≤ r . Note that if a monomial x(π) satisfies difference and
initial conditions for W (Λr ), then the colors of (−1)-factors lie on a diagonal path
below the r -th row (see Fig. 6).
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Fig. 7 Initial conditions for
Λ = k0Λ0 + · · · + k�Λ�

1

2

1

◦
◦

◦◦
(−1)

j1

Generally, letΛ = k0Λ0 +· · ·+ k�Λ�. We say that x(π) satisfies initial conditions
for W (Λ) if for every i1 ≤ · · · ≤ it ≤ jt ≤ · · · ≤ j1,

ai1 j1 + · · · + ait jt ≤ k0 + k1 + · · · + k j1−1, (28)

where ai j ’s denote exponents of xi j (−1) in x(π) (see Fig. 7). One immediately sees
that for Λ = Λr the two definitions of initial conditions are equivalent.

Remark 2 Like in [2,32], initial conditions can be expressed in terms of difference
conditions by adding “imaginary” (0)-factors to x(π). Let

x(π0) = x1�(0)
k1x2�(0)

k2 · · · x��(0)
k� .

Note that colors of x(π0) lie on a diagonal path as shown in Fig. 5. Then x(π) satisfies
difference and initial conditions for W (Λ) if and only if x(π ′) = x(π)x(π0) satisfies
difference conditions. In fact, initial conditions are defined in this way so that the
property holds.

Proposition 4 The set of monomial vectors x(π)vΛ satisfying difference conditions
(24) and initial conditions (28) span W (Λ).

Proof By (21), if x(π) does not satisfy difference condition (24), then x(π)vΛ can be
expressed in terms of higher monomial vectors. Hence we can exclude x(π)vΛ from
the spanning set (18).

Bydefinition of level one initial conditions, if x(π) does not satisfy initial conditions
for W (Λr ), then x(π)vΛr = 0 and x(π)vΛr can be excluded from the spanning set
(18). Assume k > 1 and that x(π) does not satisfy initial condition (28), and set
d = k0 + k1 + · · · + k j1−1 + 1. Factorize x(π) = x(π ′′)x(π ′), where x(π ′) consists
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only of (−1)-factors lying on a diagonal path from (28). Furthermore, one can assume
that the length of x(π ′) is equal to d and that d < k + 1 (otherwise (28) is equivalent
to (24)).

Set Λ′ = ∑ j1−1
r=0 krΛr , Λ′′ = ∑�

r= j1 krΛr = Λ − Λ′. Denote by vΛ′ and vΛ′′ the
highest weight vectors of standard modules L(Λ′) and L(Λ′′). Then, by the complete
reducibility, L(Λ) ⊂ L(Λ′)⊗ L(Λ′′), vΛ = vΛ′ ⊗vΛ′′ . Since, by Lemma 3, all factors
of x(π ′) annihilate vΛ′′ , we have

x(π ′)vΛ = (x(π ′)vΛ′) ⊗ vΛ′′ .

Note that L(Λ′) is a module of level d − 1 < k. From relations (21) for the module
L(Λ′) we obtain monomials x(π ′

1), . . . , x(π ′
s) such that x(π ′)vΛ′ = C1x(π ′

1)vΛ′ +
· · · + Cs x(π ′

s)vΛ′ , Ct ∈ C
×, and x(π ′) < x(π ′

t ). Also from these relations, we see
that colors of monomials x(π ′

t ) lie in the j1-th row or above. By Lemma 3, all factors
of x(π ′

t ) also act as 0 on vΛ′′ . Consequently,

x(π ′)vΛ = C1x(π ′
1)vΛ + · · · + Cs x(π ′

s)vΛ,

and x(π)vΛ can be expressed in terms of higher monomial vectors. Therefore, it can
be excluded from the spanning set (18). ��

Like in the A�-case [32], difference and initial conditions for level k > 1 can be
interpreted in terms of difference and initial conditions for level 1:

Proposition 5 Let L(Λ) ⊂ L(Λi1) ⊗ · · · ⊗ L(Λik ) be a standard module of level k.
Monomial x(π) satisfies difference and initial conditions for W (Λ) if and only if there
exists a factorization

x(π) = x(π(1)) · · · x(π(k)),

such that x(π( j)) satisfies difference and initial conditions for W (Λi j ).

