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Abstract In this paper, using the polynomial approximation and the continued frac-
tion approximation, we present some sharp inequalities for the sequence (1 + 1/n)n

and some applications to Carleman’s inequality. For demonstrating the superiority of
our new inequalities over the classical one, some proofs and numerical computations
are provided.
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1 Introduction

There has been considerable discussion concerning the following well-known double
inequalities:
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e

2n + 2
< e −

(
1 + 1

n

)n

<
e

2n + 1
, n ≥ 1. (1.1)

Since these are often used to improve inequalities of Hardy–Carleman type, there has
been considerable interest in extending these inequalities in the recent past. See for
example [2,10,13–15].

These inequalities (1.1) are equivalent to

2n

2n + 1
<

1

e

(
1 + 1

n

)n

<
2n + 1

2n + 2
. (1.2)

Mortici and Hu [9] presented the best form approximation of (1.2) as follows:

1

e

(
1 + 1

n

)n

≈ n + 5/12

n + 11/12
. (1.3)

Based on (1.3), double inequalities

u0(x) <
1

e

(
1 + 1

x

)x

< v0(x) (1.4)

hold for every real number x ∈ [1,∞), where

u0(x) = x + 5/12

x + 11/12
− 5

288x3
+ 343

8640x4
− 2621

41472x5
,

v0(x) = x + 5/12

x + 11/12
− 5

288x3
+ 343

8640x4
− 2621

41472x5
+ 300901

3483648x6
.

In the asymptotic theory, there are many methods to obtain better approximations.
First, the polynomial approximation is a very usefulmethod to give superior increasing
approximations as for example the Stirling series [1]:

n! ≈ √
2πn

(n
e

)n (
1 + 1

12n
+ 1

288n2
− 139

51840n3
− 571

2488320n4
+ · · ·

)
.

Recently, the polynomial approximation method was used by Lu [3] to provide some
more general convergent sequences for Euler’s constant. Using the polynomial approx-
imation, Lu et al. [5] also obtained the extension of Windschitl’s formula. Second,
the continued fraction approximation is also a very useful method to give superior
increasing approximations. For example, Mortici [8] provided a new continued frac-
tion approximation starting from the Nemes’ formula as follows:
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�(x + 1) ≈ √
2πxe−x

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
x + 1

12x − 1
10x+ a

x+ b
x+ c

x+ d

x+
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

x

,

where

a = −2369

252
, b = 2117009

1193976
, c = 393032191511

1324011300744
,

d = 33265896164277124002451

14278024104089641878840
· · · .

Recently, the continued fraction approximation was used by Lu and Wang [4] to
provide a new asymptotic expansion for the gamma function. Lu et al. [6] also obtained
some new continued fraction approximations of Euler’s constant.

It is their works that motivated our study. In this paper, we give some polynomial
and continued fraction approximations for the constant e in Sect. 2.

To obtain the main results in this paper, we need the following lemma which is very
useful for constructing asymptotic expansions:

Lemma 1 If (xn)n≥1 is convergent to zero and the limit

lim
n→∞ ns(xn − xn+1) = l ∈ [−∞,+∞], (1.5)

exists for s > 1, then

lim
n→∞ ns−1xn = l

s − 1
. (1.6)

Lemma 1 was first proved by Mortici in [7]. From Lemma 1, we can see that the
speed of convergence of the sequence (xn)n≥1 increases with the value s satisfying
(1.5).

The rest of the paper is organized as follows: In Sect. 2, the main results and
their proofs are provided. In Sect. 3, we give some comparisons to demonstrate the
superiority of inequalities (2.10) and (2.11) over the inequalities (1.4) in Mortici and
Hu [9]. Finally, in Sect. 4, some applications to Carleman’s inequality are presented.

2 Main results

Theorem 1 For (1.3), using the polynomial approximation, we have

1

e

(
1 + 1

n

)n

≈ 1 + a1
n

+ a2
n2

+ a3
n3

+ a4
n4

+ a5
n5

+ a6
n6

+ · · · , (2.1)
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where

a1 = −1

2
, a2 = 11

24
, a3 = − 7

16
, a4 = 2447

5760
,

a5 = − 959

2304
, a6 = 238043

580608
, · · · .

