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Abstract We study the generating functions for Lusztig’s t-analog of weight multi-
plicities associated to integrable highest weight representations of the simplest affine
Lie algebra A(1)

1 . These generating series, termed t-string functions, are t-analogs of

the string functions of A(1)
1 . String functions are well studied for all affine Lie algebras

and have important modularity properties. However, they are completely known in
closed form only for the Lie algebra A(1)

1 ; in this case, Kac and Peterson showed that
the string functions can be obtained in terms of certain indefinite modular forms of
Hecke. In this paper, we generalize this description to the t-string functions of A(1)

1 .
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1 Introduction

1.1 Let g be an affine Kac–Moody algebra. Let Λ be a dominant integral weight of g
and L(Λ) the corresponding irreducible highest weight representation. A weight λ of
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466 S. S. Sharma, S. Viswanath

L(Λ) is said to be maximal if λ + δ is not a weight of this module, where δ is the null
root of g. To understand the structure of the module L(Λ), one studies the generating
functions

a�
λ (q) :=

∑

k≥0

dim(L(Λ)λ−kδ) q
k

of weight space dimensions (weight multiplicities) along the δ-string {λ−kδ : k ≥ 0},
whereλ ranges over themaximal dominantweights of L(Λ). The corresponding string
function c�

λ (τ) is defined to be

c�
λ (τ) = qs�(λ) a�

λ (q)

where q = e2π iτ with τ in the complex upper half plane, and s�(λ) is a rational
number (see Eq. (2.6)) which gives the leading power of q in the expansion. String
functions are modular forms for certain congruence subgroups of SL2(Z) and play
an important role in the theory of characters of representations of affine Kac–Moody
algebras [9, chapter 13].

Next, we consider Lusztig’s t-analog of weight multiplicitiesmΛ
λ (t) (affine Kostka-

Foulkes polynomials). Here Λ is a dominant integral weight of g, and λ is a dominant
weight of L(Λ). The mΛ

λ (t) are polynomials in the indeterminate t which interpolate
between the affine Hall–Littlewood functions and the Weyl characters [16]. Further,
mΛ

λ (t) coincides with the Poincaré polynomial of (the associated graded space of) the
affine Brylinski–Kostant filtration on the weight space L(Λ)λ [15]. Thus they have
non-negative integer coefficients and reduce to the usual weight multiplicities at t = 1,
i.e.,mΛ

λ (1) = dim(L(Λ)λ). It is therefore natural to consider the generating functions

a�
λ (t, q) :=

∑

k≥0

mΛ
λ−kδ(t) q

k

for maximal dominant weights λ of L(Λ). The t-analog of the corresponding string
function is defined by c�

λ (t, τ ) = qs�(λ) a�
λ (t, q), with q = e2π iτ as before.

In this paper, we restrict attention to the simplest affine algebra g = A(1)
1 (affine

sl2). This is the only case for which an explicit description of all string functions is
known [10,11]:

Theorem 1 (Kac–Peterson) Let g = A(1)
1 . Let Λ be a dominant integral weight of g,

and λ a maximal dominant weight of L(Λ). Then

c�
λ (τ) = θL(τ ) η(τ )−3. (1.1)

Here L = L(Λ, λ) is a certain translate of an even rank 2 lattice of signature (1, 1),
θL(τ ) is the corresponding Hecke indefinite modular form, and η(τ) is the Dedekind
eta function.

We elaborate on these notions in the next subsection. We remark here that the first
results on string functions of A(1)

1 were obtained by Feingold–Lepowsky in [5]. They
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computed the string functions of small level and, in some cases, obtained formulas
different from those in the later work of Kac–Peterson. Still different formulas for all
of the string functions of A(1)

1 were given later by Lepowsky–Primc [12].
The main result of this paper is a description of the t-string functions c�

λ (t, τ ) of

A(1)
1 that extends (1.1). We show that θL(τ ) and η(τ)−3 in (1.1) admit deformations

ΘL(τ, t, z) and η(−3)(τ, t, z) such that c�
λ (t, τ ) can be obtained as the constant term

of the product of these two functions with the Poisson kernel.
1.2 In order to state our main theorem, we recall some background from [11]. Let
g = A(1)

1 . Fix a dominant integral weightΛ of g of levelm ≥ 1, and let λ be amaximal
dominant weight of L(Λ). For v = (x, y) ∈ R

2, define

N (v) = 2(m + 2)x2 − 2my2.