Proof We follow the idea from [32]; here we give a sketch of the proof. First consider
the case Λ = kΛ0 for which initial conditions do not provide any additional relations
and we only need to consider difference conditions.

Define another order on the set of variables: xi j (−n) � xi ′ j ′(−n′) if either −n ≤
−n′ − 2 or −n = −n′ − 1, j > i ′ or −n = −n′, i > i ′, j > j ′. Equivalently,
xi j (−n) � xi ′ j ′(−n′) if xi j (−n) < xi ′ j ′(−n′) and a monomial xi j (−n)xi ′ j ′(−n′)
satisfies level 1 difference conditions. This is a strict partial order on Γ̃ .

Consider monomials x(π) ∈ C[Γ̃ ] as multisets; then a monomial x(π) satisfies
level k difference conditions if and only if every subset of x(π) in which there are
no two elements comparable in the sense of �, has at most k elements. To see this,
let xi j (−n), xi ′ j ′(−n′) ∈ Γ̃ , xi j (−n) < xi ′ j ′(−n′). They are incomparable in the
sense of � if and only if either −n = −n′ − 1 and j ≤ i ′ or −n = −n′ and i ≥ i ′
or j ≥ j ′. It is clear that factors of leading terms (23) are mutually incomparable;
consequently, if x(π) does not satisfy difference conditions, then it has a subset of at
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least k + 1 mutually incomparable elements. Conversely, consider a subset of x(π)

whose elements are mutually incomparable. By the observation above, degrees of its
elements differ for at most 1. Moreover, elements of the same degree lie on a diagonal
path and the two paths are related as shown in (23).

Note that if xγ1(−n1) � · · · � xγt (−nt ), then the corresponding monomial
xγ1(−n1) · · · xγt (−nt ) satisfies level 1 difference conditions. Now, a combinatorial
lemma from [32] implies that x(π) can be partitioned into k linearly ordered subsets
which proves proposition in the Λ = kΛ0 case.

By Remark 2, in the general case Λ = k0Λ0 + · · · + k�Λ�, initial conditions can
be regarded as difference conditions by considering monomials x(π ′) = x(π)x(π0)

instead of x(π), where x(π0) = x1�(0)k1 · · · x��(0)k� . By above arguments, we can
partition x(π ′) into k linearly ordered subsets. Since xi�(0)’s are mutually incom-
parable, they lie in different subsets. Moreover, a subset containing xi�(0) gives a
monomial satisfying difference and initial conditions for W (Λi ), again by Remark 2.

��

5 Intertwining operators

Consider a g0-module Vi = U (g0)vΛi ⊂ L(Λi ) and C
� as the vector representation

for g0-action. Then

Vi =
i∧
C

�,

for i = 0, . . . , � (cf. [3,19]). If e1, . . . , e� is a basis for C� with g0-action defined by
(8), then

vp1···pi = ep1 ∧ · · · ∧ epi , 1 ≤ p1 < · · · < pi ≤ � (29)

is a basis for Vi . Moreover,

vΛi = v12...i .

If I = {p1, . . . , pi }, 1 ≤ p1 < · · · < pi ≤ �, then denote by vI = vp1...pi . Note that
for each σ ∈ W and each i = 1, . . . , � we have a linear map σ on Vi such that

σvp1...pi ∼ vσ(p1)···σ(pi ),

where we use the notation from (16). Later on we shall also use other consequences
of the formula (14) for integrable g0-modules, for example the formula

σ(x pq(−1)vp1...pi ) ∼ xσ(p)σ (q)(−1)vσ(p1)...σ (pi ).

Lemma 6 Let v ∈ Vi . Then xγ (n)v = 0, for γ ∈ Γ , n ≥ 0, and xα(n)v = 0, for
α ∈ R, n ≥ 1.
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Proof We only need to show xv = 0 for all x ∈ g1, v ∈ Vi ; other relations are clear
from the definition. Let v′ ∈ Vi be such that g1v′ = 0. Let x ∈ g1 and y ∈ g0. Then
xyv′ = [xy]v′ + yxv′ = 0. Since g1vΛi = 0, the claim follows. ��

The standard g̃-module L(Λ0) is a vertex operator algebra and L(Λ1), …, L(Λ�)

are modules for vertex operator algebra L(Λ0) (cf. [16,21]). By using Theorem 6.2
in [14], it is easy to see that the space of intertwining operators

