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2
Abstract We give an explicit formula for the Hauptmodul ( n(t) ) of the level-13
n(137)

Hecke modular group I'g(13) as a quotient of theta constants, together with some
related explicit formulas. Similar results for primes p = 2,3, 5,7 (the other p for
which ['g(p) has genus zero) are well known, and date back to Klein and Ramanujan.
Moreover, we find an exotic modular equation, i.e., it has the same form as Ramanujan’s
modular equation of degree 13, but with different kinds of modular parameterizations.

Keywords Theta constants - Hauptmodul - Modular equations

Mathematics Subject Classification 11F20 - 11F27 - 14H42 - 11G18 - 14G35 -
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1 Introduction

In many applications of elliptic modular functions to number theory, the Dedekind
eta function plays a central role. It is defined in the upper half-plane H = {z € C :
Im(z) > 0} by n(z) := q217 Hsozl (1—¢™) withg = €212 _The Dedekind eta function
is closely related to the partition function. A partition of a positive integer n is any
non-increasing sequence of positive integers whose sum is n. Let p(n) denote the
number of partitions of n. The partition function p(n) has the well-known generating

. _ L
function 372 p(n)g" = [[;2,(1 —¢") ™" = ¢% /n(2).
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690 L. Yang

In his ground-breaking works [20-22], Ramanujan found the following famous
Ramanujan partition congruences: p(5n +4) = 0 (mod 5) and p(7n + 5) = 0 (mod
7). His proofs are quite ingenious:

19— n<5z> 17— n(72)* n(7z)’
S5n + 4)q" , Tn+5q" =17 .

0 2 PO =S A 2 p 9" =T o %
(1.1)

In [29], Zuckerman found an identity in the spirit of (1.1) (see also [4,26]):

I~ 0 n(132) 1(132)3 2 n(132)°
n 13n + 6)g" = 11 +36-13 +38.13 +
K ,E)" (13040 1G> nG? FE
(132)7 n(13z)° n(13z)1
420133028 g g2 s
n(z)3 n(2)10 n(z)"?
13 13
35”’(7&_)7’1)4. (1.2)

Rademacher (see [19]) pointed out that (1.1) can be rewritten as

S son (22) 9 (12

n(z)
4 8
Zn(7 ) (Z+24A) — 72 (@) +73 (@) . (1.3)
n(z) n(z)
In fact, (1.2) can also be rewritten as

12 . ) \
ZU(BZ)U (Z _'_154/\) =11-13 (77(1(3;)) + 36 132 (77(13Z))

A=0 nz n(z)
+38'133(77( 32)) (n(13z))8+
n(z)
(132) n(132)\ 2
+6-135('7 ) +136( )
n(z) n(z)
14
+136(@) . (1.4)
n(z)

Let X = Xo(p) be the compactification of H/ I'g(p), where I'g(p) is the level-p
Hecke modular group and p is prime. The complex function field of X consists of
the modular functions f(z) for I'g(p) which are meromorphic on the extended upper
half-plane. A function f lies in the rational function field Q(X) if and only if the
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The Dedekind n-function, a Hauptmodul for I'g(13), and... 691

Fourier coefficients in its expansion at co: f(z) = > a,q" are all rational numbers.
The field Q(X) is known to be generated over Q by the classical j-functions

j =j@=q'+744+196884q + - - -,
Jp =j(;—zl) =jpx)=q P+T744+ .
A further element in the function field Q(X) = Q(/, jp) is the modular unit u =

A(z)/A(pz) with divisor (p — 1){(0) — (c0)}, where A(z) is the discriminant. If
m = gcd(p — 1, 12), then an mth root of « lies in Q(X). This function has the Fourier

expansion
m — 1 ql’l 24/ U(Z) 24/
r= \/__—q(l p)/ml I(] qn(l> - ’

el n(pz)

When p — 1 divides 12, so m = p — 1, the function ¢ is a Hauptmodul for the curve
X which has genus zero (see [11]). It is well known that the genus of the modular
curve X for prime p is zero if and only if p = 2, 3,5, 7, 13. In his paper [13], Klein
studied the modular equations of orders 2, 3, 5, 7, 13 with degrees 3, 4, 6, 8, 14,
respectively. They are uniformized, i.e., parametrized, by the so-called Hauptmoduln
(principal moduli). A Hauptmodul is a function Jr that is a modular function for some
subgroups of I'(1) = PSL(2, Z), with any other modular function expressible as a
rational function of it. In this case, I' = ['g(p). Hence, (1.3) and (1.4) are intimately
related to the Hauptmoduln for modular curves X¢(5), Xo(7), and Xo(13).

The modular curves Xo(5) and X((7) were studied by Klein in his pioneering
work (see [12—14,16,17]) and by Ramanujan (see [24-26]). It is well known that the
celebrated Rogers—Ramanujan identities

[e9) 2 00
q" 1
G = = ,
D=2 - - La—mma
o0 qn2+n 0 1
H = =
(q) Z (1 _ q) . (1 — qn) H (1 _ q5n+2)(1 _ q5n+3)

n=0 n=0

are intimately associated with the Rogers—Ramanujan continued fraction

Uil—

q

T+ —L,—
1+ —1
4+

R(q) :=

namely, they satisfy that R(q) = q% %. In [23], Ramanujan found an algebraic rela-

tion between G (¢) and H(q): G''(9)H(q) —¢*G(9)H"' (q) = 1+11¢G®(g) H®(g),
which is equivalent to one of the most important formulas for R(q) (see also [1]):

1 1) \°
- _11-R =(—) . 1.5
R5(q) @ (n(5z>) (-
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692 L. Yang

In his celebrated work on elliptic modular functions (see [16 p.640],[17,p. 73], and
3
[71), Klein showed that R(g) = % where a(z) = e~ 100 [ ] (0,5z) and b(z) =
1
~Tog |: :| (0, 5z) are theta constants of order 5. In fact, a(z) = ¢ % n(5z)/G(g) and

b(z) = q_@ n(5z)/H(q). Hence, (1.5) is equivalent to the following formula:

6
( () ) __J@),b) (1.6)

1n(52) a(z)h(2)® ’

where f(z1,22) = 2122 (z + 111112 - z20) is an invariant of degree 12 associated to
the icosahedron, i.e., it is invariant under the action of the simple group PSL(2,5) =
I'(1)/T'(5), where I' (5) is the principal modular group of level 5. Also z%z% is invariant
under the action of the image of a Borel subgroup of PSL(2,5), i.e., a maximal
subgroup of order 10 of PSL(2,5), which is simply ['g(5)/T'(5) (see [12] for more
details). We call (1.6) the invariant decomposition formula for the icosahedron.