This defines a quadratic form on R
2. We also define sign(v) = 1 for x ≥ 0 and −1

for x < 0. Let M := Z
2 and let M∗ denote the lattice dual to M with respect to this

form.
Let O(N ) denote the group of invertible linear operators on R

2 preserving N ,
and SO0(N ) be the connected component of O(N ) containing the identity. Con-
sider its subgroups G := {g ∈ SO0(N ) : gM = M} and G0 := {g ∈ G :
g fixes M∗/M pointwise}. The set

U+ := {
(x, y) ∈ R

2 : N (x, y) > 0
}

is preserved under the action of O(N ) on R
2. We let x0 := (Λ+ρ|α∨

1 )

2(m+2) and y0 := (λ|α∨
1 )

2m ,
where α∨

1 is the simple coroot corresponding to the underlying finite Dynkin diagram
of type sl2, and ρ is theWeyl vector. We have 0 < x0 < 1

2 and 0 ≤ y0 ≤ 1
2 . If x0 ≥ y0,

define (A, B) = (x0, y0), else (A, B) = ( 12 − x0,
1
2 − y0). Then, (A, B) ∈ M∗, and

we set L = L(Λ, λ) := (A, B) + M . The Hecke indefinite modular form that occurs
in Theorem 1 is the following sum over G0-orbits in L ∩U+:

θL(τ ) :=
∑

v∈ L ∩U+
v mod G0

sign(v) eπ iτN (v). (1.2)

This is an absolutely convergent sum for τ in the upper half planeH and defines a cusp
form of weight 1 [6]. An equivalent expression for the sum in (1.2) can be obtained
by restricting v to lie in a fundamental domain for the action of G0 on U+. The sum
then takes the form

∑

v∈D
(±)eπ iτ(N (v)+l(v)),

where l is a linear function of v and D is a subset of Z
2 on which N is non-negative.

Such sums appeared in earlier work of Rogers [14] but were first studied system-
atically by Hecke in [6], where he established their modularity properties. Kac and
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Peterson used Theorem 1, together with their computation of string functions of low
level, to obtain interesting identities expressing Hecke modular forms as eta products.
Andrews’ attempt to understand some of these new identities using q-series methods
[1] (see also Bressoud [4]) eventually led him to consider other series of Hecke type
and apply them to the study of Ramanujan’s mock theta functions [2,3]. Since then,
such series have featured prominently in the vast body of work surrounding the mock
theta functions (see for instance [7,8,18]).
1.3 Now let t, z ∈ C. We first define a deformationΘL(τ, t, z) of the Hecke modular
form θL(τ ) by

ΘL(τ, t, z) =
∑

v∈ L ∩U+
v mod G0

sign(v) eπ iτN (v) Ω(v, t, z), (1.3)

whereΩ is a weighting factor. To defineΩ , we need the following subgroup of O(N ):

G̃ := 〈ζ 〉 � G,

where ζ is the reflection about the Y -axis, i.e., ζ(x, y) := (−x, y). Then, G̃ contains
G0 and

F̃ := {
(x, y) ∈ R

2 : x > 0 and 0 � y � x} ∪ {(x, y) ∈ R
2 : 0 > y > x

}

is a fundamental domain for the action of G̃ on U+ (see Sect. 3). Given v = (x, y) ∈
U+, we define v† = (x†, y†) to be the unique element of F̃ which is in the G̃-orbit of
v. Then, Ω is defined by

Ω(v, t, z) = t2(y
†−B) z((m+2)x†−my†− 1

2 ). (1.4)

It will turn out that 2(y† − B) and (m + 2)x† − my† − 1/2 are both integer-valued,
piecewise linear functions of (x, y) ∈ L . The sum in (1.3) is absolutely convergent
for τ ∈ H, |t | > 0, |z| > 0 and satisfies ΘL(τ, 1, 1) = θL(τ ).

Next, consider the factor involving the Dedekind eta function in (1.1):

η(τ)−3 = e−iπτ/4
∞∏

n=1

1

(1 − e2π inτ )3
.

We deform this to the function

η(−3)(τ, t, z) = e−iπτ/4
∞∏

n=1

1

(1 − te2π inτ )(1 − t ze2π inτ )(1 − t z−1e2π inτ )
. (1.5)

This converges absolutely for (τ, t, z) in the region

{
τ ∈ H, |te2π iτ | < 1, |te2π iτ | < |z| < |te2π iτ |−1

}
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and satisfies η(−3)(τ, 1, 1) = η(τ)−3. Our final ingredient is the function

P(t, z) = 1 − t2

(1 − t z)(1 − t z−1)
=

∑

n∈Z
t |n|zn .