Proof Let (xi )i≥1 be a polynomial sequence which converges to 1
e

(
1 + 1

n

)n
, where

x1 = 1+ a1
n

, x2 = 1+ a1
n

+ a2
n2

, · · · , xi = 1+ a1
n

+ a2
n2

+· · ·+ ai
ni

, · · · . (2.2)

To measure the accuracy of this approximation, we define a sequence (ti )i≥1,

ti (n) = 1

e

(
1 + 1

n

)n

− xi . (2.3)

Then, xi converges to 1
e

(
1 + 1

n

)n
is equivalent to ti converges to 0. Using (2.2) and

(2.3), we have

t1(n) − t1(n + 1) = −1 − 2a1
2n2

+ 17 + 12a1
12n3

+ O(n−4). (2.4)

From Lemma 1, we know that the speed of convergence (ti )i≥1 is even higher as the
value s satisfying (1.5). Thus, using Lemma 1, we have the following:

(i) If a1 �= −2−1, then the rate of the sequence t1(n) is n−1, since

lim
n→∞ nt1(n) = −1 − 2a1

2
�= 0.

(ii) If a1 = −2−1, then from (2.4), we have

t1(n) − t1(n + 1) = 11

12n3
,

and the rate of convergence of the sequence t1(n) is n−2, since

lim
n→∞ n2t1(n) = 11

24
.

We know that the fastest possible sequence t1(n) is obtained only for a1 = −2−1.
Using the same method, we have

a2 = 11

24
, a3 = − 7

16
, a4 = 2447

5760
, a5 = − 959

2304
, a6 = 238043

580608
, · · · .
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Theorem 2 For (1.3), using the continued fraction approximation, we have

1

e

(
1 + 1

n

)n

≈ 1 + b1

n + b2n

n+ b3n

n+ b4n

n+ b5n

n+ b6n
n+···

, (2.5)

where

b1 = −1

2
, b2 = 11

12
, b3 = 5

132
, b4 = 457

1100
,

b5 = 5291

45700
, b6 = 19753835

55393884
, · · · .

Proof Let (yi )i≥1 be a continued fraction sequence which converges to 1
e

(
1 + 1

n

)n
,

where

y1=1+ b1
n

, y2=1+ b1
n + b2

, y3=1+ b1

n + b2n
n+b3

, · · · yi = 1+ b1

n + b2n

n+ b3n

...
n+ bi−1n

n+bi

, · · · .

(2.6)
To measure the accuracy of this approximation, we define a sequence (si )i≥1,

si (n) = 1

e

(
1 + 1

n

)n

− yi . (2.7)

Then, yi converges to 1
e

(
1 + 1

n

)n
is equivalent to si converges to 0. Using (2.6) and

(2.7), we have

s1(n) − s1(n + 1) = −1 − 2b1
2n2

+ 17 + 12b1
12n3

+ O(n−4). (2.8)

It is easy to see that the fastest possible sequence s1(n) is obtained only for b1 = a1 =
−2−1.

Using (2.6) and (2.7) again, we have

s2(n) − s2(n + 1) = 11 − 12b2
12n3

+ −43 + 24b2 + 24b22
16n4

+ O(n−5). (2.9)

From Lemma 1, we have the following:

(i) If b2 �= 11/12, then the rate of the sequence s2(n) is n−2, since

lim
n→∞ n2s2(n) = 11 − 12b2

24
�= 0.
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(ii) If b2 = 11/12, then from (2.9), we have

s2(n) − s2(n + 1) = − 5

96n4
,

and the rate of convergence of the sequence s2(n) is n−3, since

lim
n→∞ n3s2(n) = − 5

288
.

We know that the fastest possible sequence s2(n) is obtained only for b2 = 11/12.
Using the same method, we have

b3 = 5

132
, b4 = 457

1100
, b5 = 5291

45700
, b6 = 19753835

55393884
, · · · .

Using Theorem 1, we obtain the following inequalities.

Theorem 3 For every real number x ∈ [1,∞), the following inequalities hold:

u1(x) <
1

e

(
1 + 1

x

)x

< v1(x), (2.10)

where

u1(x) = 1 − 1

2x
+ 11

24x2
− 7

16x3
+ 2447

5760x4

− 959

2304x5
+ 238043

580608x6
− 67223

165888x7
,

v1(x) = 1 − 1

2x
+ 11

24x2
− 7

16x3
+ 2447

5760x4
− 959

2304x5

+ 238043

580608x6
− 67223

165888x7
+ 559440199

1393459200x8
.