Y : L(Λ1) → Hom (L(Λi ), L(Λi+1)){{z}}, Y(w, z)u =
∑

m∈Q

wmu z−m−1

is 1-dimensional for i = 0, . . . , � − 1.
By Lemma 6.1 in [27] for such nonzero Y , there exists m ∈ Q such that

V1 ⊗ Vi → Vi+1, w ⊗ u → wmu (30)

is a nonzero homomorphism of g0-modules. It is easy to see that the multiplicity of
Vi+1 in V1 ⊗ Vi is 1—one way to see this is by using Parthasarathy–Ranga Rao–
Varadarajan’s theorem 5.2 in [14]—hence we can normalize Y so that the map (30) is
the homomorphism of g0-modules

V1 ⊗ Vi → Vi+1, vmu = v ∧ u. (31)

From the commutator formula for Y and Lemma 6, we have the following:

Proposition 7 For v ∈ V1 = C
�:

– Y(v, z) commutes with g̃1
– for u ∈ Vi , the coefficient of z−m−1 of Y(v, z)u is

vmu = v ∧ u.

6 Simple current operator

Recall that we have fixed the minuscule coweight ω = ω� ∈ h∗. We shall use simple
current operators

L(Λi )
[ω]−→ L(Λ�−i )

[ω]−→ L(Λi )

such that simple current commutation relation

xα(n)[ω] = [ω]xα(n + α(ω)), α ∈ R, n ∈ Z (32)

holds (see [11,18], or Remark 5.1 in [27]). Then

xγ (−n − 1)[ω] = [ω]xγ (−n) for γ ∈ Γ

x(μ)[ω] = [ω]x(μ+) for a monomial x(μ) ∈ U (g̃−
1 ),
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where by x(μ+) we denote a monomial obtained by raising degrees in x(μ) by 1.
Also,

xα(−n)[ω] = [ω]xα(−n) for xα ∈ g0,

σ [ω] = [ω]σ for σ ∈ W.

In the level k > 1 case, for Λ = k0Λ0 + k1Λ1 + · · · + k�Λ�, we embed L(Λ) in a
tensor product of standard modules of level 1

L(Λ) ⊂ L(Λ0)
k0 ⊗ L(Λ1)

k1 ⊗ · · · ⊗ L(Λ�)
k� ,

with a highest weight vector

vΛ = v
⊗k0
Λ0

⊗ · · · ⊗ v
⊗k�

Λ�
,

and we use the level k simple current operator [ω] : L(Λ) → L(Λ′),

[ω] = [ω] ⊗ · · · ⊗ [ω].

7 Relations

From (21), we immediately obtain the following relations:

Lemma 8 On a level one module L(Λr )

xii (−1)xii (−1) = 0, (33)

xi j (−1)xii (−1) = 0, for i < j, (34)

x j j (−1)xi j (−1) = 0, for i < j, (35)

xi j (−1)xi j (−1) ∼ xii (−1)x j j (−1), for i < j, (36)

x jk(−1)xii (−1) ∼ xik(−1)xi j (−1) = 0, for i < j < k, (37)

x jk(−1)xi j (−1) ∼ x j j (−1)xik(−1) = 0, for i < j < k, (38)

xkk(−1)xi j (−1) ∼ x jk(−1)xik(−1) = 0, for i < j < k, (39)

x jk(−1)xil(−1) ∼ C1x jl(−1)xik(−1) + C2xkl(−1)xi j (−1), (40)

for i < j < k < l and some C1, C2 ∈ C
×.

Lemma 9 If i, j ∈ {s1, s2, . . . , sr }, where 1 ≤ s1, . . . , sr ≤ �, then

xi j (−1)vs1s2...sr = 0.

Proof Let i = sp, j = sq , p ≤ q ≤ r . By Lemma 3, we have

x pq(−1)v12...r = 0. (41)
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Next, by acting on (41) with a linear map σ corresponding to σ ∈ W such that
σ(t) = st , t = 1, . . . , r (see (12)), we obtain the desired relation. ��
Lemma 10 If i /∈ {s1, s2, . . . , sr }, then

xisp (−1)vs1s2...sr ∼ xspsp (−1)vs1...i ...sp ...sr . (42)

We use underline to denote that the corresponding indices should be excluded.

