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Ramanujan-style proof of p_3(11n + 7) = 0 (mod 11)

Bernard L. S. Lin!

Received: 4 March 2015 / Accepted: 11 August 2015 / Published online: 12 November 2015
© Springer Science+Business Media New York 2015

Abstract In this note, we establish two identities of (g; q)go by using Jacobi’s four-
square theorem and two of Ramanujan’s identities. As an important consequence, we
present one Ramanujan-style proof of the congruence p_3(11n + 7) = 0 (mod 11),
where p_3(n) denotes the number of 3-color partitions of 7.
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1 Introduction

A partition of a positive integer n is a nonincreasing sequence of positive integers,
called parts, whose sum is . Let p(n) denote the number of partitions of n. We follow
the convention that p(0) = 1. It is well known that the generating function for p(n)
satisfies

Zp( P

q)oo

Throughout this note, we adopt the following notation:
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The most famous results for p(n) are the so called Ramanujan’s congruences: for
n=>0,

p(5n +4) = 0 (mod 5), (1.1)
p(Tn+5) =0 (mod 7), (1.2)
p(11n +6) =0 (mod 11). (1.3)

Ramanujan [25, Paper 30], Atkin and Swinnerton-Dyer [1], Winquist [26], Garvan
[12], Garvan and Stanton [13], Hirschhorn [15-18], and Marivani [22] have given
different proofs of the congruence (1.1). It is worth mentioning that Winquist [26]
found an interesting identity which plays an important role in proving Ramanujan’s
congruence modulo 11. In fact, Winquist used his identity to establish an identity
for (g; q)ég from which the congruence (1.1) follows easily. Later several proofs
of Winquist’s identity are found and new identities for (g; q)(‘)g are established, see
[3,6,8-10,20,21,23], for example.

Recently, Hirschhorn [19] presented a most elementary, simple, beautiful proof of
the congruence (1.1). Later, Gnang and Zeilberger [14] generalized and implemented
Hirschhorn’s amazing algorithm for proving Ramanujan-type congruences. They con-
sidered p_,(n), which is defined by

- 1
> pamgt = ———. (1.4)
= (@: D%

There are many known Ramanujan-type congruences for p_, (n). Boylan [4] has found
all of them for a odd and <47. For example,

p—3(1ln4+7) =0 (mod 11). (1.5)

Every such congruence can be checked by using impressive algorithm of Radu [24].
Although Radu’s algorithm is powerful, it is not elementary. Based on this, Zeil-
berger said that “it is still interesting (at least to us!) to find a ‘Ramanujan-style,” or
‘Hirschhorn-style’ proof.”

In this note, we aim to give one “Ramanujan-style” proof of the congruence (1.5).
To this end, we will establish two identities for (g; q)go by using Ramanujan’s two
identities. Although the series for (gq; q)gO have been considered by several authors,
see [5,7,11] for example, our approach is more elementary.

2 Preliminaries

We first introduce two Ramanujan’s theta functions ¢(g) and 1 (¢q), defined by
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@)= q".

n=—oo

o0
Ip(q) — zqn(n+l)/2.
n=0

Two lemmas related to ¢(q) and ¥ (q) are presented as follows.

Lemma 2.1
q% 973
- , 2.1
v@) (@ D% (g% gh3 @D
2. ,25\2
V(g = M, (2.2)
(75 @)oo
(@ 9%
—q) = 2.3
-0 (4% 4%)o 3)
Proof See [2, Cor. 1.3.4] for a proof. O
Lemma 2.2
o(—q) = 9(q") — 29 (®). (2.4)

Proof This identity can be derived by using series manipulations, and we omit the
details here. m|

The rest of this section are Jacobi’s four-square theorem and two identities of Ramanu-
jan, which are extremely useful to our later proof.

Lemma 2.3 ([Jacobi’s Four-Square Theorem])

0 2n—1 2n
4 2n — g 2nq
p(-q)" =1-8 Z ( 1+ q2n—l o 1+ q2n : 23

n=1

Proof See [2, Thm. 3.3.1] for a proof of (2.5). O
Lemma 2.4
0 2. 2\5
> @n+ g = LT 2.6)
n=—00 (C] q )00
00 . )2 4. 4\2
> Gn+ 1y = (@ 954" 45 @7
2. 2 : :
Pt (@7 470
Proof For the proofs of (2.6) and (2.7), see [2, Cor. 1.3.21 and Cor. 1.3.22]. O
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3 Ramanujan-style proof

We first establish two identities of (g; q)gO , either of which can be employed to produce
the desired Ramanujan-style proof.

Theorem 3.1

3(q’ Cl)io — 4( Z (3m + 1)3q3m2+2m) X( Z qnz)

—( S 6m+ 1)’ +m) x (Zq"””) 3.1)
m=—o0 n=0

Proof Differentiating both sides of (2.6) with respect to ¢, we find that

o0 w0500 (2 —2mg? S —dng™
Z(6n+l)(3n2+n)q3n+”=W 521_ 2”_221—q4n B

n=-—00 oo n=0 4 n=0
3.2)
and thus,
s 2
D ((6n +1)3 = (6n + 1)) g3
n=—0oo
@%190% (- —209" - —4ng™
=5y e 2D — ) 33)
(‘17Q)oo n:Ol_qn n:Ol_qn
Applying (2.6), we have
o0 o N
Z (6n+1)3 3}1 +n qul’l +n
n=—00 n=0
as 2 ad 2
— Z (6n+1)q3n “+n qun “+n
n=—00 n=0
an —4ng*"
RGN O =D W
n=0 n=0
S 2n 4n
—10ng 8ng
= 12(¢% ¢%)’
(q q )oor;)( 1_q2n + 1—6]4")
2. 2\4
+ (q i q )Oo. (3.4)
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Differentiating both sides of (2.7) with respect to ¢, we obtain