Proof The proof of inequalities (2.10) is equivalent to f1 > 0 and g1 < 0, as x ∈
[1,∞), where

f1(x) = x ln

(
1 + 1

x

)
− 1 − ln

(
1 − 1

2x
+ 11

24x2
− 7

16x3
+ 2447

5760x4

− 959

2304x5
+ 238043

580608x6
− 67223

165888x7

)
,

g1(x) = x ln

(
1 + 1

x

)
− 1 − ln

(
1 − 1

2x
+ 11

24x2
− 7

16x3
+ 2447

5760x4

− 959

2304x5
+ 238043

580608x6
− 67223

165888x7
+ 559440199

1393459200x8

)
.
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By some calculations, we have

f ′′
1 (x) = A1(x − 1)

x2(x + 1)2P2
1 (x)

and g′′
1 (x) = − B1(x − 1)

x2(x + 1)2Q2
1(x)

,

where

P1(x) = 5806080x7 − 2903040x6 + 2661120x5 − 2540160x4

+2466576x3 − 2416680x2 + 2380430x − 2352805,

Q1(x) = 1393459200x8 − 696729600x7 + 638668800x6 − 609638400x5

+591978240x4 − 580003200x3 + 571303200x2 − 564673200x

+559440199,

A1(x) = 10325422778525831x + 34915994344327949x2+67354407138829296x3

+81069787336627560x4 + 62331076599861888x5

+29888921547063936x6 + 8170226471522304x7+974446365182976x8

+1293233555960723,

B1(x) = 839230575223908538833x + 3253738553547049037288x2

+7350298199720092249920x3 + 10659659439228297612480x4

+10290635664509962863360x5 + 6611961605443923502080x6

+2726048901103460352000x7 + 654268419543610368000x8

+69628020097757184000x9 + 98717129582357945073.

Evidently, we have f ′′
1 (x) > 0, g′′

1 (x) < 0 for x ≥ 1. Thus, g1 is strictly concave, and
f1 is strictly convex. Combining f1(∞) = g1(∞) = 0, we obtain g1 < 0 and f1 > 0
on [1,∞). The proof of inequalities (2.10) is complete. 	


Using Theorem 2, we obtain the following inequalities.

Theorem 4 For every real number x ∈ [1,∞), the following inequalities hold:

u2(x) <
1

e

(
1 + 1

x

)x

< v2(x), (2.11)

where

u2(x) = 1 + − 1
2

x + 11
12 x

x+
5

132 x

x+
457
1100 x

x+ 5291
45700

, v2(x) = 1 + − 1
2

x + 11
12 x

x+
5

132 x

x+
457
1100 x

x+
5291
45700 x

x+ 19753835
55393884

.
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Proof The proof of inequalities (2.11) is equivalent to f2 > 0 and g2 < 0, as x ∈
[1,∞), where

f2(x) = x ln

(
1 + 1

x

)
− 1 − ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 + − 1

2

x + 11
12 x

x+
5

132 x

x+
457
1100 x

x+ 5291
45700

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

g2(x) = x ln

(
1 + 1

x

)
− 1 − ln

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + − 1
2

x + 11
12 x

x+
5

132 x

x+
457
1100 x

x+
5291
45700 x

x+ 19753835
55393884

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By some calculations, we have

f ′′
2 (x) = A2(x − 1)

x2(x + 1)2P2
2 (x)R2

2(x)
and g′′

2 (x) = − B2(x − 1)

x(x + 1)2Q2
2(x)S

2
2 (x)

,

where

P2(x) = 219360x3 + 216240x2 + 45362x − 481,

R2(x) = 109680x2 + 162960x + 53891,

Q2(x) = 29090880x3 + 39051120x2 + 15041160x + 1535537,

S2(x) = 29090880x3 + 53596560x2 + 28506120x + 3950767,

A2(x) = 7239877975538515200(x + 1)6 + 21505720740023942400(x + 1)5

+23551646037987136320(x + 1)4 + 11493402277272147840(x + 1)3

+2329822406815788131(x + 1)2 + 120656484632110921x

+119984556789002880,

B2(x) = 1807392287181467915782963200(x + 1)6

+6605509732240923396484300800(x + 1)5

+9583241661488326994121772800(x + 1)4

+7005074374845717299901265920(x + 1)3

+2693418207575323688814043200(x + 1)2

+510240050132939340975095040x

+547043065772494130788615681.
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Some new approximations and inequalities of the sequence... 77

Evidently, we have f ′′
2 (x) > 0, g′′

2 (x) < 0 for x ≥ 1. Thus, g2 is strictly concave, and
f2 is strictly convex. Combining f2(∞) = g2(∞) = 0, we obtain g2 < 0 and f2 > 0
on [1,∞). The proof of inequalities (2.10) is complete. 	


