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Abstract The notion of broken k-diamond partitions was introduced by Andrews
and Paule. Let �k(n) denote the number of broken k-diamond partitions of n for a
fixed positive integer k. Recently, Paule and Radu conjectured that �3(343n + 82) ≡
�3(343n+278) ≡ �3(343n+327) ≡ 0 (mod 7). Jameson confirmed this conjecture
and proved that�3(343n+229) ≡ 0 (mod 7) by using the theory of modular forms. In
this paper, we prove several infinite families of Ramanujan-type congruences modulo
7 for�3(n) by establishing a recurrence relation for a sequence related to�3(7n+5).
In the process, we also give new proofs of the four congruences due to Paule and Radu,
and Jameson.
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1 Introduction

The aim of this paper is to establish several infinite families of Ramanujan-type con-
gruences modulo 7 for broken 3-diamond partitions. In the process, we also present
new proofs of four congruences modulo 7 for broken 3-diamond partitions due to
Paule and Radu [13], and Jameson [9].
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Let us begin with some notation and terminology on q-series and partitions. We
use the standard notation

(a; q)∞ =
∞∏

k=0

(
1 − aqk

)
(1.1)

and often write

(a1, a2, . . . , an; q)∞ = (a1; q)∞(a2; q)∞ · · · (an; q)∞. (1.2)

Recall that the Ramanujan theta function f (a, b) is defined by

f (a, b) =
∞∑

n=−∞
an(n+1)/2bn(n−1)/2, (1.3)

where |ab| < 1. The Jacobi triple product identity can be restated as

f (a, b) = (−a,−b, ab; ab)∞. (1.4)

Two special cases of (1.3) are defined by

ψ(q) = f
(
q, q3

) =
∞∑

n=0

q
n(n+1)

2 (1.5)

and

f (−q) = f
( − q,−q2

) =
∞∑

n=−∞
(−1)nqn(3n−1)/2. (1.6)

In this paper, for any positive integer n, we use fn to denote f (−qn), that is,

fn = (
qn; qn)∞ =

∞∏

k=1

(
1 − qnk

)
. (1.7)

By (1.4), (1.5) and (1.6), we have

f (−q) = f1, ψ(q) = f 22
f1

. (1.8)

A combinatorial study guided by MacMahon’s Partition Analysis led Andrews and
Paule [2] to the construction of a new class of directed graphs called broken k-diamond
partitions. Let�k(n) denote the number of broken k-diamond partitions of n for a fixed
positive integer k. Andrews andPaule [2] established the following generating function
of �k(n):
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Infinite families of congruences modulo 7... 391

∞∑

n=0

�k(n)qn = f2 f2k+1

f 31 f4k+2
. (1.9)

Employing generating function manipulations, Andrews and Paule [2] proved that for
all integers n ≥ 0,

�1(2n + 1) ≡ 0 (mod 3). (1.10)

They also gave three conjectures modulo 2, 5 and 25 for �k(n). Since then, a number
of congruences satisfied by �k(n) for small values of k have been proved. Hirschhorn
and Sellers [8] established an explicit representation of the generating function for
�1(2n + 1) which implied (1.10). Mortenson [12] reproved (1.10) by developing a
statistic on the partitions enumerated by �1(2n + 1) which naturally breaks these
partitions into three subsets of equal size. In addition, Hirschhorn and Sellers [8]
also provided elementary proofs of four congruences modulo 2 for �1(n) and �2(n)

and one of which was a conjecture due to Andrews and Paule [2]. Radu and Sellers
[15] established several infinite families of congruences modulo 3 for �2(n). Lin and
Wang [11] presented elementary proofs of some results of Radu and Sellers [15]. Chen,
Fan and Yu [6] discovered two infinite families of congruences for �2(n) modulo 3.
Chan [5] found two infinite families of congruences modulo 5 for broken 2-diamond
partitions. Radu and Sellers [14] have given numerous beautiful congruence properties
for broken k-diamond partitions. Radu and Sellers [16] provided an extensive analysis
of the parity of the function�3(n), including a number ofRamanujan-like congruences
modulo 2. Lin [10] gave elementary proofs of the results due to Radu and Sellers [16].
Cui and Gu [7] proved several infinite families of congruences modulo 2 for �3(n).
Xia [17] considered congruences modulo 4 for�3(n) and proved a conjecture of Radu
and Sellers [16]. Yao [19] proved several infinite families of congruences modulo 2
for �11(n) and generalized some results due to Radu and Sellers [14]. Ahmed and
Baruah [1] discovered some parity results for broken 5-diamond, 7-diamond and 11-
diamond partitions. Paule and Radu [13] discovered two non-standard infinite families
of congruences for broken 2-diamond partitions. They also presented four conjectures
related to �3(n) and �5(n). Xiong [18] proved the following congruence which was
a conjecture of Paule and Radu [13]:

∞∑

n=0

�3(7n + 5)qn ≡ 6 f 41 f 62 (mod 7). (1.11)

Employing the theory of modular forms, Jameson [9] proved the following theorem:

Theorem 1.1 For n ≥ 0,

�3(343n + 82) ≡ 0 (mod 7), (1.12)

�3(343n + 229) ≡ 0 (mod 7), (1.13)

�3(343n + 278) ≡ 0 (mod 7), (1.14)

�3(343n + 327) ≡ 0 (mod 7). (1.15)
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392 E. X. W. Xia

Congruences (1.12), (1.14) and (1.15) were conjectured by Paule and Radu [13]
and congruence (1.13) was discovered by Jameson [9].

In this paper, we prove several infinite families of Ramanujan-type congruences
modulo 7 for �3(n) by establishing a recurrence relation for the coefficients of f 41 f 62 .
Furthermore, we give a new proof of Theorem 1.1. Our proof mainly relies on (1.11)
and some identities involving theta functions due to Ramanujan. The main results of
this paper can be stated as follows.

Theorem 1.2 For n ≥ 0 and k ≥ 0, we have

�3

(
7 × 47k+4n + 77 × 47k+3 + 1

3

)
≡ 0 (mod 7) (1.16)

and

�3

(
14 × 47k+7n + 14 × 47k+6 + 1

3

)
≡ 0 (mod 7). (1.17)

In order to state the following theorem, we introduce the Legendre symbol. Let

p ≥ 3 be a prime. The Legendre symbol

(
a

p

)
is defined by

(
a

p

)
:=

⎧
⎨

⎩

1, if a is a quadratic residue modulo p and p � a,

−1, if a is a quadratic non-residue modulo p,
0, if p|a.

(1.18)

Theorem 1.3 Let p ≥ 5 be a prime such that

(−7

p

)
= −1. For n ≥ 0, j ≥ 0 and

k ≥ 1, we have

�3

(
7 × 4k p2 j (7n + s) + 77 × 4k−1 p2 j + 1

3

)
≡ 0 (mod 7), (1.19)

where s ∈ {2, 3, 4, 6}.
Theorem 1.4 Let p ≥ 5 be a prime such that

(−7

p

)
= −1 and let n ≥ 0, j ≥ 0 and

k ≥ 1 be integers. If p � n, then

�3

(
7 × 4k p2 j+1n + 77 × 4k−1 p2 j+2 + 1

3

)
≡ 0 (mod 7). (1.20)

This paper is organized as follows: In Sect. 2, we present a new proof of Theorem
1.1 based on (1.11). In Sect. 3, we establish a recurrence relation for a(n) where
the generating function of a(n) is f 41 f 62 . Moreover, we also derive some generating
functions of a(An + B) modulo 7 for some values of A and B. In Sect. 4, we prove
Theorem 1.2 by using the recurrence relation given in Sect. 3. In Sect. 5, we prove
Theorems 1.3 and 1.4 by employing the generating functions of a(An+ B)modulo 7.
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Infinite families of congruences modulo 7... 393

2 A new proof of Theorem 1.1

By the binomial theory, it is easy to see that for any positive integer k,

f 7k ≡ f7k (mod 7). (2.1)

Thanks to (1.11) and (2.1),
∞∑

n=0

�3(7n + 5)qn ≡ 6 f 41 f 62 ≡ 6 f7ψ
3(q) (mod 7), (2.2)

where ψ(q) is defined by (1.8). From Entry 17 (iv) on page 303 in Berndt’s book [3],
we have the 7-dissection

ψ(q) = A + qB + q3C + q6ψ
(
q49

)
, (2.3)

where

A = f
(
q21, q28

)
, B = f

(
q14, q35

)
, C = f

(
q7, q42

)
. (2.4)

Therefore, combining (2.2) and (2.3), we get

∞∑

n=0

�3(7n + 5)qn

≡ 6 f7
(
A + qB + q3C + q6ψ

(
q49

))3

≡ 6 f7
(
A3 + 3q A2B + 3q2AB2 + q3B3 + 3q3A2C + 6q4ABC

+ 3q5B2C + 3q6AC2 + 3q6A2ψ
(
q49

) + 6q7ABψ
(
q49

) + 3q7BC2

+ 3q8B2ψ
(
q49

) + q9C3 + 6q9ACψ
(
q49

) + 6q10BCψ
(
q49

)