o
> Gm 4 1)(3m? 4 2m)g>

m=—0o0

@ ilatah) 2ng"  8ng*"  2ng™"
(B, Z( —-q" 1—q4”+1—qz”)’

and thus
> o D2 (A AN
> G+ D@ = > G g 3 Q)Ozo_(qz’ )5
m=—00 m=—00 (97 97) 0
o0
—2nag" 8 4n 2 2n
XZ( nqn_ nq4n+ ann)'
n=1 1- 9 1= q - q
By (2.1) and (2.7), we deduce that
o0 ) o0 5
Z (3m+1)3q3m +2m x z qn
m=—00 n=—o00
o0 5 o0 5
— Z (3m+1)q3m +2m x Z qn
m=—00 n=—00
o
—211(]" an4n an2n
3 2; 2\4 _
+3(q q)oo; il s Tl R
0 4n 2n
—6ng"  24ng 6ng
— (2. 244 B
_(q,q)oonZ:;(l_q,, T ):
+(q% qD%. 3.5)
From (3.4) and (3.5), we find that
o0 o
4( Z (3m+1)3 3m +2m) (z q )
m=—00 Nn=—00
o
m=—0o0 n=
it 4n 2n
6bnqg
=3 2; 2y -8
(@4 )% ng, . 1_q g
S 2n—1 2n
2n —1)q 2nq )
=3 -8 , 3.6
(q q) ( r;( 1+q2nl 1+q2n ( )
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where the last equation follows from the following fact:
nqn N 8}16]4” 6nq2n
| — 1—614" 1_q2n
n — 1)q2n71 8nq4n 4nq2n
T gl 1 —gm  1—g2
B 2n — 1)q2n—1 (4n — 2)q4n—2 an4n 4nq2n
T 4 q2n71 1— q4n72 1— q4n 1— q2n
n — 1)q2n71 4nq4n 2nq2n
T T gl 1 —gm  1—g2
B 2n — 1)q2n—1 21’1(,]2"
1+q2n71 1+q2n'
Applying (2.5) in (3.6), we conclude that
> 2 ad 2
4( Z (3m+1)3q3m +2m)x(z qn)
m=—00 n=—00
ad 2 ad 2
_ ( Z (6m + 1)3q3m +m) x (an +n)
m=—00 n=0
=3(¢% 459" (—)
.08
=3¢ Do
This completes the proof. O

It is interesting to present another identity for (g; q)§>o which can be derived from

@3.1).
Theorem 3.2
o0 ) o nz
3(q; )% = 4( > Gm+ 1" +2’”) x( > (—qw)
m=—0o0 n=—0o0
nd 3m242m R
- Z GBm+1)3g~ 4 X Zq” R B
m=—00 n=0

Proof Applying (2.4) with g replaced by ¢'/4, we arrive at

m=—00

ad 3 3m2+2m
x Z Gm+1)3%¢" 2

m=—00
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=4(¢(Q) 26]]/41/f ) Z (3m+])3q3m +2m

m=—0oQ

00
- lﬂ(qz)( Z (6m + 1)3 3m*m _ 86]1/4 Z Bm + 1)3q3m2+2m)
Mm=—00 m=—00

= 4¢(q) Z Gm + 132"~y (g?) Z (6m + 1)3g ¥+

m=—00 m=—00
=3(4; D%
where the last equation follows from Theorem 3.1. This finishes the proof. O

Now we are ready to prove the following theorem by using Theorem 3.1.

Theorem 3.3 Forn > 0,
p—3(11n+7) =0 (mod 11). (3.8)

Proof Let us define a(n) to be
o
3(q: )% = Y _a(m)q".
Then,

3(q: )%,
Z3P 3(n)g" = m

1 o
= Za(n)q" (mod 11).
(@ q") ~

Extracting those terms with powers of the form 11n + 7, we conclude that

o0 [o,0]

1
2 3p_3(1ln 4+ T)g''"t7 = e 2 a(11n + 7)g"""*7 (mod 11).
n=0 (q q )OO n=0

To prove p_3(11n +7) = 0 (mod 11), we only need to show that
a(lln +7) =0 (mod 11).
Consider the congruence equation

3m? +2m +n® =7 (mod 11),
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which can be rewritten as
43m + )% +n?% =0 (mod 11).

Since —4 is a quadratic nonresidue modulo 11, we see that 3m + 1 is divisible by 11.
Similarly, if we consider the congruence equation 3m>+m+n*+n = 7 (mod 11),
we can deduce that 6m + 1 is divisible by 11.
By Theorem 3.1, we see that

a(11ln +7) = 0 (mod 11%),

which completes the proof. O

Remark (3.7) can also be used to prove (3.8), and we leave the details to readers. Mul-
tiplying on both sides of (3.1) or (3.7) by (g; q)go, and using Ramanujan’s identities
(2.6) and (2.7), we obtain a new proof of the following two identities of (g; q)ég due
to Chu [8, Cor. 4.2] and Chan [6, Thm. 3.4]:

o o0
3 =4 D Gm+ 1)3q3"’2+2'") x ( > (On+ g
m=—00 n=—0o0
o0 oo
— Z Gm + 1)q3m2+2m) x ( Z (6n + 1)3q3112+n . (3.9
m=—0oQ n=—0o0
o o0
3(q’ q)(l)g — 4 Z (3m + 1)3q3n12+2m) X ( Z (3n + l)q(3n2+2n)/4
m=—00 n=—00
o0 oo
_ Z (3]’)’[ + 1)q3m2+2m) x ( Z (3}1 + 1)3q(3n2+2n)/4
m=—00 n=-—00

(3.10)
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