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Abstract Let p(n) denote the number of overpartitions of n. Recently, congruences
modulo powers of 2 for p(n) were widely studied. In this paper, we prove several new
infinite families of congruences modulo powers of 2 for p(n). For example, for o > 1
andn > 0,

P(8- 3%+, 4 5.3%H3) =0 (mod 28).
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1 Introduction

A partition of a positive integer n is a nonincreasing sequence of positive integers
whose sum is 7. An overpartition of 7 is a partition of n in which the first occurrence
of a number may be overlined. Let p(n) denote the number of overpartitions of n, and
we assume that p(0) = 1. From [6], we know that the generating function for p(n) is
given by

Zp( ng = SLDx (1.1
(g; Q)oo

where

@ oo = [[1 —ag™™", gl <1.

n=1

The arithmetic properties of p(n) were widely studied in the literature. Fortin,
Jacob and Mathieu [9], and Hirschhorn and Sellers [10] established the 2-, 3-, and 4-
dissections of the generating function for p(n), from which some congruences modulo
4 and 8 are obtained. In particular, they obtained the following three Ramanujan type
identities:

o (9% 47)5(a*: 43

2n + 1)g" S e 1.2
HZ:(:)p( n e @: D3(q* qMo0 (2
) 2. ,2 4. 46
S B+ 3)g" =84 ’q(()]"_O;;’S 14 )00 (1.3)
n=0 o0
0 2. ,2\22
> PEn+7g" = —(qu 3)3;;0. (1.4)
n=0 700

Hirschhorn and Sellers [10] also conjectured that if p is an odd prime and r is a
quadratic nonresidue modulo p,

0 (mod4) if p=43 (mod 8),

p(pn+r)= [ ,
0 (mod8) ifp==+1 (mod8).

The above conjecture later was confirmed by Kim [14]. Mahlburg [16] conjectured
that for all positive integers k, p(n) = 0 (mod 2%y holds for a set of integers of
arithmetic density 1 and proved the case k = 6. In [13], Kim confirmed the case
k = 7, and the conjecture is still open. Recently, Ramanujan type congruences modulo
16 and 32 have been considered by several authors, see [5,20,21], for example. For
congruences modulo 5 for p(n), we refer the reader to [3,4,8,15,17,18]. For modulo
powers of 3, see [11,19,21].

The aim of this paper is to derive infinite families of congruences for p(n) modulo
powers of 2. Here we list our main results in the following theorems.
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Overpartition function modulo powers of 2 91

Theorem 1.1 For o > 0 and n > 0, we have

P(8-5%%2, 4 31.5%Fy =0 (mod 2), (1.5)
P8 -5% 2, 4 39. 5%+ = (mod 2°), (1.6)
P8 - 5%y 4 31.5%3) =0 (mod 29), 1.7)
P(8-5%F 4 139,583 =0 (mod 29), (1.8)
Vi (8 588, L Bi47) - 58“+7) =0 (mod 2%), (1.9)

wherei =0,2,3,4.
Theorem 1.2 For o > 0 and n > 0, we have
DB -7 20 4+ 8i + 57y =0 (mod 2°), (1.10)
where i = 3,4, 6, and
D@ -7 4 8i +5)7*) =0 (mod 2°), (1.11)
wherei =0,1,3,4,5,6.
Theorem 1.3 Foro > 0 and n > 0, we have
P8 -3% T4 4 5.3%43 =0 (mod 2%), (1.12)
P8 - 3%t 4 13.3%H3) =0 (mod 2%). (1.13)
2 Preliminaries
Let f(a, b) be Ramanujan’s general theta function given by
00
faby =3 a""p" T, jabl < 1.
n=—00

Jacobi’s triple product identity can be stated in Ramanujan’s notation as follows:
f(a,b) = (—a; ab)oo(—b; ab)sc(ab; ab)oo.
Thus,

ey (g% 43

. 3y _ )
V(@) = flg.4) =2 q @ D

n=0

In order to prove our results, we need the following lemmas.
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92 X. Yang et al.

Lemma 2.1 [7] For any odd prime p,

p=3
2 2 2 2 2
k= +k p°+Q2k+1)p p-—Q2k+1)p po-1 2
V)= q 2 f(q g 2 )+q 5 Y(gh).
k=0

Furthermore, we claim that for 0 < k < (p —3)/2,

k2+k$p2—1
2 8

(mod p).

In particular, setting p = 5, 7 in Lemma 2.1, we have

(@) = £ ¢") +ar @ ) + v @), @2.1)
V(@) = @™ ¢® +af @ ¢+ @ @’ a* + ¢Cv@®). 2.2)

For convenience, we rewrite (2.1) as the following simple form
V(@) = Ao +qA1 +¢°As, 2.3)

where Ag = £(q'%, ¢"), A1 = £(¢°, ¢*), A3 = ¥ (¢>).