In his work on elliptic modular functions (see [16, p. 746]), Klein also obtained
the invariant decomposition formula for the simple group PSL(2,7) = I'(1)/T'(7)
of order 168:

( n(2) )4 _ ®6(a(2), b(2), ¢(2)) a7
n(72)) —  a(2)?b(2)%c(2)? '
where a(z) = —e~ 149|: :|(0 72), b(z) = 149[ ](O 7z), and c(z) =

i l
e 140 |:7 i| (0, 7z) are theta constants of order 7. Here ®¢(x, y,z) = xy> + yz° +

zx° — 5x2y2z? is an invariant of degree 6 associated to PSL(2,7), and xyz is invari-

ant under the action of the image of a Borel subgroup of PSL(2,7), i.e., a maximal
subgroup of order 21 of PSL(2,7), which is simply I'o(7)/ T'(7) (see [14] for more
details). Independently, Ramanujan also gave the same formula (see [25, p. 300], [3,
p. 174], [8, 18] for more details).

For the modular curve X¢(13), in his monograph (see [17, p. 73]), Klein showed that
)/ 7](131))2 is a Hauptmodul for I'g(13). However, neither Klein nor Ramanujan
could obtain the invariant decomposition formula for PSL(2,13) = I'(1)/T"(13) in
the spirit of (1.6) and (1.7) (see the end of Sect. 4 for more details). The following
facts about the modular subgroups of level 13 should be noted. One has that I'(13) <
I'o(13) < I'(1), the respective subgroup indices being 78 = 6 - 13 and 14 = 13 + 1.
The quotient I'(1)/ I"(13) is of order 1092 = 78 - 14, and I'p(13)/ ' (13) is a subgroup
of order 78, which is isomorphic to a semidirect product of Z3 by Zg. The respective
quotients of H by these three groups (compactified) are the modular curves X (13),
Xo(13), X(1), and the coverings X (13) — Xo(13) — X(1) are, respectively, 78-
sheeted and 14-sheeted. The curve X (13) is of genus 50, despite X(13) like X (1)
being of genus zero.

@ Springer



The Dedekind n-function, a Hauptmodul for I'g(13), and... 693

In the present paper, we establish the invariant theory for PSL(2, 13). Combining
with theta constants of order 13, we obtain an invariant decomposition formula for
PSL(2,13) in the spirit of (1.6) and (1.7). Let

_ Nmi H 121 1 I 2 "
ay(z) ==e % i3 (0, 13z) = g 104 Z(_l)nqz( n+1n)

nez
~mio [ 49, 1132
ar(z) :=e 60| I3 |(0,13z7) = g2 > (—1)"g23n+Tm),
:l = nez
“Fol & L(13n2+5
a3(z) :=e 200 | I3 1(0,137) = gTi 3 (=1)"g23" ),
-1 5 neZ 1.8
3mi 3 9 1 5 ( . )
as(z) == —e 260 |: 13] 0, 132) = —q 104 Z (_l)nq7(13n +3n)’
- 1_ neZ
%ol m 108 113249
as(z) :=e 2660 | 13 1(0,13z) =q104 Z(_l)nqz( n*+9n)
-1 = neZ
i l 1 1 N
ag(z) :==e %0 [ 13} 0,137) = g8 3 (—1)1g2(3n*+m)
1 neZ

be theta constants of order 13. Set

1
D12(z1, 22, 23, 24, 25, 26) 1= —%(7 13°G3 + G1G12 + GGy + - - + G6Gy),
(1.9)

where

[ Gy = D} + D%,
Gi = —DJ +2DgD; + 10D, D; + 2D, D15+
—2D3Dq; — 4D4D1p — 2DgDs,
Gy = —2D{ — 4DgD; + 6D D; — 2D4Dy +
+2DsDgp — 2DgDy — 2D7Dg,
G3 = —D} + 2DgD3 + 10D, D3 + 2DsD1o+
—2DgD7 — 4D1,D4 — 2D Ds,
G4 = —D} + 10DgD4 — 2D D4 + 2DsD o+
—2DygDg — 4D D3 — 2DoD7,
—2D§ — 4DDs + 6D Ds — 2D;oDs+
+2D¢D1; — 2D,D3 — 2Dy D7,
Go = —2D3 — 4D(Dg + 6DscDg — 2D 12D7+
+2D,D4 — 2DsDy — 2DgDy,
—2D73, + 6DgD7 + 4DogD7 — 2D D+
—2D;Ds5 — 2DgD12 — 2DyDy1,
Gs = —2D3 + 6DoDg + 4DoDg — 2D3Ds+
—2DgD;, — 2Dy Dy — 2D D7,
Gy = —D?, 4+ 2D¢Dg + 10D Dy + 2DsDs+
—2D1Dg — 4D1oD12 — 2D3Dg,

Gs

G7
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694 L. Yang

Gio = —D2 + 10DgDj9 — 2D Dig + 2DeDs+
—2D3D7 — 4DyD; — 2D15Dyy,
Gi1 = —2D2, + 6DgD1; + 4DogDyj — 2DgDo+

—2DsDg — 2D7D4 — 2D3Dg, (1.10)
G2 = —D? + 10DD;, — 2D D2 + 2D, Djo+
—2D1Dy; — 4D3Dg — 2D4Dg
are the senary sextic forms (sextic forms in six variables). Here,
Dy = z12223,
Dy = 22523 4+ 2326 — 2325 + 21252,
Dy = —z3 + 2324 — 22223 + 212425 + 3232526,
D3 = 22123 + 2725 — 2425 + 232425,
Dy = —z3z3 4 212 — 22526 — 212325,
Ds = —z; + 2325 — 22322 + 222526 + 3212426,
D¢ = —z3 + 2726 — 22125 + 232426 + 3222425, L11
D; = —z§ + 2325 — 212326 — 3712225 + 227 24, (11
Dy = —zi + 2227 — 222325 — 3212324 + 22326,
Dy =2z3z3 + 2324 — 2326 + 222476,
Do = —2123 + 2225 — 22422 — 212226,
Dy = —zg + 2122 — 212224 — 3222326 + 22325,
Do =—ziz2 + Z3z§ - 2z5z§ — 222324,
Doo = 242526

are the senary cubic forms (cubic forms in six variables). Our main result is as follows:

Theorem 1.1 (Main Theorem 1) The invariant decomposition formula for the simple
group PSL(2, 13) of order 1092 is given as follows:

[ n%(z) T _ <I>12(a1(z),az(Z),03(1),04(2%aS(Z)vaé(Z))’ (1.12)

n*(13z) (a1(2)az(2)az(2)as(z)as(z)as(2))*

where ®12(z1, 22, 23, 24, 25, 26) IS an invariant of degree 12 associatedto PSL(2, 13),
and (212223242526)° is invariant under the action of the image of a Borel subgroup
of PSL(2,13), i.e., a maximal subgroup of order 78 of PSL(2, 13), which can be
viewed as T'g(13)/ T'(13).