The series converges for |t | < 1 and |t | < |z| < |t |−1. We note that for t real and
|z| = 1, this is just the Poisson kernel of the unit disk. Observe that the three functions
ΘL , η(−3) and P have a common domain of definition

{
(τ, t, z) : τ ∈ H, 0 < |t | < 1, |t | < |z| < |t |−1}.

The series/product defining these functions are in fact uniformly convergent on com-
pact subsets of this domain. Thus ΘL , η(−3) and P are holomorphic in each variable
τ, t, z. We view them as functions of z and consider their Laurent series in the annulus
|t | < |z| < |t |−1. We are now in a position to state our main theorem:

Theorem 2 Let τ ∈ H, 0 < |t | < 1. Then, c�
λ (t, τ ) is the constant term (i.e., the

coefficient of z0 in the Laurent series in the annulus |t | < |z| < |t |−1) of the product

ΘL(τ, t, z) η(−3)(τ, t, z) P(t, z).

The proof of this theorem appears in Sects. 2 and 3. In the course of the proof, we
will derive t-analogs of the results of Kac and Peterson [11, Sect. 5].
1.4 Given a holomorphic function f (z) in the annulus |t | < |z| < |t |−1, the coef-
ficient of z0 in its Laurent series is just the integral

∫ 1
0 f (e2π iu) du. Thus, theorem 2

implies that

c�
λ (t, τ ) =

∫ 1

0
ΘL(τ, t, e2π iu) η(−3)(τ, t, e2π iu) P(t, e2π iu) du.

Now, if 0 < t < 1, then as observed earlier, P(t, e2π iu) is the Poisson kernel of the
unit disk. The classical fact that the Poisson kernel is an approximate identity now
implies that limt→1− c�

λ (t, τ ) = ΘL(τ, 1, 1) η(−3)(τ, 1, 1). Thus, Theorem 2 reduces
to Theorem 1 as t → 1−.
1.5 Wepoint out that a very different constant termexpression for the t-string function
was obtained in [16, equation (5.8)] for all affine Lie algebras. Using this and classical
summation identities for q-series, the t-string functions of levels 1, 2, 4 for g = A(1)

1
were obtained in closed form in [17].One can combine the results of [17]withTheorem
2 to obtain t-analogs of the Kac–Peterson identities (for levels 1, 2, 4) relating Hecke
modular forms to eta products. But these would now be constant term identities and
thus not as explicit as in the t = 1 case.
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2 Preliminary lemmas

2.1 We assume throughout that g = A(1)
1 , the rank 2 affine Lie algebra with

generalized Cartan matrix

(
2 −2

−2 2

)
. Let h denote the Cartan subalgebra of g.

We let α0, α1 ∈ h∗ denote the simple roots, δ = α0 + α1 the null root, and
Δ+ = {α1 + (n − 1)δ, −α1 + nδ, nδ : n ≥ 1} the set of positive roots of g.
Let Q = ZΔ+ be the root lattice of g and Q+ := Z≥0 Δ+. Similarly, let P denote the
weight lattice of g, and P+ the set of dominant integral weights. The standard basis
[9, chapter 6] of h∗ is {α1, δ,Λ0}, where Λ0 is a fundamental weight corresponding
to the extended node of the Dynkin diagram.

Let W denote the Weyl group of g; this is generated by the two simple reflections
r0, r1. There is a non-degenerate, W -invariant, symmetric bilinear form (·|·) on h∗
defined by the relations (α1|α1) = 2, (Λ0|δ) = 1, and (α1|δ) = (α1|Λ0) = (δ|δ) =
(Λ0|Λ0) = 0. Given λ ∈ h∗, its level is defined to be (λ|δ). For λ of level m, we have

λ = b(λ) α1 + d(λ) δ + mΛ0,

where b(λ) = (λ|α1)/2 and d(λ) = (λ|Λ0). We also note that if λ ∈ Q, then its level
is zero, and b(λ), d(λ) are both integers. Let ρ denote the Weyl vector of g, defined
by the relations (ρ|Λ0) = 0, (ρ|α1) = 1, (ρ|δ) = 2.

Next, recall that the t-Kostant partition function K (β, t) of g is defined by the
relation: ∏

α∈Δ+

1

1 − te(−α)
=

∑

β∈Q+
K (β, t) e(−β). (2.1)

For a general affine Lie algebra, the positive roots must be counted with multiplicities
on the product side of (2.1); however, all root multiplicities are 1 for g = A(1)

1 . The
t-Kostant partition function reduces to the Kostant partition function at t = 1.