+ 3q12C2ψ
(
q49

) + 3q12Aψ2(q49
) + 3q13Bψ2(q49

)

+ 3q15Cψ2(q49
) + q18ψ3(q49

))
(mod 7). (2.5)

Extracting the terms in (2.5) that involves q7n+4, dividing the resulting identity by q4

and then replacing q7 by q, we deduce that

∞∑

n=0

�3(49n + 33)qn ≡ f1 f
(
q3, q4

)
f
(
q2, q5

)
f
(
q, q6

) + 6q2 f1ψ
3(q7

)
(mod 7).

(2.6)

By (1.4), it is easy to check that

f
(
q3, q4

)
f
(
q2, q5

)
f
(
q, q6

) = f2 f 47
f1 f14

. (2.7)
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394 E. X. W. Xia

Thanks to (1.8), (2.6) and (2.7),

∞∑

n=0

�3(49n + 33)qn ≡ f2 f 47
f14

+ 6q2 f1
f 614
f 37

(mod 7). (2.8)

From Entry 17 (v) on page 303 in [3], we have the 7-dissection

f1= f49
f
( − q14,−q35

)

f
( − q7,−q42

) −q f49
f
( − q21,−q28

)

f
( − q14,−q35

) −q2 f49+q5 f49
f
( − q7,−q42

)

f
( − q21,−q28

) .

(2.9)

Replacing q by q2 in (2.9), we get

f2 = f98
f
( − q28,−q70

)

f
( − q14,−q84

) − q2 f98
f
( − q42,−q56

)

f
( − q28,−q70

) − q4 f98

+q10 f98
f
( − q14,−q84

)

f
( − q42,−q56

) . (2.10)

If we substitute (2.9) and (2.10) into (2.8) and compare relevant powers of q, we obtain
(1.12), (1.14), (1.15) and

∞∑

n=0

�3(343n + 229)qn ≡ 6
f 41 f14
f2

+ f 62 f7
f 31

(mod 7). (2.11)

Congruence (1.13) follows from (2.1) and (2.11). This completes the proof. ��

3 A recurrence relation of a sequence

In this section, we establish a recurrence relation of a(n), where a(n) is related to
�3(7n + 5) and the generating function of a(n) is f 41 f 62 . The recurrence relation
plays an important role in this paper. In the process, we also find generating functions
for a(mn + k) for some small values of m and k by using an iterative method, which
are helpful in proving Theorems 1.2, 1.3 and 1.4.

Theorem 3.1 Let a(n) be defined by

∞∑

n=0

a(n)qn = f 41 f 62 . (3.1)

For n ≥ 0, we have

a(128n + 42) = −240a(8n + 2) + 1024a(2n). (3.2)
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Proof The following relations are the consequences of dissection formulas ofRamanu-
jan collected in Entry 25 in Berndt’s book [3, p.40]:

f 41 = f 104
f 22 f 48

− 4q
f 22 f 48
f 24

(3.3)

and

1

f 41
= f 144

f 142 f 48
+ 4q

f 24 f 48
f 102

. (3.4)

Substituting (3.3) into (3.1), we have

∞∑

n=0

a(n)qn =
(

f 104
f 22 f 48

− 4q
f 22 f 48
f 24

)
f 62 = f 42 f 104

f 48
− 4q

f 82 f 48
f 24

, (3.5)

which yields

∞∑

n=0

a(2n)qn = f 41 f 102
f 44

, (3.6)

∞∑

n=0

a(2n + 1)qn = −4
f 81 f 44
f 22

. (3.7)

If we substitute (3.3) into (3.6) and (3.7), and then extract the even parts and the odd
parts in the resulting identity, we get

∞∑

n=0

a(4n)qn = f 81 f 62
f 44

, (3.8)

∞∑

n=0

a(4n + 2)qn = −4
f 121 f 44
f 62

, (3.9)

∞∑

n=0

a(4n + 3)qn = 32
f 122
f 21

. (3.10)

Similarly, substituting (3.3) into (3.8) and (3.9), and then extracting the even parts and
the odd parts in the resulting identity, we have

∞∑

n=0

a(8n)qn = f 21 f 162
f 84

+ 16q
f 101 f 84
f 82

, (3.11)
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∞∑

n=0

a(8n + 2)qn = −4
f 342

f 121 f 124
− 192q

f 102 f 44
f 41

, (3.12)