It should be pointed out that (1.12) is a formula not for the Hauptmodul of I"y(13),
but for its fifth power. The appearance of the fifth power is due to the denominator
(a1(2)a2(2)az(2)aa()as(2)ae(z))> having a factor n(13z)10. In [13], Klein obtained
the modular equation of degree 14 for 'y (13) (see [5, p. 267] for the modular relation
for I'p(13)). Combining with Theorem 1.1, we give a new expression of the classical
Jj-function in terms of theta constants of order 13.

Corollary 1.2 The following formulas hold:

@ (% 4+ 57 + 13)(¢* + 24773 4+ 338072 + 153797 + 28561)°
J2) = 3
T

(1.13)
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and

2 4 3 2 3
T+ 5t +13)(T*+7t° + 20t + 197 + 1
j(13z) = ( ) . ) , (1.14)

where the Hauptmodul

_( n(z) )2=\5/q312(a1(1)»a2(Z),aS(Z)s04(Z)sa5(Z)»616(Z))' 0.15)

~ \n(132) (a1(2)az(2)az(2)as(z)as(2)ae(z))?

Note that in the right-hand side of modular equations (1.13) and (1.14), we have
the following factorizations over Q(+/13):

4 + 24777 + 338072 + 153797 + 28561
( , 247+ 6513 1859+507«/13)
=+ T+

- 2 2
( ,  247-65J/13 1859 — 507«/13)
x5+ T+ s

2 2
™+ 703+ 2002 + 197 + 1

7+/13  11+3/13 7-V13  11-3J13
(r2+ +2‘/_r+ ki )(r2+ V13 )

2 >, T

P. Deligne (Letter to the author, July 29, 2014. Private communication) gave a mod-
ular interpretation of why such factorizations exist. More generally, P. Deligne (Letter
to the author, August 7, 2014. Private communication) showed that for p = 3,5, 7, 13,
the corresponding modular equations of degrees 4, 6, 8, 14 have two relatively prime
conjugate factors over some real quadratic fields. All of these factorizations have nice
geometric interpretations.

In his notebooks (see [24, p. 326], [25, p. 244]), Ramanujan (see also [9] or [2, pp.
373-375]) obtained the following modular equation of degree 13:

1+ G1(2)G5(2) + G2(2)G3(2) + G4(2)Ge(z) = —% (1.16)

with
G1(2)G5(2)G2(2)G3(2)Ga(2)Ge(2) = —1, (1.17)
where G, (2) == G, p(2) := (—l)’”q’”G’”’P)/QPZ)%. Here, m is a

positive integer, p = 13, ¢ = ¢*'?, and Ramanujan’s general theta function f (a, b)
is given by f(a,b) = 300 a"tD2pn=D/2 gp| < 1. We call (1.16) the
standard modular equation of degree 13. In contrast with it, we find the following

invariant decomposition formula (exotic modular equation) which has the same form
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696 L. Yang

as (1.16), but with different kinds of modular parametrizations. Let us define the
following senary quadratic forms (quadratic forms in six variables):

Ao = 2124 + 2225 + 2326,

A =z} — 22324,

Ay = —z§ — 22224,

Az =75 — 22125, (1.18)
A4 = 75 — 2222,

As = —z5 — 22126,

Ag = —zé — 27375.

Theorem 1.3 (Main Theorem 2) The following invariant decomposition formula
(exotic modular equation) holds:

Vs (a1(2), a2(2), a3(2), a4(z), as(z), as(2))

=0, (1.19)
Ao(a1(2), a2(2), a3(2), as(z), as(z), ag(z))?
where the quadric
Wy (21, 22, 23, 24, 25, 26) = AZ + A1As + AxAz + AsAq (1.20)

is an invariant associated to PSL(2, 13) and A(z) is invariant under the action of the
image of a Borel subgroup of PSL(2, 13), i.e., a maximal subgroup of order 78 of
PSL(2,13), which can be viewed as I'g(13)/ T'(13).

Note that (1.19) has the same form as (1.16). However, in contrast with (1.17), it
can be proved that (see Sect. 3, (3.8))

6

H Aj(a1(2), a2(2), a3(z), a4(2), as(z), as(z))

i1 A0(@1(2), a2(2), a3(2), a4 (2). a5(2), a6(2))

£ —1. (1.21)

Moreover, the invariant quadric (1.20) is closely related to the exceptional Lie group
G» (see [27] for more details). As an application, we obtain the following quartic
four-fold ®4(z1, 22, 23, 24, 25, 26) = 0, where

Dy = (2323 + 2123 + 2223) — (2677 + 2423 + 2523) (1.22)
+3(z1222425 + 22232526 + 23212624), '

which is just the quadric (1.20) up to a constant. It is a higher dimensional counterpart
of the Klein quartic curve (see [14]) and the Klein cubic three-fold (see [15]). Its

significance comes from the following:

Corollary 1.4 The coordinates (a1(z), a2(z), a3 (z), a4(z), as(z), ac(2)) map X (13)
into the quartic four-fold ®4(z1, 22, 23, 24, 25, 26) = 0 in CP>.
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The Dedekind n-function, a Hauptmodul for I'g(13), and... 697

We remark that in our preprint [28], the full invariant theory of PSL(2, 13), i.e.,
the determination of all polynomial invariants (not merely ®4, ®12) is worked out to
give the exotic structure associated with the equation of the Eg singularity.