Proof Let sq−1 < i < sq , q ≤ p. By Lemma 9, we have

xq+1,p+1(−1)v1···q−1,q+1···r+1 = 0. (43)

We act with xαq ∈ g0 and obtain

xq,p+1(−1)v1···q−1,q+1···r+1 − C ′xq+1,p+1(−1)v1···q,q+2···r+1 = 0, (44)

for some C ′ ∈ C
×. Hence

xq,p+1(−1)v1···q−1,q+1···r+1 ∼ xq+1,p+1(−1)v1···q,q+2···r+1. (45)

By induction, we obtain

xq,p+1(−1)v1···q−1,q+1···r+1 ∼ x p+1,p+1(−1)v1···p,p+2···r+1. (46)

By acting on (46) with a linear map σ corresponding to σ ∈ W such that σ(t) = st ,
for t ∈ {1, . . . , q − 1}, σ(t) = st−1, for t ∈ {q + 1, . . . , r + 1}, and σ(q) = i , we
obtain (42). ��

Lemma 9 can be generalized in the following way:

Lemma 11 Let x(π) = xim jm (−1) · · · xi1 j1(−1), it ≤ jt , and assume j1 < · · · < jm.
Let I ⊂ {1, . . . , �} be such that {1, . . . , jm} \ { j1, . . . , jm} ⊂ I . If jm ∈ I , then

x(π)vI = 0.

Proof If m = 1 this is just Lemma 9 since i1, j1 ∈ I . For m > 1, we use induction. If
im ∈ I , then Lemma 9 implies x(π)vI = 0. If im /∈ I , then im = jr , for some r < m.
By Lemma 10

x jr jm (−1)vI = x jm jm (−1)vI ′ ,

where I ′ = (I \ { jm}) ∪ { jr }. By induction,

xir jr (−1) · · · xi1 j1(−1)vI ′ = 0,

which gives the claim.

123



Feigin–Stoyanovsky’s type subspaces for C(1)
�

283

Lemma 12 Let x(π) = xim jm (−1) · · · xi1 j1(−1), it ≤ jt , and assume j1 < · · · <

jm−1 ≤ jm. Let I ⊂ {1, . . . , �} be such that {1, . . . , jm} \ { j1, . . . , jm} ⊂ I . If
jm−1 = jm, then

x(π)vI = 0.

Proof For m = 2, we have x(π)vI = xi2 j2(−1)xi1 j2(−1)vI . Assume i1 ≤ i2.
If i2 = j2, then x(π)vI = 0, by (35). Otherwise, i1, i2 ∈ I and x(π)vI ∼
x j2 j2(−1)xi1i2(−1)vI = 0, by (39), (36) and Lemma 9.

For m > 2 we use induction. Assume im−1 ≤ im . If im = jm , then x(π)vI = 0, by
(35). Otherwise, by (39) and (36),

x(π)vI ∼ x jm jm (−1)xim−1im (−1)xim−2 jm−2 · · · xi1 j1(−1)vI .

If im ∈ I , then x(π)vI = 0, by Lemma 11. If im /∈ I , then im = jr , for some
r < m − 1. By induction,

xim−1 jr (−1)xir jr · · · xi1 j1(−1)vI = 0,

from which the claim follows. ��
So far we have described conditions upon which a monomial of “small” degree will

annihilate vectors from the top of a standardmodule. In the following two propositions,
we describe in more detail the action of these monomials on vectors from the top.

Proposition 13 Let x(π) = xim jm (−1) · · · xi2 j2(−1)xi1 j1(−1) satisfy difference con-
ditions, i.e., i1 < · · · < im, j1 < · · · < jm and it ≤ jt . Set I = {1, . . . , �} \
{ j1, . . . , jm}, I ′ = {i1, . . . , im}. Then

x(π)vI ∼ [ω]vI ′ . (47)

Proof We first show

xmm(−1)xm−1,m−1(−1) · · · x22(−1)x11(−1)vm+1,...,� ∼ [ω]v12···m, (48)

i.e., we show that [ω]−1xmm(−1) · · · x11(−1)vm+1,...,� is a highest weight vector
with the highest weight Λm . Like in the proof of lemma 3, one easily sees that
xmm(−1) · · · x11(−1)vm+1,...,� �= 0. By (32) and Lemma 6, we have

x−θ (1)[ω]−1xmm(−1) · · · x11(−1)vm+1,...,�

= [ω]−1xmm(−1) · · · x11(−1)x−θ (2)vm+1,...,� = 0.