Lemma 2.2 [1, p. 26, (1.6.7)]
V@) - av* @) = f@.q 1@ g,
From (2.3) and Lemma 2.2, we see that
V(@) —°v? @) = AvAL 2.4)
Lemma 2.3 For integer n > 1, we have

(@": "% = (@™ ¢™)% (mod 4),
@ "M% = @™ g™, (mod 8).

3 Proof of Theorem 1.1

To prove Theorem 1.1, we first need to establish following lemma.
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Lemma 3.1 Fora > 0andn > 0, we have

e¢]

Y (8 58, 4 3. 58“) ¢" =8v3(q) (mod 64), 3.1)
0

D @55+ 7. 5% g = 249y (47) — 169(¢°) Y7 (q) (mod 64),
n=0

3.2)

> @50 75" = 400y () + 329/ (¢°)¥7 (@) (mod 64),

n=0
(3.3)
Zﬁ (8 58t Ty 47 58‘”7) q" =8¢y (¢°) (mod 64). (3.4)
n=0
Proof From (1.3), we have
00 2. .2 4. 4\6
S pn + 3 =849 0 Ve 10 )
= G- 97)%
and
> PBn+3)g" =8y7(g) (mod 64). (3.5)
n=0
Define a(n) as follows:
> amg" =9 (). (3.6)
n=0
Thus,
P(8n +3) = 8a(n) (mod 64). (3.7)

Applying (2.3), we have

o
> amq" =A3 +3qAFAL +3¢2AcAT + AT + 3¢ A3A;
n=0
+6¢*AgA1A3 +3¢7 AT A3 + 3¢ A0 A3 + 3¢7 A1AS + g7 A
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94 X. Yang et al.

Applying (2.4), it can be seen that

D aGn+4g" ="y () + 6* v (™) f (. a7 f (", ¢")
n=0

=" @®) +60*v (@™ (V26" - v @)
= =5¢"V°(¢®) + 64" v (¢ (@),

and

D> aGn+4)q" =3q9° %) —29/(g°)¥ (q) (mod 8). (3.8)
n=0

Using (2.3) and (2.4) again, it follows that

o0 o0
S aGGn+ 1) +4¢" T =" a@5n +9) 4!
n=0 n=0

=393(¢%) — 204" (¢°43 +2q40 A1)
=392 (4" -20@”) (4°02 @) +292 (0% 2002 (¢®))
= —qv>@) +2¢°v* @) (g®) (mod ).

That is,
> a@sn+94q" =—97(q) +2q¥*(@)¥(g) (mod 8).

n=0

Applying (2.1) and (3.8), it follows that

o0 o0 . 3 _
a (52(5n +4)+ 9) "= a (53n + %) q"
n=0 n=0
= 599> (q°) + 2¥/(¢")¥*(q) + 2¢ 3 (@)Y (¢°) (mod 8)
=5q¥° (@) + 49 (V)2 (q). 3.9)
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Overpartition function modulo powers of 2 95

Using (2.3) and (2.4), we deduce that

0 o
7-53-3 3-(5*=1)
3 Sn+1 4 Sn+1
Ea(5(5n+1)~|——8 )q” —Ea(Sn—i——S )q"

n=0 n=0
= 5q13(¢%) + 49 (¢") (443 + 2 A, )
= 5¢9°(¢”) +44°0*(@*)¥ (") (mod 8),

Based on (2.1) and (3.8), we have

o] 4 e 35
3.-(5% -1 7.55-3
> a(54(5n+4)+( R ))q"= §0a(55n+ 5 )q”
n=

n=0
= -25¢93(¢%) — 10y 2 (v (@) + 42 @V (¢)
= —qv3 @) +2v2(@v (@) (mod 8). (3.10)

Similarly,

7.55-3 3.(55—1)
5 Sn+1 __ 6 Sn+1
§a(5(5n+1)+—8 )q” —za(5n+T)q"

n=0 n=0
= —q¥* (@) +20(¢") (a°43 + 2940
=3¢y (¢°)-2¢°¥ (") ¥*(¢*) (mod 8),

so it follows that

- 3.(50—1
Da (5% + (—)) 9" =39’ (@) — 2q¥/(9)¥*(g°) (mod 8).
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96 X. Yang et al.

From (2.1) and (3.8), it can be seen that
o

(56 —
Da (56(571 +4) + %) q"

n=0
o0
7.57 -3
= Za (57n + T) q"
n=0

= —15¢y°(q°) — 6¥ (¢ v (@) — 2¥ (@) (q)

=qy>(¢°) (mod 8). (3.11)
Then we have
o (<7 7-57—3) N (s M) n
nZ()a(S (5n+1) + — _Za 5 : q

=y3(g) (mod 8).

