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Abstract The Stieltjes constants i (a) appear as the coefficients in the regular part of
the Laurent expansion of the Hurwitz zeta function ¢ (s, a) abouts = 1. We present the
evaluation of yj(a) and y»(a) at rational arguments, this being of interest to theoreti-
cal and computational analytic number theory and elsewhere. We give multiplication
formulas for yg(a), y1(a), and y»(a), and point out that these formulas are cases of an
addition formula previously presented. We present certain integral evaluations gener-
alizing Gauss’ formula for the digamma function at rational argument. In addition, we
give the asymptotic form of yx (a) as a — 0 as well as a novel technique for evaluating
integrals with integrands with In(— In x) and rational factors.
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1 Introduction and statement of results

The Stieltjes (or generalized Euler) constants yy(a) appear as expansion coefficients
in the Laurent series for the Hurwitz zeta function ¢ (s, a) about its simple pole at
s = 1[5-7,10,18,22,26,28,31],

"
( ,) Yu(@)(s — 1)". (1.1)
n.
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578 M. W. Coffey

These constants are important in analytic number theory and elsewhere, where they
appear in various estimations and as a result of asymptotic analyses, being given by

the limit relation

i Inf(j +a) InFYN +a)

J k+1

= lim
vi(a) W | &
j:

In particular, yp(a) = —¥ (a), where ¥ (z) = I''(z)/T'(z) is the digamma function,
with I'(z) as the Gamma function. With y as the Euler constant and y; = y;(1) and
y2 = y2(1), we recall the connection with sums of reciprocal powers of the nontrivial
zeros p of the Riemann zeta function,

Zl 1 n2+2y +y? Zl 1 7{(3)+y3+3yy +3y‘
—=1-— 1 , —=1-= 1+ =2
> p? 8 > p3 8 2

such relations follow from the Hadamard factorization [20, Ch. 1.3].

An effective asymptotic expression for yy [23] and yx (a) [24] for k > 1 hasrecently
been given. From this expression, previously known results on sign changes within
the sequence of Stieltjes constants follow.

In this paper, we first evaluate the first and second Stieltjes constants at rational
arguments. These decompositions are effectively Fourier series, thus implying many
extensions and applications, and they supplement the relations presented in [9]. We
then present multiplication formulas for the zeroth, first, and second Stieltjes constants,
and certain log—log integrals with integer parameters. The latter integral evaluations
also provide explicit expressions for the differences y1(j/m) — y; and y»2(j/m) —
y>. Besides elaborating on a multiplication formula for the Stieltjes constants, the
Discussion section provides examples of integrals evaluating in terms of differences
of the first and second of these constants. In addition, presented there is a novel method
of determining log—log integrals with a certain polynomial denominator integrand.

We recall the connection of differences of Stieltjes constants with logarithmic sums,

ye(@) —ye(b) = pa— pa— (1.2)

ad [m‘f(n +a) Inf(n+ b)}
n=0

Very recently an evaluation of y;(j/m) — y; was also performed [4]. However, the
method of proof is circuitous—integrals are used in addition to multiple applications
of functional equations.

The Hurwitz zeta function, initially defined by ¢(s,a) = Z?;io(” + a)™* for
Re s > 1, has an analytic continuation to the whole complex plane [3,15,21,29].
In the case of a = 1, ¢ (s, a) reduces to the Riemann zeta function ¢ (s) [13,20,27].
In this instance, by convention, the Stieltjes constants y, (1) are simply denoted as
[5,18,22,25,26,32]. We recall that yx (a + 1) = y(a) — (lnk a)/a, and more generally
that for n > 1 an integer
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Functional equations for the Stieltjes constants 579

yila+n) = yila) =

Jj=0

In*(a + j)
a—+j

as follows from the functional equation ¢ (s, a + n) = (s, a) — Z;';(l) (a+j)*.In
fact, an interval of length 1/2 is sufficient to characterize the yy(a)’s [17].

Unless specified otherwise below, letters j, k, £, m, n, and r denote positive integers.
The Euler constant is given by y = —¥(1) = yp(1). The polygamma functions are
denoted as ¥ ™ (z) and we note that ¥ (z) = (—1)"T!nlc(n + 1, 2) [1,16].