By (29) and (32) and

xαi (0)[ω]−1xmm(−1) · · · x11(−1)vm+1,...,�

= [ω]−1xmm(−1) · · · x11(−1)xαi (0)vm+1,...,� = 0,

for i = m + 1, . . . , � − 1. By (29), (32) and Lemma 9
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xαm (0)[ω]−1xmm(−1) · · · x11(−1)vm+1,...,�

= [ω]−1xmm(−1) · · · x11(−1)vm,m+2,...,� = 0,

By (29), (32), and (34)

xαi (0)[ω]−1xmm(−1) · · · x11(−1)vm+1,...,� = [ω]−1xmm(−1) · · · xii (−1)

×xi+2,i+2(−1) · · · x11(−1)(xi+1,i+1(−1)xαi (0) + xi,i+1(−1))vm+1,...,� = 0,

for i = 1, . . . , m − 1. Since α� = (��), by (32) and Lemma 9

xα�
(0)[ω]−1xmm(−1) · · · x11(−1)vm+1,...,�

= [ω]−1xmm(−1) · · · x11(−1)x��(−1)vm+1,...,� = 0.

Hence, (48) holds.
Next, W-action on (48) gives

x jm jm (−1) · · · x j2 j2(−1)x j1 j1(−1)vI ∼ [ω]v j1··· jm . (49)

Finally, g0-action on (49) gives the claim. Assume that we have shown

x jm jm (−1) · · · x jt+1 jt+1(−1)xnjt (−1)xit−1 jt−1(−1) · · · xi1 j1(−1)vI (50)

∼ [ω]vi1···it−1njt+1··· jm ,

where it < n ≤ jt . Since [xαn−1(0), xnjt (−1)] = xn−1, jt (−1), we act on (50) with
xαn−1(0). We claim that what we will get is

x jm jm (−1) · · · x jt+1 jt+1(−1)xn−1, jt (−1)xit−1 jt−1(−1) · · · xi1 j1(−1)vI (51)

∼ [ω]vi1···it−1,n−1, jt+1··· jm .

Note that [xαn−1(0), x jr jr (−1)] = 0, for t < r ≤ m.
First, consider the case when n ∈ I . In this case also [xαn−1(0), xir jr (−1)] = 0, for

1 ≤ r < t . If n − 1 ∈ I , then xαn−1(0)vI = 0 and (51) follows. If n − 1 /∈ I , then
xαn−1(0)vI = vI ′ , where I ′ = (I \ {n}) ∪ {n − 1}. Since n − 1 /∈ I , then n − 1 = js ,
for some s < t . By Lemma 11,

xis js (−1) · · · xi1 j1(−1)vI ′ = 0,

and (51) follows.
Now, consider the case when n /∈ I . In this case n = js , for some r < t .

Then xαn−1(0)vI = 0, [xαn−1(0), xir jr (−1)] = 0, for 1 ≤ r < t, r �= s, and
[xαn−1(0), xis js (−1)] = xis ,n−1(−1). If n − 1 ∈ I , then, by Lemma 11,

xis ,n−1(−1)xis−1 js−1(−1) · · · xi1 j1(−1)vI = 0.

If n − 1 /∈ I , then n − 1 = js−1 and
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xis js−1(−1)xis−1 js−1(−1) · · · xi1 j1(−1)vI = 0,

by Lemma 12. In both cases, (51) follows.
After finitely many steps we will reach (47) ��

Proposition 14 Let x(π) = xim jm (−1) · · · xi2 j2(−1)xi1 j1(−1) be such that j1 <

· · · < jm, ir �= it for r �= t , and it ≤ jt . Set I = {1, . . . , �} \ { j1, . . . , jm},
I ′ = {i1, . . . , im}. Then x(π)vI ∼ [ω]vI ′ .

Proof Since x(π) does not satisfy difference conditions, we can use relations (21) to
express x(π) in terms of monomials that satisfy difference conditions. We show that
in each step of the reduction of x(π), we will obtain another monomial x(π ′) such that
x(π) < x(π ′), x(π)vI ∼ x(π ′)vI and such that colors of factors of x(π ′) again lie in
rows j1, . . . , jm and columns i1, . . . , im , as are the colors of x(π). In the end we will
obtain x(π)vI = xism jm (−1) · · · xis1 j1(−1)vI , where is1 < · · · < ism , and proposition
13 gives the claim.