∞∑

n=0

a(8n + 6)qn = 48
f 222
f 81 f 44

+ 256q
f 124
f 22

. (3.13)

Substituting (3.4) into (3.12) and (3.13), and then extracting the even parts and the
odd parts in the resulting identity, we see that

∞∑

n=0

a(16n + 2)qn = −4
f 302

f 81 f 124
− 960q f 62 f 44 , (3.14)

∞∑

n=0

a(16n + 10)qn = −240
f 182
f 41 f 44

− 256q
f 41 f 124
f 62

, (3.15)

∞∑

n=0

a(16n + 14)qn = 640
f 122
f 21

. (3.16)

Substituting (3.3) and (3.4) into (3.14) and (3.15), and then extracting the even parts
and the odd parts in the resulting identity, we deduce that

∞∑

n=0

a(32n + 2)qn = −4
f 21 f 162
f 84

− 64q
f 101 f 84
f 82

, (3.17)

∞∑

n=0

a(32n + 10)qn = −240
f 41 f 102
f 44

+ 1024q
f 102 f 44
f 41

, (3.18)

∞∑

n=0

a(32n + 26)qn = −256
f 222
f 81 f 44

− 960
f 81 f 44
f 22

. (3.19)

If we substitute (3.3) and (3.4) into (3.18) and (3.19), and then extract the even parts
and the odd parts in the resulting identity, we find that

∞∑

n=0

a(64n + 10)qn = −240
f 81 f 62
f 44

+ 4096q f 62 f 44 , (3.20)

∞∑

n=0

a(64n + 42)qn = 1024
f 182
f 41 f 44

+ 960
f 121 f 44
f 62

, (3.21)

∞∑

n=0

a(64n + 58)qn = 5632
f 122
f 21

. (3.22)
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Substituting (3.3) and (3.4) into (3.20) and (3.21), and then extracting the even parts
and the odd parts in the resulting identity, we have

∞∑

n=0

a(128n + 10)qn = −240
f 21 f 162
f 84

− 3840q
f 101 f 84
f 82

, (3.23)

∞∑

n=0

a(128n + 42)qn = 1024
f 41 f 102
f 44

+ 960
f 342

f 121 f 124
+ 46080q

f 102 f 44
f 41

, (3.24)

∞∑

n=0

a(128n + 106)qn = 4096
f 81 f 44
f 22

− 11520
f 222
f 81 f 44

− 61440q
f 124
f 22

. (3.25)

Theorem 3.1 follows from (3.6), (3.12) and (3.24). The proof is complete. ��

4 Proof of Theorem 1.2

In this section, we present a proof of Theorem 1.2. We first prove the following two
lemmas.

Lemma 4.1 For k ≥ 1,

∞∑

n=0

a

(
4kn + 11 × 4k−1 − 2

3

)
qn = f (k)

f 122
f 21

, (4.1)

where f (1) = 32, f (2) = 640, f (3) = 5632, f (4) = −186368 and for k ≥ 5,

f (k) = −240 f (k − 2) + 1024 f (k − 3). (4.2)

Proof We are ready to prove Lemma 4.1 by induction on k. Substituting (3.3) and
(3.4) into (3.25), we find that

∞∑

n=0

a(128n + 106)qn = 4096
f 44
f 22

(
f 104
f 22 f 48

− 4q
f 22 f 48
f 24

)2

− 11520
f 222
f 44

(
f 144

f 142 f 48
+ 4q

f 24 f 48
f 102

)2

− 61440q
f 124
f 22

= − 7424
f 244
f 62 f 88

− 186368q
f 124
f 22

− 118784q2 f 22 f 88 , (4.3)

which yields

∞∑

n=0

a(256n + 234)qn = −186368
f 122
f 21

. (4.4)
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By (3.10), (3.16), (3.22) and (4.4), we see that Lemma 4.1 holds when k = 1, 2, 3, 4.
Now suppose k ≥ 5 and that the lemma is true for l < k. Then

∞∑

n=0

a

(
4k−3n + 11 × 4k−4 − 2

3

)
qn = f (k − 3)

f 122
f 21

(4.5)

and

∞∑

n=0

a

(
4k−2n + 11 × 4k−3 − 2

3

)
qn = f (k − 2)

f 122
f 21

. (4.6)