So we have the following useful relation:

(58 _
a (58n + 3(58—1)) =a(n) (mod 8).

By induction, we have

o5+ 3.5 — 1)

5 ) =a(n) (mod 8). (3.12)

Using (3.6), (3.8), (3.9), (3.11) and (3.12), we deduce that

ad (58« _
Za (580‘71 + %) g"=v>(q) (mod 8), (3.13)
n=0

- 8a+1 7 58a+1 3 3,5 5 2
Za(S " = 3qv3(q%) — 20/@*) ¥ (q) (mod 8),
n=0

(3.14)

- 8a+3 7 580[+3 3 3,5 5 2
>afs " =503 (q%) + 40 (@*) v (g) (mod 8),
n=0

(3.15)
0 58a+7 3
>a (580‘+7 q" = q¥>(@°) (mod 8). (3.16)
n=0
Using the above relations and (3.7), we can easily get the desired results. O
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Proof of Theorem 1.1 Applying (2.3) and (3.2), we deduce that

o
Zﬁ(g . 580{+1n +7. 580(+1)qn
n=0

= —40qy°(¢°) — 16y¥(q”)
x (Ag +q% AT 4+ ¢ A% +2qA0A| +2¢° AgAs + 2q4A1A3) (mod 64).

Thus, it follows that

e oo
Zﬁ(g . 580{+1(5n + 3) + 7. 58a+1)q5n+3 — 25(8 . 580(+2n + 31 - 58a+1)q5n+3
n=0 =0

= —16¥(¢°)(2¢° ApA3) (mod 64),

and

o o
Zﬁ(g . 580(-‘1-1 (5}’1 + 4) + 7 . 58a+1)q5n+4 — Zﬁ(8 . 58(1+2n + 39 . 580{+1)q5n+4
n=0 n=0

= —16Y/(¢°)(2g* A1 A3) (mod 64).

This yields the first two congruences of the theorem. In addition, applying (2.3) and
(3.3), we deduce that

o0
Zﬁ(g . 580[+3n 4 7. 58a+3)qn
n=0

= 40qv°3(q%) +32v (%)
x (A%) +q2A% + qOA2 + 2qAoA| + 27 AoAs + 2q4A1A3) (mod 64).

Hence, we obtain

o
D B85S 4 3) 47 55 )g
n=0

o0
25(8 . 58(1+4n + 31 . 580t+3)q5n+3

n=0
3243 ¥ (%) (240 A3)
0 (mod 64), (3.17)
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98 X. Yang et al.

o
S B85S0 4 4) 47 55 )g T
n=0

o0
— 25(8 . 58a+4n + 39 . 580!+3)q5n+4

n=0
= 329"y (¢”) (24, A3)
=0 (mod 64). (3.18)
From (3.4), we see that fori = 0, 2, 3, 4,

¥ (8 58047 (5 1) 47 58“”) =0 (mod 64).

Therefore, we finish the proof. O

4 Proof of Theorem 1.2

Lemma 4.1 For o > 0and n > 0, we have

oo
D PB T +3-74)¢" =8y7(¢) (mod 32),
n=0

o0
D @7 4 5.7 g = 16 £1 fia + 847y (¢7) (mod 32),  (4.1)

n=0

o

D P T3 T = 16 /2 f7 + 89 (q) (mod 32),

n=>0

o

D @71 457 )g" = 847y (q7) (mod 32), (4.2)
n=0

where f 1= (4" ¢")co-
Proof From (3.5), we have
Pp(@8n +3) =8a(n) (mod 32). (4.3)
Recalling the generating function (3.6) of a(n) and the following fact

_ L
fifia

f@.qf@* ) f@ q"
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Overpartition function modulo powers of 2 99

it is not hard to see that

00 4
S aln+ 4" =227 1 2437 (mod 4)
= fifia

=211 fia +q*¥3 (") (mod 4). (4.4)

From [2, p. 303, Entry 17(v)], we have the 7-dissection

N e A N LG e )
e (e L T
f(=q", —4"

—q% f19 + ¢° fao (4.5)

(=g, —q)

Thanks to (4.5), we obtain that

D al(In+2)+4)q" =D a@n+18)¢" = =2f1f2+¥(q) (mod 4).
n=0 n=0

(4.6)
Then in view of (4.4) and (4.5), it can be seen that
o0 o0
> a@9(Tn +4) + 18)q" = D a(T’n + 214)q"
n=0 n=0
= 2fi fia +2fi fia + ¢*¥3(¢7) (mod 4)
=q*v3(q"), “.7)

and

D a(P(n+2)+214)g" =D a(T*n +900)g" = ¥>(q) (mod 4).  (4.8)
n=0 n=0

Thus, from (3.6) and (4.8), we see that
a(7*n +900) = a(n) (mod4). 4.9)