This paper consists of four sections. In Sect. 2, we give a six-dimensional repre-
sentation of PSL(2, 13) defined over Q(ez%) and the transformation formulas for
theta constants associated with I"'(13). In Sect. 3, we give a seven-dimensional repre-
sentation of PSL(2, 13) which is deduced from our six-dimensional representation.
As an application, we obtain the exotic modular equation of degree 13. Thus, we
give the proof of Theorem 1.3. In Sect. 4, we give a 14-dimensional representation of
PSL(2,13) which is also deduced from our six-dimensional representation. By this
representation, we find the exotic modular equation of degree 14. Using it, we give
the proof of Theorem 1.1.

2 Six-dimensional representations of PSL (2, 13) and transformation
formulas for theta constants

In this section, we will study the six-dimensional representation of the simple group
PSL(2, 13) of order 1092, which acts on the five-dimensional projective space P> =
{(z1,22,23, 24,25, 26) 1 2 € C(I = 1,2,3,4,5,6)}.

Lets = expQmi/13),61 = ¢ +¢7+¢7.0, = 7 +00+ 8,03 = ¢+ 02 4010,
and Oy = ¢8 + ¢! 4 ¢7. We find that

01+ 60, +03+ 04 = —1,

0162 + 0103 + 0104 + 6203 + 0,04 + 6364 = 2,
0160203 + 010,04 + 0160364 + 0203604 = 4,
010,03604 = 3.

Hence, 01, 6>, 63, and 0, satisfy the quartic equation A+ +22-4743=0,
which can be decomposed as two quadratic equations

B Z

2 1+V13 5+ VB[, 1-V13  5-V13)
=+ 2 Z+ =+ > > =0

over the real quadratic field Q(+/13). Therefore, the four roots are given as follows:

(_1+m+m),
—1—¢1—3+Jm),
~14+ V13- v/=26 + 6J/13),
—1-VI3— —26—6«/5).

S

(9%)
Bl Bl— B B
NN
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698 L. Yang

Moreover, we find that

01 +03+ 6> +04 =—1,

01+ 63 — 0, — 04 = V13,

01 — 63 — 6 + 05 = —/—13 + 2/13,
O — 63 + 6, — 0y = v —13 — 2/13.

__ 1 (—MN — dino(r7 #11 #8 »6 2 .5
Let S = «/ﬁ(N M and T =diag(¢’', ¢, ¢°%, ¢, ¢, &), where

(58 2l g6 T
O =7 S8 2l

Then MN = NM = —/131, M>* + N?> = —13] and $? = I.
Theorem 2.1 Let G = (S, T). Then G = PSL(2, 13).

The proof is elementary: Magma will confirm it immediately.
Recall that the theta functions with characteristic |:E ,] € R? are defined by the

following series which converges uniformly and absolutely on compact subsets of
C x H (see [10, p. 73]):

0 [:,} (z,7) = Zexp<2m‘ B (n+ g)zr + (n+ %) (z+ %)“

neZ

We introduce the modified theta constants (see [10], p. 215) ¢;(7) := 0[x1(0, k),
21

20+l
where the characteristic x; = [ 1{ i|, [=0,..., %, for odd k and yx; = |: 6 i|,
[=0,---, %, for even k. We have the following:

Theorem 2.2 (See [10, p. 236]) For each odd integer k > 5, the map ® : t +—
(po(T), @1(T), ..., Pis (1), Qi3 (7)) from HUQU{0o0} to C% defines a holomorphic

mapping from H/ T (k) into CP?.
In our case, the map @ : 7 > (¢o(7), ¢1(7), ¥2(7), ¥3(7), 4(7), P5(7)) gives a
holomorphic mapping from the modular curve X (13) = H/T'(13) into CP?, which

corresponds to our six-dimensional representation, i.e., up to the constants, z1, .. ., Z
are just modular forms ¢o(7), ..., @5(7).
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The Dedekind n-function, a Hauptmodul for I'g(13), and... 699

Letai(z) (1 <i < 6) be given as in (1.8). We use the standard notation (a) =
(a; q) = ]_[,(:io(l — aqk) fora € C* and |¢| < 1 so that n(z) = q1/24(q; q). By the
Jacobi triple product identity, we have that

L wil\ 2 ket k+l
0 [’1‘](0, kz) = exp (ﬁ)qs @7 :4@ 7 : g5 b,

where kisoddand/ =1,3,5, ...,k — 2. Hence,

[ a1(2) = q%(q; q")(q"%:q")(q": q"),
ar(z) = qf(cﬁz 4" q")(q": q"),
a3(z) = qmg(cﬁ; ") (g% q")(q":q").
a4(2) = =g (@% 4" (4% q")(q"; ¢"),
as(z) = q@(qz; 7" q")(q"; ¢,

[ as(z) = g™ (¢% ¢")(q"; ¢") (¢ ¢").

2.1)

It is known that Ramanujan’s general theta functions are given as follows:

o0
fla,b) = Z an(n+l)/2bn(n_1)/2’

n=—0oo

[ = f=q. =) = D (=D"q"" D = (g: oo

n=—0oo

In his notebooks (see [2, p. 372], [24, p. 326], and [25, p. 244]), Ramanujan obtained
his modular equations of degree 13.

Theorem 2.3 Define

_ f(=q*. =" _ f(=¢% —q") _ f(=¢*.—q")
MR =g " T T P =™ T T (=g =g
s — f(=¢°, —q% s — B f(—q*, —q'") e — gBB f(—q,—q")

¥ B f(—q* —q°)’ f(=¢>,—q¢% f(=q% —q")
Then
A (=q)
1+ g M2 — H3U5 — 46, (2.2)
D e NS BN SRR 03
qf?(—q)  wipr  p3ps  pape '
(=9
3+ (=41 = U234 — 1 [A5/46, 2.4)

@ Springer



700 L. Yang

where oz pnapsie = 1.