If in Theorem 3.1 we replace 2n by 4k−3n + 11×4k−4−2
3 , we obtain

∞∑

n=0

a

(
4kn + 11 × 4k−1 − 2

3

)
qn

= − 240
∞∑

n=0

a

(
4k−2n + 11 × 4k−3 − 2

3

)
qn

+ 1024
∞∑

n=0

a

(
4k−3n + 11 × 4k−4 − 2

3

)
qn

=
(

− 240 f (k − 2) + 1024 f (k − 3)
) f 122

f 21

= f (k)
f 122
f 21

. (4.7)

This lemma is proved by induction. ��
Employing (3.11), (3.17), (3.23) and Theorem 3.1, we can prove the following

lemma:

Lemma 4.2 For k ≥ 1,

∞∑

n=0

a

(
2 × 4kn + 2 × 4k−1 − 2

3

)
qn = h(k)

(
f 21 f 162
f 84

+ 16q
f 101 f 84
f 82

)
, (4.8)

where h(1) = 1, h(2) = −4, h(3) = −240, h(4) = 1984 and for k ≥ 5,

h(k) = −240h(k − 2) + 1024h(k − 3). (4.9)

The proof of Lemma 4.2 is analogous to the proof of Lemma 4.1, and hence is
omitted.

Now, we turn to prove Theorem 1.2.
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It is easy to check that f (2) ≡ 3 (mod 7), f (3) ≡ 4 (mod 7), f (4) ≡ 0 (mod 7),
and for k ≥ 5, f (k) ≡ 5 f (k − 2) + 2 f (k − 3) (mod 7). It follows that the sequence
{ f (k) (mod 7)} is, for k ≥ 2,

3, 4, 0, 5, 1, 4, 1, 1, 6, 0, 4, 5, 6, 5, 5, 2, 0, 6, 4, 2,

4, 4, 3, 0, 2, 6, 3, 6, 6, 1, 0, 3, 2, 1, 2, 2, 5, 0, 3, 5,

3, 4, 0, 5, 1, · · ·

which is periodic with period 42, and for any integer k ≥ 0,

f (7k + 4) ≡ 0 (mod 7). (4.10)

By Lemma 4.1 and (4.10), we see that for k ≥ 0 and n ≥ 0,

a

(
47k+4n + 11 × 47k+3 − 2

3

)
≡ 0 (mod 7). (4.11)

In view of (1.11) and (3.1), we see that for n ≥ 0,

�3(7n + 5) ≡ 6a(n) (mod 7). (4.12)

Replacing n by 47k+4n + 11×47k+3−2
3 in (4.12) and utilizing (4.11), we arrive at the

congruence (1.16).
Similarly, we can prove that for k ≥ 1,

h(7k) ≡ 0 (mod 7). (4.13)

The proof of (4.13) is analogous to the proof of (4.10), and hence is omitted. It follows
from (4.8) and (4.13) that for n ≥ 0 and k ≥ 1,

a

(
2 × 47kn + 2 × 47k−1 − 2

3

)
≡ 0 (mod 7). (4.14)

Congruence (1.17) follows from (4.12) and (4.14). This completes the proof. ��

5 Proofs of Theorems 1.3 and 1.4

In this section, we present proofs of Theorem 1.3 and 1.4. We first prove the following
lemma:

Lemma 5.1 Define

∞∑

n=0

b(n)qn = f14
f 52
f 21

. (5.1)
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Let p ≥ 5 be a prime such that
(−7

p

) = −1. For n ≥ 0,

b

(
pn + 11(p2 − 1)

12

)
=

(−1

p

)
pb(n/p). (5.2)

Proof The following identity is Euler’s pentagonal number theorem

f1 =
∑

α≡1 (mod 6)

(−1)
α−1
6 q

α2−1
24 , (5.3)

which is a direct consequence of Jacobi’s triple product identity; see Corollary 1.3.5 on
page 12 of Berndt’s book [4]. The following identity is a consequence of the quintuple
product identity:

f 52
f 21

=
∑

β≡1 (mod 3)

(−1)β−1βq
β2−1

3 , (5.4)

which is Corollary 1.3.22 on page 21 of Berndt’s book [4]. In view of (5.1), (5.3) and
(5.4),

b(n) =
∑

α≡1 (mod 6), β≡1 (mod 3),
14(α2−1)

24 + β2−1
3 =n

(−1)
α−1
6 (−1)β−1β

=
∑

α≡1 (mod 6), β≡1 (mod 3),
7α2+4β2=12n+11

(−1)
α−1
6 (−1)β−1β. (5.5)

Hence,

b

(
pn + 11(p2 − 1)