Proposition 1 Form > 1 and j < m, (a)

j ) In%m J
71 -~ =y +vy +yln2nm+1n(27r)lnm+T+(V+1n2ﬂm)1/f "
m—1 27'(jr , m—1 27_[].’_ r
n i IF(—) —”(,—) 1.
rrZsm - n - —G—Zcos - " (0 - (1.3)
r=1 r=1
and (b)
1 . 2 In3
57/2(%) :%—yllnm—k%nz—i—%lnm—i—%lnzm—i— n6m

m—1 . 2
2njr [[m 2| r
+A+r:§] cos p” [[?+(y+ln2nm) :Ig“ (O, E)

—(y +1n27m)¢" (0, %) n %g’” (0, ’%)} , (1.4)

where

" omjr r 72
IS gin [—g (o, —) [— +(y+1n 2nm)2]
2 - m m 6

! r " r
+2(y + In27m)¢ (0, —) - (0, —) ] )
m m
and ' indicates differentiation with respect to the first argument.

Both parts (a) and (b) may be written in many alternative forms. For instance, for
(b), the well-known relation £’ (0, a) = InT'(a) — In(27) /2 may be used, and as well,
the right member may be modified by introducing y; (j/m).

Various summation results are known for the Stieltjes constants, including [6]

k

! r Inf*1yg ‘ (kN
don (—) =q(-DF +q2(—1)f(.)(lnf DVe-j-
— q k+1 = j J

As we briefly indicate, the k = 1 and 2 cases follow from Proposition 1.
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580 M. W. Coffey

Corollary 1

q r q.
2nlz)=-3ma+qying+y)

and

Zn( ) = 1n’ q+q(y1n q - 2V11H61+V2)

Proof The summation for y; follows from (1.3) as the sums over the cosine and sine

terms are zero, and we have the readily verified relation 23:1 W (2) = —q(y+Ing).

Similarly for the summation for y», the sine and cosine terms do not contribute, the
just-mentioned summation of v (r/q) holds, and Z -1 ot ] = O

Corollary 2 For¢ =1,2,...,m—1, (a)
() 2mje
—Zyg sin
m
3 2
=”—(2z—m) [(” +(y—|—1n271m))|:§‘ (o,l—f)—g(o,f)]
4 6 m m
+2(y +1n2mm) g/( )_;’ (071_£)}
m
V4
s (o) = (o)
m m

and (b)

m—1

j 2l 1
—Zyz( )cos J —[%—yllnm—i—gn +— 3 1nm+—1n m+6ln3m]

m

7 1 (2 , r
+ Y [mln (2s1n;) +y:| — Z [(? + (y +ln271m)2)§ (O, Z)

r=1

—(y +1n2nm)g”( )+ ;”’( r)]

+%[(%2+(y+ln2nm)2) [;/ (0, n—1) ¢ (0 1——)]
il o)
A6 f9)
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Functional equations for the Stieltjes constants 581

Part (b) may be rewritten by using the three sums

! ¢ Inm " ¢ 1
/ A " R T P _
:E e (O, m) =T E ¢ (0, m) =3 In“m — (Inm) In(27),

=1

and

o mm 3
ZC 0,—)=- 7 —Eln mIn(2m)
m

2 2

+3(nm) ( L 22m) +
n —_— i — — — n .

Corollary 3 (Asymptotic expressions) For m — 0o,

1
Y1 (—) ~—mlnm+ y
m

and

1
V2 (—) ~mlin®>m + .
m

The general situation for y(a) with a — 0 is more conveniently proved otherwise,
and is presented in Proposition 5.