Now, for Λ ∈ P+, let L(Λ) denote the corresponding irreducible highest weight
representation of g, with weight space decomposition L(Λ) = ⊕γ∈P L(Λ)γ . Given
λ ∈ P+, Lusztig’s t-analog of weight multiplicity or (affine) Kostka-Foulkes polyno-
mial mΛ

λ (t) is defined by

mΛ
λ (t) :=

∑

w∈W
ε(w) K (w(Λ + ρ) − (λ + ρ), t).

Here ε is the sign character of the Weyl group W , given by ε(w) = (−1)�(w), where
�(w) is the minimum number of factors in an expression for w as a product of simple
reflections.

By Kostant’s weight multiplicity formula, we have mΛ
λ (1) = dim(L(Λ)λ).

2.2 We recall the dot action of W on h∗. Given w ∈ W and γ ∈ h∗, we define

w · γ := w(γ + ρ) − ρ.
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This action leaves Q and P invariant. Next, following Kac and Peterson [11], we
introduce an auxiliary function K ′(β, t) which has better properties than K (β, t).

Definition 1 Given β ∈ Q, define K ′(β, t) as follows:

K ′(β, t) := K (β, t) + t K (r1 · β, t).

This function reduces to that of Kac and Peterson [11, Eq. (5.1)] at t = 1. We also
make the following simple observations: if β ∈ Q, then (i) K (β, t) = 0 ⇔ β /∈ Q+,
and (ii) K ′(β, t) = 0 ⇔ β /∈ Q+ ∪ r1 · Q+ ⇔ d(β) ≤ −1.

In the following sections, we will study the generating functions of K , K ′ and mΛ
λ

along δ-strings. These are defined for β ∈ Q, Λ,λ ∈ P+ by

Kβ :=
∑

n≥0

K (β + nδ, t) qn, (2.2)

K ′
β :=

∑

n≥0

K ′(β + nδ, t) qn, (2.3)

a�
λ (t, q) :=

∑

n≥0

mΛ
λ−nδ(t) q

n . (2.4)

Here, and in the rest of the paper, we will define q := e(−δ) and z := e(α1). The
following is our main object of interest:

Definition 2 Let Λ ∈ P+ be of level m ≥ 1, and let λ be a maximal dominant weight
of L(Λ). The t-string function c�

λ (t, q) is defined by

c�
λ (t, q) := qs�(λ) a�

λ (t, q), (2.5)

where

s�(λ) = |Λ + ρ|2
2(m + 2)

− |λ|2
2m

− |ρ|2
4

. (2.6)

Here, we have used the usual notation |γ |2 to denote (γ |γ ). In our case, this sim-
plifies to [9,11]

s�(λ) = d(Λ − λ) + b(Λ + ρ)2

m + 2
− b(λ)2

m
− 1

8
.

2.3 We recall the definition of the constant term map from [13].

Definition 3 The constant term map ct(·) is defined on formal sums
∑

γ∈Q cγ e(γ )

by

ct

⎛

⎝
∑

γ∈Q
cγ e(γ )

⎞

⎠ :=
∑

n∈Z
cnδ e(nδ).
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It will be convenient to introduce some more notations. Let Γt denote the infinite
product in Eq. (2.1); thus

�t =
∏

n≥1

[
(1 − tqn)(1 − tqn−1e(−α1))(1 − tqne(α1))

]−1
.

Next, let ξt = �t (1 − te(−α1)), i.e.,

ξt =
∏

n≥1

[
(1 − tqn)(1 − tqne(−α1))(1 − tqne(α1))

]−1
.

We also define Pt := ∑
n∈Z t |n| e(nα1); this can be viewed as the formal Poisson

kernel of the unit disk. Finally, let L := {β ∈ Q : d(β) ≤ 0}. With these definitions
in place, we can now state our first lemma, which describes the generating function
of K ′.

Lemma 1 If β ∈ L, then
K ′

β = ct ( Pt ξt e(β)) . (2.7)

Proof Let β ∈ L. Observe that in this case r1 · β ∈ L, and the sums on the right-hand
sides of Eqs. (2.2) and (2.3) can be replaced by

∑
n∈Z. It then follows from definitions

that (i) K ′
β = Kβ +t Kr1·β , (ii) Kβ = ct ( �t e(β) ), and (iii) Kr1·β = ct ( �t e(r1 · β) ).

For f = ∑
λ∈h∗ cλ(t) e(λ), define f := ∑

λ∈h∗ cλ(t) e(r1(λ)). Note that ct( f ) =
ct( f ). For f = �t e(r1 · β), we have f = �t e(β + α1). Further, it is easy to see that
�t + t e(α1) �t = Pt ξt . Putting these facts together, the proof follows. ��

2.4 The Weyl group W of g can be written as W = T �

◦
W where T is the group of

translations by elements of the finite type root lattice
◦
Q = Zα1, and

◦
W = {1, r1} is

the Weyl group of the underlying finite type Dynkin diagram (of type sl2 in this case).