Let x(π) = x(π1)x(π2), where x(π1) is a leading term of some relation (21). In
fact, since colors of factors of x(π) all lie in different rows and different columns,
relations that we use are (38) and (40).

First, assume that the reduction is made upon relation (38). In this case x(π1)vI ∼
x(π ′

1)vI , with x(π1) < x(π ′
1), and after the reduction we obtain another monomial

x(π ′) = x(π ′
1)x(π2)whose colors lie in the same rows and columns as colors of x(π)

and x(π1) < x(π ′
1).

Next, assume that the reduction is made upon relation (40). Let x(π1) =
xit jt (−1)xir jr (−1), for some r < t and it < ir < jr < jt . Let

x(π ′
1) = xir jt (−1)xit jr (−1), x(π ′′

1 ) = xit ir (−1)x jr jt (−1).

Then, by (40),

x(π1)vI = C1x(π ′
1)vI + C2x(π ′′

1 )vI ,

for some C1, C2 ∈ C
× and x(π1) < x(π ′

1), x(π ′′
1 ). Denote by x(π ′) = x(π ′

1)x(π2)

and x(π ′′) = x(π ′′
1 )x(π2). Then

x(π)vI = C1x(π ′)vI + C2x(π ′′)vI ,

and x(π) < x(π ′), x(π ′′). Note that colors of x(π ′) lie in the same rows and columns
as colors of x(π). We claim that x(π ′′)vI = 0. Let n be such that jn ≤ ir < jn+1. If
ir ∈ I , then

xit ir (−1)xin jn (−1) · · · xi1 j1(−1)vI = 0,

by Lemma 11. If ir /∈ I , then jn = ir and

xit ir (−1)xin jn (−1) · · · xi1 j1(−1)vI = 0,

by Lemma 12. In both cases, we get x(π ′′)vI = 0. ��
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Remark 3 Let xim jm (−1) · · · xi1 j1(−1) satisfy difference conditions. Assume

xim jm (−1) · · · xi1 j1(−1)vs1···s�−m �= 0. (52)

If { j1, . . . , jm} ∩ {s1, . . . , s�−m} = ∅, then, by Proposition 13,

xim jm (−1) · · · xi1 j1(−1)vs1···s�−m = [ω]vi1···im .

If { j1, . . . , jm} ∩ {s1, . . . , s�−m} �= ∅, we can use Lemma 10 to “switch” indices and
reduce the expression (52) to the one appearing in Proposition 14. Concretely: Let t
be the smallest possible so that jt ∈ {s1, . . . , s�−m}. Then it /∈ {s1, . . . , s�−m}, by (52)
and Lemma 9, and

xit jt (−1)vs1s2···s�−m ∼ x jt jt (−1)vs1···it ··· jt ···s�−m ,

by Lemma 10. Proceed inductively—reduce the expression

xim jm (−1) · · · x jt jt (−1) · · · xi1 j1(−1)vs1···it ··· jt ···s�−m

to the one appearing in Proposition 14.
Hence, in this case, there is no index occurring more than twice in the sequence

i1, . . . , im , j1, . . . , jm , s1, . . . , s�−m , and

xim jm (−1) · · · xi1 j1(−1)vs1···s�−m ∼ [ω]vr1···rm ,

where r1, . . . , rm are exactly those indices appearing twice in the sequence.

8 Proof of linear independence

Let x(π) = xim jm (−1) · · · xi2 j2(−1)xi1 j1(−1) satisfy difference and initial conditions
on W (Λi ). Set J = {1, . . . , �} \ { j1, . . . , jm}, I = {i1, . . . , im}. By Proposition 7
there are operators, denoted by w1, w2 that commute with g̃1 and such that

w1vΛi = vJ , w2vI = vΛim
. (53)

Moreover, operators w1 and w2 act on Vi and Vm , correspondingly, as multiplication
in the exterior algebra by suitable vectors. Let wω

2 = [ω]w2[ω]−1; it also commutes
with g̃1. Then, by Proposition 13,

wω
2 w1x(π)vΛi ∼ [ω]vΛim

.