Proposition 2 For Rez > 0and 0 < k < 2,
o0 Zn
Yk =D (k= 1D"59 "),
= n!
Proposition 3 ForRez > 0and 0 < k < 2, (a)

vikz) = y1(2) + y¥ (k) — ¥ (2)]

9L (s, 2)
as

0 (_1)n+1 @
—Z(l—k)"z"[ v @Y+ 1) +
n=1

n!

s—n+1i|

and (b)

ykz) = y2(2) + [¥* — LY () — ¥ (k)]
+2> (1= k)" [(y + %w(n + 1)) Y+ Dem+1,z7)

n=1
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582 M. W. Coffey

1
+5¢/(n +D¢m+1,2)

9 (s,2)
as

1 9%¢(s, 2)
2 9s2

+y + ¥+ 1]

s=n+l:|

The following result, wherein the differences y1(j/m) — y1 and y»2(j/m) — y»
appear, is a generalization of Gauss’ formula for the digamma function at rational
argument. For integers p and g with 0 < p < g, we put

' 1 xq—l _xp—l .
Ipq = q/o (W) In (— lnx)dx.

Proposition 4 Let wp = exp(2rwik/q). Then (a)

s=n+1

ln" (a)k )

Z(a)k -1 |:yln< ) Zg(l
_ 1 -~ ),2 72
—)/ln(—lna)kl)—zln2 (—lnwkl)i| (y1+7+ﬁ)
=—(y+Ing) |:V +v (3)] +7 (3) -n
q q

and (b)

q—1 2
_Z P_ 2, T o — 1
_k:(wk 1)[()/ +6)ln( W )

aL l_y 82Lis —1 i|
- (@ h (@)
ds? * s=1

2
= (7/2+ % +2ylnq+ln2q) |:7/ +v (g)]
—2(y +1ng) [m (2) - y1} +n—-n (B).
q q

In (b), the analytically continuable polylogarithm (or Jonquiere) function Lis(z) =
p et ¥/ k*. Explicit expressions for the partial derivatives appearing there are pro-
vided.

+2y

Proposition 5 (Asymptotic expression) For a — 0,

[
vi(a) ~ ;ln a+ Y.
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Functional equations for the Stieltjes constants 583

Dirichlet L functions with characters xx modulo k may be written as

[} k
L(s) = ; X’;(f) - kiA ; Xk (m)¢ (s, %) ., Res> 1

If xx is a nonprincipal character, then convergence additionally holds for Re s > 0.
Such L functions may be analytically continued throughout the whole complex plane
and satisfy a functional equation relating L(s) to L(1 — s). Then the results of this
paper show that the values L'(p/q) and L' (1 — p/q) may be expressed in closed form.

2 Proof of Propositions

Proposition 1. We will be expanding a functional equation due to Hurwitz ([2, p. 261],
(19, p. 93]),

j 2551 " (ns  2mjr r
{(s,%):FF(l—s);sm(T—i— - );(1—s,a), 2.1

holding for 1 < j < m, about s = 1. We will use two elementary trigonometric
identities

“ 27 jr r (1 r 2rjr
-2 ( , _) = — - — =1, <7 s
Zcos p” g“Om ZZ:(2 m)cos - 1, 1<j<m
r=1 r=1
(2.2a)
and
2 1 2 1
Zsin n]rg(O,L):z -_r sin n]r:—cotﬂ, 1<j<m,
m m 2 m m 2 m
r=1 r=1
(2.2b)
as well as the values
"0) =y + 2 72 mn’2n (2.32)
CO=Ent T g '
and
" 3 3 2 7T2 1 3 3
" 0)y=y +§y In27 — 2 In27 — Eln 2JT+3(J/+11127T)J/1+§)/2 —(3).
(2.3b)

These derivative values may be obtained via (1.1) and the functional equation of the
zeta function, ¢(s) = 2(27)*~!sin(rs/2)T'(1 — s)¢(1 — s). For (2.2) we have used
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584 M. W. Coffey

the well-known relation ¢ (0, a) = 1/2 —a = —Bj(a), where Bj(a) is the first-degree
Bernoulli polynomial. We recall that about s = 1, I'(1 — s) has a simple pole and that

1 JT2 )/2
F(I—S)——:—J/—(E—f‘?)(s—l)

1
— (P I =) 6=+ 0l - 1))
wherein the tetragamma function value " (1) = —2¢(3), and recall the expansion
Qrm)s~! = >o l“[e#(s — 1)%. For the sine factor on the right side of (2.1), we
have