The extended affine Weyl group is Ŵ := T̂ �

◦
W , where T̂ is the set of translations by

elements of the finite type weight lattice
◦
P = 1

2

◦
Q. Letting τ denote the translation by

the generator α1/2 of
◦
P , we have T̂ = {τ n : n ∈ Z} and T = {τ 2n : n ∈ Z}. We also

have the following formula for the linear action of τ on h∗ [9]:

τ(λ) = λ + 1

2

(
(λ|δ) α1 − (λ|α1) δ − (λ|δ) δ

2

)
. (2.8)

We also define the element σ := τr1. The element σ ∈ Ŵ permutes the simple roots
of g, i.e., σ(α0) = α1, σ(α1) = α0, and fixes the Weyl vector ρ.

Note that our notation conflicts with the introduction, where τ was a complex
number in the upper half plane. But this should cause no confusion, especially since
we will henceforth exclusively work in the formal setting, where q = e(−δ) rather
than e2π iτ .
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2.5 Next, we will obtain an expression for the generating function of K . For this
purpose, define a function I : Q × Z → {0,±1} by

I (β, j) :=

⎧
⎪⎨

⎪⎩

1 if b(β) ≥ 0, j ≥ 0,

−1 if b(β) < 0, j < 0,

0 otherwise.

(2.9)

Our second lemma relates the generating functions of K and K ′, and can be viewed
as a t-analog of [11, Theorem C].

Lemma 2 Let β ∈ Q. Then

Kβ =
∑

j∈Z
(−1) j I (β, j) t j K ′

τ j ·β. (2.10)

Proof Since σ interchanges the simple roots α0, α1 and fixes ρ, it is clear that
K (β, t) = K (σβ, t) = K (σ · β, t) for all β ∈ Q. Now, this implies that

K (β, t) = K ′(β, t) − t K (r1 · β, t) = K ′(β, t) − t K (τ · β, t).

Iterating the last expression gives

K (β, t) =
∑

j≥0

(−1) j t j K ′(τ j · β, t). (2.11)

Similary, replacing β by σβ, one obtains the relations K (β, t) = t−1 K ′(β, t) −
t−1 K (τ−1 · β, t) and hence

K (β, t) = −
∑

j<0

(−1) j t j K ′(τ j · β, t). (2.12)

The sums in Eqs. (2.11) and (2.12) are in fact finite (as can be seen from Eq. (2.14)
below) and either expression can be used for a given β ∈ Q. But choosing the expres-
sion (2.11) (resp. (2.12)) when b(β) ≥ 0 (resp. b(β) < 0), we obtain

K (β, t) =
∑

j∈Z
(−1) j I (β, j) t j K ′(τ j · β, t). (2.13)

To complete the proof, it only remains to replace β by β + nδ (n ≥ 0) in (2.13) and
observe that (i) I (β + nδ, j) = I (β, j) and (ii) τ j · (β + nδ) = (τ j · β) + nδ. ��

We also make the following observation about the “support” of the sum in (2.10).

Lemma 3 Let β ∈ Q. Then

(1) { j ∈ Z : I (β, j) �= 0} ⊂ { j ∈ Z : d(τ j · β) ≤ d(β)},
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(2) If I (β, j) �= 0 and β ∈ L, then τ j · β ∈ L.
Proof The second assertion clearly follows from the first. To prove (1), we use Eq.
(2.8) to obtain

τ j · β − β = τ j (β + ρ) − (β + ρ) = jα1 −
(
j b(β) + j ( j + 1)

2

)
δ. (2.14)

Thus d(τ j ·β−β) = − j b(β)− j ( j+1)
2 . It is clear fromEq. (2.9) that this is non-positive

for all pairs (β, j) for which I (β, j) �= 0. ��
2.6 Let Λ be a dominant integral weight of g of level m ≥ 1 and λ be a maximal
dominant weight of L(Λ). Thus, (Λ|δ) = m = (λ|δ), and λ + δ is not a weight of
L(λ). This implies in particular that Λ − λ is a non-negative integer multiple of α0 or
α1.

Now, it is clear from the symmetry of theDynkin diagram that c�
λ (t, q) = cσΛ

σλ (t, q).
If (i)Λ−λ ∈ Z>0α0 or if (ii)Λ = λ and (Λ|α1) > m

2 , we replace (Λ, λ) by (σΛ, σλ).