3 Comparisons

In this section,we give some comparisons to demonstrate the superiority of inequalities
(2.10) and (2.11) over the inequalities (1.4) in Mortici and Hu [9].

First, comparing (2.10) with (1.4), we have

u1(x) − u0(x) = 1 − 1

2x
+ 11

24x2
− 7

16x3
+ 2447

5760x4
− 959

2304x5
+ 238043

580608x6

− 67223

165888x7
−

(
x + 5/12

x + 11/12
− 5

288x3
+ 343

8640x4
− 2621

41472x5

)

= 1203604(x − 3)2 + 6811838(x − 3) + 4426907

1161216x7(12x + 11)
.

Then, u1(x) > u0(x) for x ∈ [3,∞).

v1(x) − v0(x) = 1 − 1

2x
+ 11

24x2
− 7

16x3
+ 2447

5760x4
− 959

2304x5
+ 238043

580608x6

− 67223

165888x7
+ 559440199

1393459200x8

−
(

x + 5/12

x + 11/12
− 5

288x3
+ 343

8640x4
− 2621

41472x5
+ 300901

3483648x6

)

= −1815707600(x − 3)2 + 10392368412(x − 3) + 8681894647

1393459200x8(12x + 11)
.

Then, v1(x) < v0(x) for x ∈ [3,∞). Thus, the inequalities (2.10) in Theorem 3 are
more accurate than the inequalities (1.4) in Mortici and Hu [9].

Next, comparing (2.11) with (1.4), we have

u2(x) − u0(x) = 1 + − 1
2

x + 11
12 x

x+
5

132 x

x+
457
1100 x

x+ 5291
45700

−
(

x + 5/12

x + 11/12
− 5

288x3
+ 343

8640x4
− 2621

41472x5

)
= I1(x)

L1(x)
,

where

I1(x) = 23492171136x2 + 27086459628x + 7768657105,

L1(x) = 207360x5(109680x2 + 162960x + 53891)(12x + 11).
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78 D. Lu et al.

Then, u2(x) > u0(x) for x ∈ (0,∞).

v2(x) − v0(x) = 1 + − 1
2

x + 11
12 x

x+
5

132 x

x+
457
1100 x

x+
5291
45700 x

x+ 19753835
55393884

−
(

x + 5/12

x + 11/12
− 5

288x3

+ 343

8640x4
− 2621

41472x5
+ 300901

3483648x6

)

= − I2(x)

L2(x)
,

where

I2(x) = 659982630678912x3 + 1034331228912576x2

+ 495251068622280x + 65383435758685,

L2(x) = 17418240x6(29090880x3 + 53596560x2

+ 28506120x + 3950767)(12x + 11).

Then, v2(x) < v0(x) for x ∈ (0,∞). Thus, the inequalities (2.11) in Theorem 4 are
more accurate than the inequalities (1.4) in Mortici and Hu [9].

Finally, comparing (2.10) with (2.11), we have

u1(x) − u2(x) = 1 − 1

2x
+ 11

24x2
− 7

16x3
+ 2447

5760x4
− 959

2304x5
+ 238043

580608x6

− 67223

165888x7
−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 + − 1

2

x + 11
12 x

x+
5

132 x

x+
457
1100 x

x+ 5291
45700

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= P1(x)

Q1(x)
,

v1(x) − v2(x) = 1 − 1

2x
+ 11

24x2
− 7

16x3
+ 2447

5760x4
− 959

2304x5
+ 238043

580608x6

− 67223

165888x7
+ 559440199

1393459200x8
−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + − 1
2

x + 11
12 x

x+
5

132 x

x+
457
1100 x

x+
5291
45700 x

x+ 19753835
55393884

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= P2(x)

Q2(x)
,
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Some new approximations and inequalities of the sequence... 79

Fig. 1 Simulations for P1(x)
and P2(x)

(a) P1(x)

(b) P2(x)

where

P1(x) = 189636816x3 − 378081480x2 − 255129349670x − 126795014255,

Q1(x) = 1393459200x8(29090880x3 + 53596560x2 + 28506120x + 3950767),

P2(x) = −1826787697920x4 + 4246725222720x3 + 16144514021685840x2

+13716577201173480x + 2210217876682633,

Q2(x) = 1393459200x8(29090880x3 + 53596560x2 + 28506120x + 3950767).