Let x(μ) = xrnsn (−1) · · · xr2s2(−1)xr1s1(−1) also satisfy difference and initial
conditions on W (Λi ), and let x(μ) > x(π). We will show that

wω
2 w1x(μ)vΛi = 0. (54)
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If n > m, then either

xrm sm (−1) · · · xr1s1(−1)vJ = 0

or

xrm sm (−1) · · · xr1s1(−1)vJ ∼ [ω]v′,

for some v′ ∈ Vm (cf. Remark 3). In the first case, Relation (54) directly follows. In
the second case, we have

x(μ)vJ ∼ [ω]xrnsn (0) · · · xrm+1sm+1(0)v
′ = 0

by Lemma 6. Hence, (54) follows.
If n = m, then there exists t , 1 ≤ t ≤ m, such that (r1s1) = (i1 j1), . . ., (rt−1st−1) =

(it−1 jt−1) and (rt st ) > (it jt ). Then either rt = it and st < jt , or rt < it .
Consider first the case when rt = it and st < jt . Then jt−1 = st−1 < st < jt ,

hence st ∈ J . Then xrt st (−1) · · · xr1s1(−1)vJ = 0, by Lemma 11, and (54) follows.
Now, consider the case when rt < it . If x(μ)vJ = 0, we are done. If x(μ)vJ �= 0,

then, by Remark 3, in the multiset {r1, . . . , rm} ∪ {s1, . . . , sm} ∪ J there is no index
occurring more than twice. Furthermore, since rt < jt and sp = jp, for p < t , index
rt appears twice in the aforementioned multiset. Hence x(μ)vJ ∼ [ω]vI ′ and rt ∈ I ′.
Since rt /∈ I and rt < it , the action of w2 will annihilate vI ′ (see (53) and Proposition
7), i.e., wω

2 [ω]vI ′ = 0.
Set w = wω

2 w1. By the above considerations, we have the following.

Proposition 15 Let x(π) satisfy difference and initial conditions for L(Λi ). Write
x(π) = x(π1)x(π2), where x(π1) is the (−1)-part of a monomial, and x(π2) the rest
of the monomial. Then there exists an operator w : L(Λi ) → L(Λi ′) such that

– w commutes with g̃1,
– wx(π1)vΛi ∼ [ω]vΛi ′ ,
– x(π+

2 ) satisfies IC and DC for L(Λi ′), and
– if x(π ′) has a (−1)-part x(π ′

1) greater than x(π1), then wx(π ′)vΛi = 0.

Proof We have already shown the majority of the claims. It remains to see that x(π+
2 )

satisfies IC andDC for L(Λi ′), but this is clear from the description of level 1 difference
conditions in (25) and the definition of initial conditions (see also Remark 2). ��

Like in the A(1)
� -case, Proposition 5 enables us to straightforwardly generalize

proposition 15 for higher levels (cf. [32]). Also, the proof of linear independence is
the same as in the A(1)

� -case, hence we give here only the sketch of the proof.

Theorem 16 The set

{x(π)vΛ | x(π) satisfies DC and IC for L(Λ)}

is a basis of W (Λ).
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Sketch of proof Assume ∑
cπ x(π)vΛ = 0, (55)

where all monomials x(π) satisfy difference and initial conditions for W (Λ). Fix x(π)

in (55) and assume that cπ ′ = 0 for x(π ′) < x(π). We show that cπ = 0.
Choose an operator w from Proposition 15 and apply it on (55). By Proposition 15,

we get

0 = w
∑

cπ ′ x(π ′)vΛ

= w
∑

π ′
1>π1

cπ ′ x(π ′)vΛ + w
∑

π ′
1<π1

cπ ′ x(π ′)vΛ + w
∑

π ′
1=π1

cπ ′ x(π ′)vΛ

= w
∑

π ′
1=π1

cπ ′ x(π ′)vΛ ∼
∑

π ′
1=π1

cπ ′ x(π ′
2)[ω]vΛ′

= [ω]
∑

π ′
1=π1

cπ ′ x(π ′+
2 )vΛ′ .

Since [ω] is injective, it follows that
∑

π ′
1=π1

cπ ′ x(π ′+
2 )vΛ′ = 0.

This is a relation of linear dependence betweenmonomial vectors satisfying difference
and initial conditions for W (Λ′) with all monomials of degree greater than the degree
of x(π). By the induction hypothesis, they are linearly independent, and, in particular,
cπ = 0.
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