Let A := b(Λ+ρ)
m+2 and B := b(λ)

m . It is now easy to see (after this replacement if

necessary) that Λ − λ ∈ Z≥0α1 and 0 ≤ B ≤ A < 1
2 . We also observe [11, pp 259]

that if A′ = b(σΛ+ρ)
m+2 and B ′ := b(σλ)

m , then (A′, B ′) = ( 12 − A, 1
2 − B).

For w ∈ W , define

s(w) := w(Λ + ρ) − (λ + ρ) = w · Λ − λ ∈ Q.

We record the following two elementary facts.

Lemma 4 s(w) ∈ L for all w ∈ W.

Proof We have d(β) = (β|Λ0) for all β ∈ Q. Thus d(s(w)) = (w(Λ + ρ) − (Λ +
ρ)|Λ0)+ (Λ−λ|Λ0). The second term is zero sinceΛ−λ ∈ Zα1, while the first term
equals (Λ + ρ|w−1Λ0 − Λ0) which is non-positive since Λ0 is a dominant weight.

��
Lemma 5 a�

λ (t, q) = ∑
w∈W (−1)�(w) Ks(w).

Proof This follows from the definitions. ��
2.7 We now put the results of the preceding lemmas together to obtain an expression
for the generating function a�

λ (t, q). First, Lemmas 2 and 5 imply

a�
λ (t, q) =

∑

w∈W

∑

j∈Z
(−1)�(w)+ j I (s(w), j) t j K ′

τ j ·s(w)
.

Now, fromLemmas 3 and 4 it is clear that τ j ·s(w) ∈ L for all pairs (w, j) ∈ W×Z

for which I (s(w), j) �= 0; in this case, we can apply Lemma 1 to obtain

K ′
τ j ·s(w)

= ct(Pt ξt e(τ
j · s(w))).
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Now, letting ε̄(w, j) := (−1)�(w)+ j I (s(w), j), and

H :=
∑

(w, j)∈W×Z

ε̄(w, j) t j e(τ j · s(w)), (2.15)

we conclude that

a�
λ (t, q) = ct ( Pt ξt H ) . (2.16)

3 The indefinite quadratic form

In this section, we analyze H more closely. First, observe that the sum over (w, j) ∈
W × Z in (2.15) should really be thought of as a sum over (w, τ j ) ∈ W × T̂ . Now,
T is a normal subgroup of index 2 in both W and T̂ ; thus the group W × T̂ contains
T × T as a normal subgroup, with the quotient group isomorphic to Z

2Z ⊕ Z

2Z . We will
show below that on each coset of T × T , the sum defining H has a particularly nice
expression in terms of an indefinite quadratic form on Z

2 ∼= T × T .
3.1 LetU := Rα1 ⊕Rα1 and M := Zα1 ⊕Zα1. We identifyU with R

2 and M with
Z
2. Define a quadratic form N on U by

N (x, y) := 2(m + 2)x2 − 2my2 (x, y ∈ R).

We observe that N (ν) is a non-zero even integer for ν ∈ M\{0}. Let M∗ denote the
lattice dual to M with respect to the bilinear form induced by N . We then have

M∗ = 1

2(m + 2)
Z ⊕ 1

2m
Z.

Given elements μ1, μ2 ∈ P of levels m + 2 and m, respectively, observe that
(
b(μ1)
m+2 ,

b(μ2)
m ) ∈ M∗, since b(μi ) = (μi |α1)

2 ∈ 1
2Z.

Lemma 6 For (w, j) ∈ W × Z, we have

τ j · s(w) =
(

(m + 2)x − my − 1

2

)
α1 − 1

2
N (x, y) δ +

(
s�(λ) + 1

8

)
δ (3.1)

where x := j
2 + b(w(Λ+ρ))

m+2 and y := j
2 + b(λ)

m .

Proof This is an easy calculation. The coefficient of δ was computed in [11, (5.13)]
for w ∈ T . ��

It is now easy to see that Eqs. (2.15), (2.16), and (3.1) together imply the following:

Corollary 1 c�
λ (t, q) = ct

(
Pt (q− 1

8 ξt ) Θ
)
where

Θ :=
∑

(w, j)∈W×Z

ε̄(w, j) t j q
1
2 N (x,y)z(m+2)x−my−1/2. (3.2)
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Here z := e(α1), and x, y ∈ M∗ are the functions of (w, j) defined in Lemma 6.

We remark that q− 1
8 ξt is exactly the function η(−3) of (1.5).