By some simulations, we obtain the following figures.
We see that for x ∈ [100,∞), u1(x) > u2(x) and v1(x) < v2(x). So, the inequal-

ities (2.10) in Theorem 3 are more accurate than the inequalities (2.11) in Theorem 4
for x ∈ [100,∞). And for x ∈ (0, 35], u2(x) > u1(x) and v2(x) < v1(x). So we can
see that for x ∈ (0, 35], the inequalities (2.11) in Theorem 4 are more accurate than
the inequalities (2.10) in Theorem 3 (Fig. 1).
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80 D. Lu et al.

Table 1 Simulations for u0, u1
and u2 n E(n)−u0(n)

E(n)
E(n)−u1(n)

E(n)
E(n)−u2(n)

E(n)

20 1.3006 × 10−9 1.5307 × 10−11 4.0198 × 10−12

50 5.4457 × 10−12 1.0177 × 10−14 1.7964 × 10−14

100 8.5726 × 10−14 3.9951 × 10−17 2.8908 × 10−16

500 5.5196 × 10−18 1.0267 × 10−22 1.8945 × 10−20

Table 2 Simulations for v0, v1
and v2

n v0(n)−E(n)
E(n)

v1(n)−E(n)
E(n)

v2(n)−E(n)
E(n)

20 8.2007 × 10−11 7.5951 × 10−13 2.9403 × 10−14

50 1.3709 × 10−13 2.0200 × 10−16 5.3631 × 10−17

100 1.0783 × 10−15 3.9647 × 10−19 4.3447 × 10−19

500 1.3879 × 10−20 2.0379 × 10−25 5.7261 × 10−24

Furthermore, somenumerical computations are given to demonstrate the superiority
of our new double inequalities over the classical ones again. Let E(n) = 1

e

(
1 + 1

n

)n
.

Combining Theorems 3 and 4, we have Tables 1 and 2.

4 Applications to Carleman’s inequality

If
∑

an is a convergent series of nonnegative reals, then the following inequality

∞∑
n=1

(a1a2 · · · an)1/n ≤ e
∞∑
n=1

an (4.1)

holds. Now, it is known as the Carleman’s inequality which was firstly discovered by
Torsten Carleman.

TheCarleman’s inequality appeared inmany problems frompure and applied analy-
sis. Up to now, many researchers have made great efforts to improve it. For example,
using AM-GM inequality

(a1a2 · · · an)1/n ≤ c1a1 + c2a2 + · · · + cnan
n(c1c2 · · · cn)1/n ,

where c1, c2, · · · , cn > 0, Pólya [11,12] obtained the following inequality:

∞∑
n=1

(a1a2 · · · an)1/n ≤
∞∑
n=1

(
1 + 1

n

)n

an .

Using (1 + 1/n)n < e, the Carleman’s inequality (4.1) holds.
Almost all improvements stated in the recent past used upper bounds for (1 +

1/n)n , stronger than (1 + 1/n)n < e. For example, Mortici and Hu [9] used the
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double inequalities (1.4) to establish the following improvements of the Carleman’s
inequality:

∞∑
n=1

(a1a2 · · · an)1/n ≤ e
∞∑
n=1

(
12n + 5

12n + 11

)
an (4.2)

and ∞∑
n=1

(a1a2 · · · an)1/n ≤ e
∞∑
n=1

(
12n + 5

12n + 11
− εn

)
an, (4.3)

where

εn = 5

288n3
− 343

8640n4
+ 2621

41472n5
− 300901

3483648n6
,

and an > 0 such that
∑

an < ∞.
Using the same idea, combining Theorems 3 and 4, we establish the following

improvements of the Carleman’s inequality.

Theorem 5 Let an > 0 such that
∑

an < ∞. Then

∞∑
n=1

(a1a2 · · · an)1/n ≤ e
∞∑
n=1

(
1 − 1

2n
+ 11

24n2
− 7

16n3
+ 2447

5760n4

)
an, (4.4)

and

∞∑
n=1

(a1a2 · · · an)1/n ≤ e
∞∑
n=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + − 1
2

n + 11
12 n

n+
5

132 n

n+
457
1100 n

n+
5291
45700 n

n+ 19753835
55393884

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

an . (4.5)

Combining the comparisons in Sect. 4, it is easy to see that our upper bounds in
(4.4) and (4.5) are sharper than ones in (4.2) and (4.3), respectively.

Acknowledgements Computations made in this paper were performed using Maple software.
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