2\ f(—g2m/p _g1=2m/p .
) [P =g ) where m is a

Let G (2) := G, p(2) = (—1)mgmBm=p)/@p ST gty

positive integer, p = 13, and ¢ = €271z Then the above three formulas (2.2), (2.3),
and (2.4) are equivalent to the following (see [9] or [2, pp. 373-375])

2(z/13
1+ G1(2)G5(2) + G2(2)G3(2) + Ga(2)Ge(2) = — L5 17(22(/2) ), 2.5)
1 1 1 n*(z/13)
= _— 2.6
G165 | 620630 | Ga(Ge) 72 0
n*(z/13)
G G3(2)G — = _, 2.7
©DG50) = G e @)

where G1(2)G2(2)G3(2)G4(z)G5(2)Ge(z) = —1. Moreover, there is the following
formula (see [9] or [2, pp. 375-376]): fort = q1/13,

1 t 1

(1200 (13) 00 (110) 0 (1) o * ()00 (1%) 50 (1) 00 (19) 50 - (D)oo (1) 00 (13) 00 (1) o0
2.8)

which is equivalent to, for p = 13, G| ' (2)G5 ' (2) + G4(2)Ge(2) = 1.
It is known that (see [9]) G(m; z) = (1) F(2m/p; z)/ F (m/ p; z), where

oo
F(l/t, Z) — —l Z (_1)kq(k+u+1/2)2/2
k=—00

o
— _iq(u+1/2)2/2 H(l _ qm+u)(1 _ qulfu)(l _ qm)

m=1
satisfies that F(u + 1;z) = —F(u; z) and F(—u; z) = —F (u; z). We have that

F(FDF(5:0 ()0t oo(tD)oo(t oo

Gi(2)Gs(2) = = ’
1265 () F(OF (50 D0()e(tD)o(t)e

1

where (x)oo = [[5_o(1 — x¢™) and t = ¢ 15. Similarly,

(1) o0 (1) 00 (1) 00 (1T 0o
G203 = =103 110 o (Do (oo
12 5 8
G (Gate) = MDD

(100 (1) 06 (19) 00 (1) 0o
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Note that (%) = (#%; t13) for 1 < k < 13. The above formula (2.5) is equivalent to
13 113210 11322 1321 11320 13y (4 113)06; 13yq7: 113y
@ 20 3230 1327 132 1132 113 (5 13 (3 113)
+t2(t; t13)2(t12; t13)2(t5; t13)2(t8; t13)2(t3; t13)(t10; t13)(t2; t13)(t11; t13)

= [~ 1 = P23 /P@N @ D 1) (11213), 1= gl =

On the other hand,

11
a2(2)%as(2)%a3(2)as(2) = g7 (7 ¢")*(¢'%: 4" (@*: ¢ (¢ ¢)?
x (¢°5 4" @* ¢"™)@% ¢")(q"; ") ("5 ¢)°,
7
a3(2)%as(2)*a1(2)as(2) = —q7(q°: 4 (q* ¢ (¢% ¢)* (@1 ¢")?
x(¢:4"™@'% 4™ @ a6 a) @ ¢,
15
a1(2)*as(2)*ax(2)as(2) = q % (q: 4" (q'% 4" (@5 ¢'H* (g% ¢)?
x (74" @' ¢ @ a"™ (" ) (@' ¢S
This implies that

a1(2)%as(2)* @ (2)as(2) + ax(2)%as(2)*a3(2)as(2) + a3(2)%ae(2)*a1 (2)as (z)
=[—1—n*@)/n*(132)In(2)n(132)°. 2.9)

Similarly, the other three formulas (2.6), (2.7), and (2.8) are equivalent to the follow-
ing:

a1(2)%as(2)%a3(2)as(2) + a2(2)%as(2)?a1 (2)as(z) + a3 (z)*ae(2)*az(2)as(z)
= [4 + n*(2)/n*(132)In(z)n(13z2)°, (2.10)

as(2)%as(2)%as(2)* — a1(2)*a2(2)%a3(2)* = [3 4 n*(2)/n* (132)In(2)n(132)°,

(2.11)
and
! + ! + ! = (2.12)
ai(z)as(z)  ax(z)as(z)  az(2)ae(z)
where a1 (z)ax (2)a3(2)as(z)as(2)ae(z) = —n(z)n(13z2)°.

Let A(z) = (a1(2), a2(2), a3(z), a4(2), as(z), ag(2))" . The significance of our six-
dimensional representation of PSL(2, 13) comes from the following:
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Proposition 2.4 [If z € H, then the following relations hold:
_3mi 1 i
A+ =e 4 TA®R), A (——) = et /25A(2), (2.13)
b4

where T = diag(¢”, ¢, ¢8,¢0,¢2,09),

§-12 —¢ ;10 _ 53 ;4 g—9 4—5 é-8 €-2 {11 4-6 §-7
CIO _ 4-3 C 4-9 4-12 e 4-2 {11 §6 4-7 CS §-8

B __1 é-4 _ é-9 ;- - CIO ;—3 §-6 4—7 ;5 ;8 §2 {ll

- \/1—3 é-S _é- ; ;-11 §-6 4-7 — ;12 4-3 CIO 4-9 §-4 ’
é-2 _ Cll ; 4-7 é-S §-8 §3 ;lO §9 §4 — 12
§6 _ €-7 { {8 €-2 é-ll 4-9 4-4 — ;]2 C% 4-10

and 0 < arg\/z < /2.

The proof is an application of the following transformation formulas for theta
constants (see [10, pp. 216-217]) to the special case k = 13:

214+1 2041
e[lk }(0 k(z+1))—exp( )exp(—(12+l)) [1k }(O,kz)

and

k=3

241 ApES 1 +1
9[1k ](0 k(—1/z ))_\/“/;k xp(;[—]i). O[exp(zm (]k ))

. 2j+1
+ exp (—%) exp ( —2mi ¢ _'_kl)])} 0 [117] (0, kz),

where kisoddand/ =0, 1, ..., 53

~

3 Seven-dimensional representations of PSL (2, 13), exotic modular
equation and geometry of modular curve X (13)

We will construct a seven-dimensional representation of P.SL(2, 13) which is deduced
from our six-dimensional representation. Let us study the action of S7¥ on the five-

dimensional projective space P> = {(z1, z2, 23, 24, 25, 26)}, Where v = 0, 1, ..., 12.
Put

a={+§12_§5_§_8’ ﬁ=§3+§10—§2—§11, ]/=§'9+§4—C6—§7.
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We find that

138T"(z1) - ST"(z4)

= Bz124 + Y2225 + 2326 +
+veVa et + B — v g — ezl - B!V +
=P an+ - nn+ - nn +
+(B—a)t®zzs + (v — BV zsz6 + (0 — y) ¢ W24z +
—(@+ B¢ z3za — (B+ )¢ 21zs — (v + @)V aze +
—(a@+ B¢ z1z6 — (B + )¢V 2224 — (v + )¢V z3zs.