3.2 We now turn to the map φ : W × Z → M∗ given by (w, j) �→ (x, y) where

x := j

2
+ b(w(Λ + ρ))

m + 2
and y := j

2
+ b(λ)

m

as in Lemma 6. Letting e denote the identity element of W , observe that φ(e, 0) =
(A, B) where A = b(Λ+ρ)

m+2 and B = b(λ)
m as in Sect. 2.6. As pointed out there, our

choice of (Λ, λ) ensures that 0 ≤ B ≤ A < 1
2 . The properties of φ are given by the

following lemma.

Lemma 7 The map φ is injective, and its image is a union of translates of M. More
precisely, we have Im φ = ⊔4

i=1 Li , where

L1 = (A, B) + M, (3.3)

L2 =
(
A + 1

2
, B + 1

2

)
+ M, (3.4)

L3 = (−A, B) + M, (3.5)

L4 =
(

−A + 1

2
, B + 1

2

)
+ M. (3.6)

Proof Using Lemma 6, it is clear that φ(w1, j1) = φ(w2, j2) implies j1 = j2 and
τ j1 · s(w1) = τ j2 · s(w2). In turn, this means s(w1) = s(w2), and hence w1 = w2,
since Λ + ρ is regular dominant. This proves the injectivity.

Next, let (w, j) ∈ W ×Z. Recall that sinceW = T �

◦
W ,w can be uniquely written

as τ 2nω for some n ∈ Z, ω ∈ ◦
W = {1, r1}. Now, Eq. (2.8) implies that

x = j

2
+ n + (sgnω)A, y = j

2
+ B (3.7)

where sgn is the sign character of
◦
W . It is now clear that if W × Z is written as the

disjoint union of the four subsets

S1 = T × 2Z, S2 = T × (2Z + 1), S3 = Tr1 × 2Z, S4 = Tr1 × (2Z + 1),

then φ(Si ) = Li for 1 ≤ i ≤ 4. ��
We observe that since 0 ≤ B ≤ A < 1

2 , the Li are pairwise disjoint. From Lemma
7, we see that Θ has the following equivalent expression:

Θ =
∑

(x,y)∈⊔4
i=1 Li

ε(x, y) t2(y−B)q
1
2 N (x,y)z(m+2)x−my−1/2, (3.8)
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where ε(x, y) := ε̄(φ−1(x, y)) for (x, y) ∈ ⊔4
i=1 Li .

3.3 Let O(U, N ) denote the group of invertible linear operators on U preserving
the quadratic form N , and let SO0(U, N ) be the connected component of O(U, N )

containing the identity. Let a ∈ GL(U ) be defined by

a(u, v) := ((m + 1)u + mv, (m + 2)u + (m + 1)v).

Let G be the subgroup of GL(U ) generated by a, and G0 be the subgroup of G
generated by a2. It is known that

G = {g ∈ SO0(U, N ) : gM = M}.

We note that elements of G also leave M∗ invariant, and thus G has a natural action
on M∗/M . It is known that

G0 = {g ∈ G : g fixes M∗/M pointwise}.

Define ζ ∈ O(U, N ) by ζ(u, v) := (−u, v), and let

G̃ := 〈ζ 〉 � G and G̃0 := 〈ζ 〉 � G0.

We have the following easy properties: (i) ζ 2 is the identity, (ii) ζaζ−1 = a−1, (iii)
G̃ is an infinite dihedral group. We have the following diagram of inclusions between
the four groups. Each inclusion is as an index 2 subgroup.

G0 ��

��

G

��
G̃0

�� G̃

Observe that G̃ leaves M and M∗ invariant; we now show that the G̃-orbit of L1 is
{Li : 1 � i � 4}.
Lemma 8 (1) If g ∈ G0 then gLi = Li for 1 � i � 4.
(2) L1 = aL4 = ζ L3 = aζ L2.

Proof The first statement follows from the fact that G0 fixes M∗/M pointwise. To
show L1 = aL4, observe using Lemma 6 that a−1(A, B) = (−A + 1

2 , B + 1
2 ) +

b(s(e))(1,−1). Since s(e) = Λ−λ ∈ Q, b(s(e)) ∈ Z andwe are done. The remaining
two equalities are obvious. ��
3.4 We now define the following subsets of U :

(1) U+ = {(u, v) : N (u, v) > 0},
(2) F̃ = {(u, v) : u > 0 and 0 � v � u} ∪ {(u, v) : 0 > v > u},
(3) F0 = F̃ ∪ aF̃ ∪ ζ F̃ ∪ aζ F̃ .
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Clearly, F̃ ⊂ F0 ⊂ U+.