Using (3.6), (4.4), (4.6), (4.7), (4.9) and (4.3), by induction, it is easy to establish the
desired results. O

We are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2 From (4.1) and (4.5), we deduce that

@7 T +i)+5-7%F Y =0 (mod 2%),
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100 X. Yang et al.
where i = 3, 4, 6. In view of (4.2), we obtain
@ -7 Tn+i)+5-7%) =0 (mod 2°),
fori =0,1,3,4,5,6. This completes the proof. |
5 Proof of Theorem 1.3
From Lemma 2.1, we have
Y (q) = Bo + By, (5.1)
where By = f(q°, 4%, Bi = q¥(¢°).
To prove Theorem 1.3, we need the following three lemmas.
Lemma 5.1 [12, Lemmas 2.1 and 2.2]
1 9
= % (Bg — BoBi + Bf) , (5.2)
v v ()
1//4(q3) 3,3,9
By = -9 (@), (5.3)
" Y@
Lemma 5.2 Let ¢(n) be defined by
o0
D cmg" = (@)
n=0
Then we have
o0
> cGn+ gt =gyt (@®) (mod 4).
n=0
Proof Using (5.1), we have
o
> cmg" = (Bo+ B1)*.
n=0
Then
o0
Zc(Sn + 1)g* ! = B} +4B3B1 = ¢*y*(¢°) (mod 4).
n=0
O
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Overpartition function modulo powers of 2 101

Lemma 5.3 Let d(n) be defined by
o0
> dmg" = v (@)
n=0
We have
o0
> dBn+2)¢7"? = ¢* Y (%) (mod 4).
n=0

Proof Since

oo

> dnq" = (Bo+ B)®,
we have

B5B+8
0

o 8
3n4+2 _ p8
E d(3n + 2)q =B+ -—— 16l

3051 B} B§
n=0

= 4%y%(g") (mod 4).

O
Proof of Theorem 1.3 From (1.4), we see that
1 o0
o Z P8n+7)q" =v"(g) = (Bo+ B))” (mod 4).
Setting
1 o0 o0
o Z p(8n +7)g" = Z fng", (5.4)
we have
o0
Z f@n+1)g> ! =7BSB) +35B3 B} + B] (mod 4).
n=0
Applying (5.3), we see that
< ; v8(q)
> B+ =q* @)@ + 4" (@) — g9 (mod 4),
= ¥(g”)
(5.5)
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102 X. Yang et al.

and

v8(q)
Vv (g3)

> fGn+q" =qv@Hvt@) + 47V (@) -

n=0

(mod 4).
From Lemmas 5.2 and 5.3, it follows that

D fBGn+2)+Dg" P =qv @) - ¢ @) + 7 (@)
n=0
R ACE!
¥ (g3)

(mod 4),

and

a*v3(q?)

7 d 4).
@) +v¥'(g) (mod 4)

> fOn+Nq" = qv@vte) -

n=0

Employing (5.1), (5.5) and Lemma 5.1, it can be seen that

< 3n+1 3 3y, 40,3 2,8, 3 a*v’(¢”)
> FOCn+ 1)+ D =q(B5 + BHYHa?) — ¢* v g
n=0 Iﬁ (61 )
8¢,3
+ P @O+ @) — ‘f’p ((q"g)) (mod 4)
=4q"v(q"),
and
> fQIn+16)g" = ¢*Y(q%) (mod 4). (5.6)
n=0
Therefore,

Z FQ73n +2) + 16)g" = Z F(3*n +70)¢" =¥ (q) (mod 4).
n=0 n=0

Thus, we have

fn) = f3*n +70) (mod 4).
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Overpartition function modulo powers of 2 103

Based on the above relation, by induction, we obtain that for o« > 0,

i 7.3% 7
Z f (34"‘11 + T) qn = 1/[7(q) (mod 4).

n=0

Combining the above relation and (5.6), we find that

S 4a+3 5- 3401+3 -7 2.07..3
f (3 a4 T) q"=q°¥'(g°) (mod 4). 5.7
n=0
From (5.4) and (5.7), we see that
o
D B3P +5.3% " = g%y (g%) (mod 2%). (5.8)

n=0

Since there are no terms on the right of (5.8) in which the powers of ¢ are congruent
to 0, 1 modulo 3, we have

P8 -3% P33y 45.3% 3 =0 (mod 2%),
P@-3% 33 4+ 1)+5-3%) =0 (mod 2%).

This completes the proof. O
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