138T"V(z2) - ST"(z5)
= yz124 + a2225 + Bz3z6 +
—l—ot;”z% +,3§9VZ% + V§3VZ% —a;lz“zi _ ’3§4uzg _ yé.IOVZ% +
+B-un+ v —a)®nn + (@ - Bt an +
+ (= B zazs + (@ — ¥ Vzsz6 + (B — )tV zaz6 +
— B+ )¢ 2328 — (v + )¢ z125 — (@ + B¢ 2226 +
— B+t 26 — (v + @)t 2224 — (@ + P V2325,

138T" (z3) - ST"(z¢)
= az1z4 + Bz225 + Y2326 +
B +re7 G e — BTl -y e -+
+(r — )M nz + (@ = Pz + (B - ) uz +
+ (= )% zazs + (B — )¢ zsze + (v — B¢V zaze +
— (v +a)Vz3za — (@ + B¢ z1zs — (B+¥)E7 2226 +
— (Y + )¢ z126 — (@ + B 2224 — (B + 1) z325.

Note that @ + 8 4+ y = +/13, we find that

VI3[ST"(21) - ST"(24) + ST"(22) - ST"(25) + ST"(23) - ST" (26)]
= (124 + 225 + 326) + 2] + V5 + V) +
— @2+ M+ 1)) — 2 sz + ¢ 2zs + ¢ 2az6)

—2(c" 2126 + ¢ M z024 + £ 2325).

Let
Voo(21, 22, 23, 24, 25, 26) = x/ﬁ(zlm + 2225 + 2326) 3.1

and
Pu(21, 22, 235 24, 25, 26) = Yoo (ST" (21, 22, 23, 24, 25, 26)) (3.2)
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forv=20,1,...,12. Then

@y = (2124 + 2225 + 2326) + £V (2] — 22324) + ¢ (=23 — 22024)
+¢%(23 — 22125) + £V(25 — 22226) + PV (25 — 22126)
+ 2122 — 2z325). (3.3)

This leads us to define the senary quadratic forms (quadratic forms in six variables)
Ay, ..., A¢ given in (1.18). Hence,

v ]3STV(A0) = AO + CvAl + §4UA2 + §9VA3 + §3VA4 + é.IZUAS
+§'10vA6. (3.4)

Let H := Q°P%. P2QP3. Q5P2. P3Q, where P = ST 'S and Q = ST3.
Then

O 0 0 o001
0O 0 0 1 00
0o 0 0 o010
B=1o 0o -1000 (3-5)
-1 0 0 00O
0O -1 0 00O
Note that H® = —1. In the projective coordinates, this means that H® = 1. We have

that H~'TH = —T*. Thus, (H, T) is isomorphic to the semidirect product of Z3
by Ze. Hence, it is a maximal subgroup of order 78 of G with index 14 (see [6]).
It should be pointed out that this complicated expression for H is chosen because it
represents an element of I (1) which is, in fact, an element of I'g(13). In consequence,
the group I'g(13)/I"(13) is generated. We find that <ng is invariant under the action
of the maximal subgroup (H, T'). Note that

¢oo = V13A0, @y = Ao+ AL+ AL+ A + AL+ 1A + 01V A

forv=20,1,...,12. Letw = g02, Woo = gogo, and w, = gof. Then wee, wy, forv =
0, ..., 12 form an algebraic equation of degree 14, which is just the Jacobian equation
of degree 14, whose roots are these w,, and weo: w+aqwB 4+ 4apwtan =0.
In particular, the coefficients

12
— a1 =Woo + Y wy = 26(AF + A1As + A2A3 + AgAg). (3.6)
v=0
This leads to an invariant quadric Wy := Aé + A1As + AyAs + AjAg =

2®4(z1, 22, 23, 24, 25, 26), Where

Dy = (2323 + 2123 + 2220) — (2677 + 2423 + 2523)

3.7
+3(21222425 + 22232526 + 23212624), 3.7
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Hence, the variety W, = 0 is a quartic four-fold, which is invariant under the action
of the simple group G.
Recall that the principal congruence subgroup of level 13 is the normal subgroup

I'(13) of ' = PSL(2,Z) defined by the exact sequence 1 — I'(13) — I'(1) —f>
G — 1,where f(y) =y (mod 13) for y € I' = I'(1). Then there is a representation
p: I' > PGL(6,C) with kernel I'(13) and leaving &4 invariant. It is defined as

follows: if t = ((1) i) and s = ((1) (;1) then p(¢) = T and p(s) = S. To see

that such a representation exists, note that I is defined by the presentation (s, ; s> =
(st)> = 1) satisfied by s and  and we have proved that S and T satisfy these relations.

Moreover, we have proved that G is defined by the presentation (S, T; > = T13 =
(ST =1,(Q3PH3 =1). Let p = st~ 's and g = s1>. Then

4,428,249 —10,547,030
52 268 52 3 _ (%428, , 547,
hEar ey (—11,594,791 27,616,019 )

satisfies that p(h) = H. The off-diagonal elements of the matrix /., which corresponds
to H, are congruent to 0 mod 13. The connection to I'g(13) should be obvious.

Theorem 3.1 There is a relation between the invariant quartic four-fold ®4(z1,
.., 26) = 0 and theta constants of order 13 : ®4(a(z), ...,as(z)) = 0.

Proof Let y;(z) = n*(2)ai(z) (1 <i < 6)and Y(z) := (y1(2), ..., y6(z))T. Then
Y(z) = n°(2)A(z). Recall that n(z) satisfies the following transformation formulas

niz+1) = e%n(z) and n (—%) = e_%iﬁn(z). By Proposition 2.4, we have that
Y(z+1) = e_%ip(t)Y(z) and Y (—%) = e_%izzp(s)Y(z).Deﬁnej(% 7) :=cz+d

ifze Hand y = (z Z) e I'(1). Hence, Y(y(z)) = v(y)j(y,z)zp(y)Y(z) for

y € I'(1), where v(y) = %1 or £i. Since I'(13) = ker p, we have that Y (y(z)) =
v(y)j(y,2)*Y(z) for y € I'(13). This means that the functions y; (2), . .., y¢(z) are
modular forms of weight 2 for I'(13) with the same multiplier v(y) = =£1 or =i.
Thus,

D4(Y(y(2)) = v() (v, 2)8Ps(Y () = j(y, 2)8Ps(Y (z)) fory e ['(13).
Moreover, for y € I'(1),

D4(Y (y(2)) = Pa(v(»)j (¥, 2)*p(¥)Y (2))
=v()*j (v, D8Pa(p ()Y (@) = j (v, D) Pa(p ()Y (2)).