Lemma 9 (1) U+ is G̃-invariant.
(2) F0 is a fundamental domain for the action of G0 on U+.
(3) F̃ is a fundamental domain for the action of G̃ on U+.

Proof The first assertion follows from the fact that G̃ ⊂ O(U, N ). Now, F := F̃∪ζ F̃
and F0 = F ∪ aF are known to be fundamental domains for the actions of G and G0
(respectively) onU+ [11]. It follows that F̃ is a fundamental domain for the action of
G̃ on U+. ��

The region F̃ arises naturally when one considers the “support” of the sum in Eq.
(3.8). More precisely

Lemma 10 For 1 ≤ i ≤ 4, we have

{(x, y) ∈ Li : ε(x, y) �= 0} = Li ∩ F̃ .

Proof Weprove this only for i = 1, the rest of the cases being similar. Fix (x, y) ∈ L1;
by Lemma 7, we have (x, y) = φ(w, j) where w = τ 2n , n ∈ Z, j ∈ 2Z. Now
ε(x, y) �= 0 iff I (s(w), j) �= 0 iff either (i) n, j ≥ 0 or (ii) n, j < 0. From Eq. (3.7)
and our assumption that 0 ≤ B ≤ A < 1

2 , it follows that (i) is equivalent to 0 ≤ y ≤ x
and (ii) is equivalent to 0 > y > x . ��

Lemmas 8 and 9 allow us to identify the sets
⊔4

i=1 Li ∩ F̃ and L1 ∩ F0. More
precisely, define the map ψ : ⊔4

i=1 Li ∩ F̃ → L1 ∩ F0 by

ψ(x, y) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x, y) if (x, y) ∈ L1 ∩ F̃,

aζ(x, y) if (x, y) ∈ L2 ∩ F̃,

ζ(x, y) if (x, y) ∈ L3 ∩ F̃,

a(x, y) if (x, y) ∈ L4 ∩ F̃ .

(3.9)

By Lemmas 8 and 9, it is clear that ψ is well defined and is a bijection. The inverse
mapψ−1 is piecewise linear on L1∩F0 and is easy to describe: given (x, y) ∈ L1∩F0,
ψ−1(x, y) is the unique element in the G̃-orbit of (x, y)which lies in F̃ .Wewill denote
ψ−1(x, y) = (x†, y†).
3.5 We now return to Θ in Eq. (3.8):

Θ =
∑

(x,y)∈⊔4
i=1 Li

ε(x, y) t2(y−B) q
1
2 N (x,y) z(m+2)x−my−1/2,

where z := e(α1). Using Lemma 10, we can split this into four sums, one over
each Li ∩ F̃ . We then perform a change of variables, replacing (x, y) ∈ ⊔4

i=1 Li by
ψ(x, y) ∈ L1 ∩ F0. Since N (x, y) = N (x†, y†), the resulting sum becomes:

Θ =
∑

(x,y)∈L1∩F0

ε(x†, y†) t2(y
†−B) q

1
2 N (x,y) z(m+2)x†−my†−1/2.
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For (x, y) ∈ U+, define sign(x, y) := 1 if x > 0 and −1 if x < 0. We then have:

Lemma 11 For (x, y) ∈ L1 ∩ F0, ε(x†, y†) = sign(x, y).

Proof As in the above discussion, we split this into the four cases (x, y) ∈ L1∩gF̃ for
(i) g = e, (ii) g = aζ , (iii) g = ζ , and (iv) g = a. We only consider case (ii), which is
representative of the calculation needed for the other cases. For (x, y) ∈ L1∩aζ F̃ , we
have (x†, y†) = (aζ )−1(x, y) ∈ L2∩ F̃ . Let (x†, y†) = φ(w, j)wherew = τ 2n , n ∈
Z, j ∈ 2Z + 1. Now ε(x†, y†) = ε̄(w, j) = −I (s(w), j). Now, ε(x†, y†) equals −1
if n, j ≥ 0 and 1 if n, j < 0. In other words ε(x†, y†) = −sign(x†, y†) = sign(x, y).
The last equality follows from the fact that a leaves sign invariant, while ζ reverses it.

��
Since sign(x, y) and N (x, y) are constant on G0-orbits, we have

Θ = t−2Bz−
1
2

∑

(x,y)∈L1∩U+
(x,y) mod G0

sign(x, y) q
1
2 N (x,y) t2y

†
z(m+2)x†−my† (3.10)

Finally, putting together Corollary 1, Eq. (3.10), and our choice of the pair (Λ, λ) in
Sect. 2.6, we deduce Theorem 2. ��
Acknowledgments The second author would like to thank E.K.Narayanan for useful discussions regard-
ing this work.
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