12

)
=

∑

α≡1 (mod 6), β≡1 (mod 3),
7α2+4β2=12pn+11p2

(−1)
α−1
6 (−1)β−1β. (5.6)

Note that 7α2 + (2β)2 ≡ 0 (mod p). Since p ≥ 5 is a prime and
(−7

p

) = −1, then

α ≡ β ≡ 0 (mod p). Set α = (−3
p

)
pα

′
and β = (−3

p

)
pβ

′
. The facts α ≡ 1 (mod 6)

and β ≡ 1 (mod 3) imply that α
′ ≡ 1 (mod 6) and β

′ ≡ 1 (mod 3). Therefore,

(−1)
α−1
6 =

(
3

p

)
(−1)

α
′ −1
6 (5.7)

and

(−1)β−1 = (−1)β
′−1. (5.8)
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Combining (5.5), (5.6), (5.7) and (5.8), we get

b

(
pn+ 11(p2 − 1)

12

)
=

∑

α
′≡1 (mod 6), β

′≡1 (mod 3),

7p2α
′ 2+4p2β

′ 2=12pn+11p2

(
3

p

)
(−1)

α
′ −1
6

(−3

p

)
(−1)β

′−1 pβ
′

=
(−1

p

)
p

∑

α
′≡1 (mod 6), β

′≡1 (mod 3),

7α
′ 2+4β

′ 2=12n/p+11

(−1)
α
′ −1
6 (−1)β

′−1β
′

=
(−1

p

)
pb(n/p). (5.9)

This completes the proof of this lemma. ��
Now, we are ready to prove Theorems 1.3 and 1.4. Replacing n by np in (5.2), we

have

b

(
p2n + 11(p2 − 1)

12

)
=

(−1

p

)
pb(n). (5.10)

By (5.10) and mathematical induction, we find that for j ≥ 0,

b

(
p2 j n + 11(p2 j − 1)

12

)
=

((−1

p

)
p

) j

b(n). (5.11)

It follows from (5.2) that if p � n, then

b

(
pn + 11(p2 − 1)

12

)
= 0. (5.12)

Replacing n by pn + 11(p2−1)
12 in (5.11) and employing (5.12), we see that if p � n,

then

b

(
p2 j+1n + 11

(
p2 j+2 − 1

)

12

)
= 0. (5.13)

In view of (5.1) and (5.4), we find that

∞∑

n=0

b(n)qn = f14
∑

β≡1 (mod 3)

(−1)β−1βq
β2−1

3 . (5.14)

It is easy to check that if β ≡ 1 (mod 3), then

β2 − 1

3
≡ 0, 1, 2, 5 (mod 7). (5.15)
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Thus,

b(7n + 3) = b(7n + 4) = b(7n + 6) = 0. (5.16)

Furthermore, β2−1
3 ≡ 2 (mod 7) holds if and only if β ≡ 0 (mod 7). Therefore,

b(7n + 2) ≡ 0 (mod 7). (5.17)

Replacing n by 7n + s (s ∈ {2, 3, 4, 6}) in (5.11) and using (5.16) and (5.17), we
deduce that

b

(
p2 j (7n + s) + 11

(
p2 j − 1

)

12

)
≡ 0 (mod 7). (5.18)

By (2.1) and (5.1), we see that

∞∑

n=0

b(n)qn ≡ f 122
f 21

(mod 7). (5.19)

In view of (4.1) and (5.19), we see that for n ≥ 0,

a

(
4kn + 11 × 4k−1 − 2

3

)
≡ f (k)b(n) (mod 7), (5.20)

where f (k) is defined by (4.2). Replacing n by p2 j (7n + s) + 11(p2 j−1)
12 (s ∈

{2, 3, 4, 6}) in (5.20) and utilizing (5.18), we see that for n ≥ 0, k ≥ 1 and
j ≥ 0,

a

(
4k

(
p2 j (7n + s) + 11

(
p2 j − 1

)

12

)
+ 11 × 4k−1 − 2

3

)
≡ 0 (mod 7). (5.21)

Similarly, it follows from (5.13) and (5.20) that for n ≥ 0, k ≥ 1 and j ≥ 0,

a

(
4k

(
p2 j+1n + 11

(
p2 j+2 − 1

)

12

)
+ 11 × 4k−1 − 2

3

)
≡ 0 (mod 7), p � n.

(5.22)

Congruences (1.19) and (1.20) follow from (4.12), (5.21) and (5.22). This completes
the proof. ��.
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