Note that p(y) € (p(s), p(t)) = G and P4 is a G-invariant polynomial, we have that
D4(Y (¥ (2) = j(r. 2% ®4(Y (2)), fory e I'(D).
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This implies that ®4(Y (z)) is a modular form of weight 8 for the full modular group
I'(1). Moreover, we will show that it is a cusp form. A straightforward calculation
gives that

o
1
Dy(a1(2),...,a6(2)) =q? Zanq”, where a, € Z.
n=0

On the other hand, n(z)'? = q% ]_[Zozl(l - q")lz. We have that

Dy(y1(2) ., ¥6(2) =q » ang" [[(1 — ™"
n=0 n=1

is a cusp form of weight 8 for the full modular group I' = PSL(2, Z), but the only
such form is zero. This completes the proof of Theorem 3.1. O

Corollary 3.2 The following invariant decomposition formula (exotic modular
equation) holds: V(a1 (z), ..., as(2))/Ao(ai (2), ..., ae(2))? = 0, where the quadric
U, is an invariant associated to PSL(2, 13) and A% is invariant under the action of
the image of a Borel subgroup of PSL(2, 13), i.e., a maximal subgroup of order 78 of
PSL(2,13), which can be viewed as T'g(13)/ T"(13).

Proof This comes from Theorem 3.1 by noting that (3.6) and (3.7). Thus, we complete
the proof of Theorem 1.3.
LetAj(a(2)) :=Aj(ai1(z),...,a6(z)) fori =0,1,...,6. We will show that

6
[TA)@@) # —Aoaz))°. (3.8)
j=1

We have that Ao (a(2)) = g3 (1 + 0@). Ai(a() = g% (2 + 0()). Ax(a(2)) =
g2+ 0@). As(@@) = g% (1 + 0(). As@(@) = g (=1 + 0(q)),
As(a(z) = g1 (=1 + 0(q)), and Ag(a(z)) = g1 (—1 + O(q)). Thus,

6
5
[TAj @) =q =4+ 0@)).
j=1
On the other hand, —Ag(a(z))® = q%(—l + O(q)). This gives the proof of (3.8). O

Corollary 3.3 The coordinates (a(z), a2(z), a3(z), a4(z), as(z), as(z)) map X (13)
into the quartic four-fold ®4(z1, 22, 23, 24, 25, 26) = 0 in CP>.

Proof This comes from Theorems 2.2 and 3.1. O
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4 Fourteen-dimensional representations of P SL (2, 13) and invariant
decomposition formula

We will construct a 14-dimensional representation of PSL(2, 13) which is deduced
from our six-dimensional representation. It should be emphasized that our 14-
dimensional representation is not a Weil representation. In contrast with this, both
our six-dimensional and seven-dimensional representations of G are Weil represen-
tations, i.e., prl-dimensional and pTJ“]—dimensional representations of PSL(2, p),
respectively. In fact, what Klein used in his papers [12—-15] are all Weil representa-
tions. Hence, our method is completely different from Klein’s method.

To construct our 14-dimensional representation which is generated under the action
of PSL by a specific vector in Sym?(six-dimensional representation), we begin with
a cubic polynomial z;z>z3 and study the action of ST (v mod 13) on it. We have that

—13V13ST"(z1) - ST (z2) - ST" (z3)

5

~13 - 3//1
=5V + M+ +

|

>

+ [N}
w

2

1
| @ n R )+

[\

— =134 2V13(c" %2220 + £ B2 + 0122z +
— =13 = 2V13(¢V 2525 + £ %2326 + £2V2220) +
+2¢ =13 = 2V13(¢¥ 2123 + V202 4+ ¢V 3zd) +

—2y/ =13 + 2V13(¢ %2422 + 22522 + ¢ M z62) +
—13-3J13

+
[\S)

€724 4+ e 2525 4 ¢¥23z6) +

|
:
(98
[\ + [\
(O8]
S
(98]

i+ nd + 2V nh +

:

+v/ =13 = 2V13(83" 2225 + £ V2526 + £V 2324) +

T

=134+ 2V1301 2022 + ¢ 2322 4+ ¢V 2i2d) +

—13 4+ 34/13
2
—13 — 3413
f@h&zg + ez + Bz +
+[2(61 — 03) — 3(02 — 04)]z12223 +

(%2226 + ¢ P 2324 + {5”z§zs) +
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+[2(04 — 02) — 3(01 — 63)]z42526 +

3«/
\/ T (@ 0z + ¥ 202325 + £V 212326) +
[—13 4313
+ f((zvmzus + V202526 + £ 232426) +

—13-3/13
2

(212225 + 0 W 2ozaze + ¥V z12324) +

—13+34/13
+3y f@ﬁ”zzzus + ¢ 232526 + £ 212426) +

— =134+ 213" %21 2026 + £V 212325 + 1PV 202324) +
+/ =13 = 2V/13(c% 232425 + £ 202426 + £"212526)-

This leads us to define the senary cubic forms (cubic forms in six variables)
Dy, ..., D12, Ds given in (1.11). Let ro = 201 — 63) — 3(6h — O1), oo =

204 —02) =361 —63), 11 = V=13 = 2J/13,rp = / =3B 1 — /131213,

and rqg = 4/ M We have that

—13V13ST"(Dg) = roDo + r1£"Dy + 122D + r123"D3 4+ 130 YDy +
+7205"Ds + 128 Dg + rac7"D7 + rat ¥ Dy + 127Dy +
+ 738Dy + 4 "VDyy + 130" Dn + reoDeo

—13V135T" (Doo) = resDo — 132" Dy — 142 *' Dy — 13¢3"D3 + r1¢¥'Dy +
—148°"Ds — 142D + r2¢ VD7 + r2¢* ' Dg — 307Dy +
+718'"Dig + r2¢'1"Dyy + 112 2Dy; — 1D

Let
800(21, 22, 23, 24, 25, 26) = 13%(D3 + D) 4.1)
and
8v(21, 225 23, 245 25, 26) = 800 (ST (21, 22, 23, 245 25, 26)) (4.2)
forv=20,1,...,12. Then

8y = 132STV(Go) = —13Go + £"G1 + "Gy + - + ¢ "Ga, (43)
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where the senary sextic forms (i.e., sextic forms in six variables) Gy, ..., Gz are
given in (1.10). We have that G is invariant under the action of (H, T'), a maximal
subgroup of order 78 of G with index 14. Note that 8, 8, forv =0, ..., 12 form an
algebraic equation of degree 14. However, we have that §, + 211)2:0 8, = 0. Hence, it
is not the Jacobian equation of degree 14. We call it exotic modular equation of degree

14. We have that

12
8% + D85 =26(7-13°Gj + G1Gi2 + G2Gi11 + -+ - + GGr). 4.4)
v=0

This leads us to define @3 as in (1.9).

Theorem 4.1 The invariant decomposition formula for the simple group PSL(2, 13)
of order 1092 is given as follows:

, 4.5)

[ @) T _ (@@, 22), 32, 44(2), a5(2), a6(2))
n%(13z) (a1(2)az(2)az(2)as(z)as(z)as(2))?

where ®12(z1, 22, 23, 24, 25, 26) IS an invariant of degree 12 associatedto PSL(2, 13),
and (z12223742526)% is invariant under the action of the image of a Borel subgroup
of PSL(2,13), i.e., a maximal subgroup of order 78 of PSL(2, 13), which can be
viewed as T'o(13)/T"(13).

Proof Let x;j(z) = n(2)ai(z) (1 < i < 6) and X(2) = (x1(2),....x6(x))".
Then X(z) = n(z)A(z). Recall that n(z) satisfies the following transformation

formulas n(z + 1) = et n(z) and n (—%) = e_”Ti\/En(z). By Proposition 2.4,
we have that X(z + 1) = e_%p(t)X(z) and X (—%) = zp(s)X (z). Hence,

X(y(@) = u)jly,)py)X(z) for y € I'(1), where u(y) = 1, or w? with
o = 3. Since I'(13) = ker p, we have that X (y(2)) = u(y)j(y,z2)X(z) for
y € I'(13). This means that the functions x1(z), ..., x¢(z) are modular forms of
weight 1 for I'(13) with the same multiplier u(y) = 1, w or w?. Thus,

DX (@) =u) 2y, )P 01(X (@) = j(y, 221X (2)
for y € I'(13). Moreover, for y € I'(1),

DX (¥ (2) = Pra()j (v, 2p(¥)X(2))
u() iy, @10 X (@) = j(r, )2 Pn(e() X ().

Note that p(y) € (p(s), p(t)) = G and P17 is a G-invariant polynomial, we have
that

DX (@) =i, )PPnX@), yeld).
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This implies that (X (z)) is a modular form of weight 12 for the full modular group
I'(1). Moreover, we will show that it is a cusp form. We have that

(D) =¢% 1+ 00, [Ds =g (—1+0(9)),
7 43
D zqig(—1+0(q)), D; =qT(1+0(q)),
D =q™(2+ 0(q)), Dy =g (3+ O0(g)),
3 59
D; =g (—-1+ O(q)), Dy =g (=24 O(q)),
11 67
D3 =qf(1+0(q)), Dlo=qf(1+0(q)),
D, =qf(—2+0(q)), Dy =q§(—4+ 0(q)),
| D5 =g (=14 0(q)), | D12 =g 107 (—1+ 0(q)).
Hence,
Go =qi(1+ 0(q)
0= UM (G; =q 5 (=2 + 0(q)),
G| =q1i(13+ 0(q)), 38
04 Gg =g (-8+ O(q)),
Gy = g1 (=224 0(q)), 46
102 Gy =qm(6+ 0(q)),
G3 = g1 (=214 O(q)), 54
) 6 Gio =q™(1+ 0(q)),
Gy =q (=14 0O(q)), 62
14 G =g (-84 0(q)),
Gs =q1 (24 0(q)), 70
Ge — q%(2+ 0(@)) | G12 = ¢4 (17 + O(g)).
Therefore,

7-13%G3 + G1G12 + GGy + - + GGy
— 713231+ 0(9) + 4> (13- 17+ 0(9) + ¢ (22 -8 + 0(9)) +
+q2 (=21 4+ 0(@) +q* (—6+ 0(@) + ¢ (—16 + 0(9)) +
+q%(—4+ 0(q))
— g7 (=264 0(9)).

We have that

D(x1(2), ..., x6(2)) = n(z)lzq%(l + 0(g)) = q(1+ 0(q))

is a cusp form of weight 12 for the full modular group I'(1). Because every I'(1)
cusp form of weight 12 is a multiple of A(z), checking the ¢! coefficient, we find
that ®1,(x1(z), ..., x6(2)) = A(z). On the other hand, we have that x{(z) ... x¢(z) =
—1(z)"n(13z)°. This completes the proof of Theorem 4.1. O
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Note that (2.9), (2.10), and (2.11) are equivalent to the following:

a1(2)%as(2)*ax(2)as(z) + ax(z)*as(z)az(2)ae(z) +
+ a3(2)%ae(2)%a1(z)a4(z) — a1(z)as(2)ax(2)as(z)as(z)ag(z)
= —n(2)*n(132)°,

a1(2)%as(2)%a3(2)as (2) + ax(2)2as(2)%a1 (2)as(z) +
+a3(2)%ag(2)*ar(2)as (z) + 4a1 (z)as(z)az (z)as(z)as (z)as(z)
= n(2)*n(132)3,

as(2)%as(2)%as(2)* — a1(2)’ a2 (2)%a3(2)> +
+3a1(z)as(2)az(2)as(z)as (2)as(z) = n(z)>n(132)°.

The corresponding polynomials are given by

(4.6)

4.7

(4.8)

22 2.2 2.2
J6(z1, 22, 23, 24, 25, 26) = 21242225 + 25252326 + 23262124 — 212223242526,

26(21, 22, 23, 24, 25, 26) = 23232326 + 23222124 + 23222025 + 4212223242526,

he(z1, 22, 23, 24, 25, 26) 1= 732222 — 732525 + 32122232425%6-

Similarly to the above argument in the proof of Theorem 4.1, we have that

fo(X(r @) = fow®)j(y, DoX (@) =ui)®jy, 2° folp(¥) X (2))

=j(. 2% fe(p(¥)X (2)) fory e T(1).

If fs is a G-invariant polynomial, we have that

feX(y (@) = j(y,2)°f6(X(2)) fory e T(D).

This implies that f5(X (z)) is a modular form of weight 6 for the full modular group

I'(1). On the other hand, by (4.6), we have that

foX(@) = —n(2°n(132° = —g* [T = ¢™° T[]t = ¢
n=1 n=1

This shows that f5(X (z)) is a cusp form of weight 6 for the full modular group I'(1),
but the only such form is zero. This leads to a contradiction! Therefore, fg is not a
G-invariant polynomial. Similarly, we can prove that g¢ and h¢ are not G-invariant

polynomials.
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