. [ms  2mjr 271 . (=12t 2
sin (7 + - ) =cos — ; 201 (s—=1)
27jr 0 (_1)E+17[2£+1

(S _ 1)2€+1'
1920+1
“ @2+ D2

+ sin
The left side of (2.1) expands as
. | . . | .
3 (s, i) -y (i)—m (i) (s = D+572 (i) (s—1)2+0[(s — 1’1,
m s—1 m m 2 m

The polar contributions on the two sides of (2.1) cancel due to the cosine sum (2.2a).
At order (s — 1)°, one finds

()52 (2)

r=1

2w jr
m

+2cos

[¢ (0. 2) rmmem— (0. 2] |

where both of the sums of (2.2) apply. With ¢’(0, r/m) = InT'(r/m) — In(27) /2,

. . m—1 .
T T 2w
w(i)z—y—annm——cot—j—2 E cos jrlnl’(i),
m 2 m p— m m

being a form of one of Gauss’ formulas for i at rational argument.
At order (s — 1)1, one finds

o (2) -2 {F e e 07
r=1
—% sin 2’;” [; (o —) (y +1In27m) +2¢’ (0 —)]
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Functional equations for the Stieltjes constants 585

27 2
+ cos T [—g (0, L) (”_ +(y+In 2nm)2>
m 6

m

12y + In27m)¢’ (o, %) _¢ (0, %)] ] : 2.5)

and again the trigonometric summations of (2.2) apply. We add and subtract (y +
In27m) cos2m jr/m)¢ (0, r/m) to introduce the v (j/m) expression (2.4). Then sep-
arating the r = m terms of the sums and using ¢”(0) from (2.3a) gives part (a).

For part (b), at order (s — )% in (2.1) we have

1 J
-mnl{—)=A+B+C,
2 m

where

T 2mjr [{ (o, %) (y +In2xm) — ¢’ (O’ %)]

4
7 in 2" g(o r) ”2+( +In27m)>
T (0. D) (2 m
2 m m 6 Y

+2(y +In27m)¢’ (0, %) - (O, %)] ] ,

m . 2
2 1
B:—r_glcos nJr{(O, %) |:§1n32nm—(y2+%)ln2nm

m

1
—y In*27m +3 ()/3 - %JTZ + 2((3)):| ;

and

C= écos 2y;ljr [[%2 + (¥ +1In 2nm)2] ¢’ (O, %)
—(y +In2mm)¢” (0, n%) —1—%;“’” (0, n%)] )

The sum in B is immediately evaluated with the aid of (2.2a). The expression for A is
rewritten by using (2.4), making use of the values ¥ (j/m), and (2.2b). In the sum C,
the r = m terms are separated and all of the values ¢’(0) = —In(27)/2, (2.3a), and
(2.3b) are used. Combining terms then yields (1.4). O

Remark The expression for C in the proof may be written in terms of y;(j/m)

by using (2.5). For the evaluation of general y,(j/m), there will always be a sum
Z’Z’z_ll cos 221#{ (k+1) (0, %) , as according to the highest derivative of ¢ (s, a) present,

@ Springer



586 M. W. Coffey

there will be no derivative of the sine factor in (2.1). The evaluation will then also
contain a contribution of ¢ ¥+ (0, 1) = ¢ *+D(0).

Corollary 2. The proof uses the discrete orthogonality of sine and cosine functions,
implying

wj 2mjl
Zcot—cos =0

o m m
and
m—1
2
Zcot—]sin dEAg. —2¢
‘ m m
j=1
along with
m—1 j 7
zw — ) cos =mlIn|{2sin— ) +y
; m m
J=1
and

Zl/f( .)sm 2mjt = %(ZZ—m).

The three sums following part (b) may be determined by successively differentiating
the relation ") 11 z (s, m) (m* — 1)¢(s) and putting s to 0. ]

Proposition 2. We will indicate four proofs. For the first, we may use a standard
integral representation for the polygamma function [16, p. 943] to write

[e¢]

nzn n n tz lln 4
D k=1 () = w@y+§3k—n .A ——dr

t—1
n=0 n=1

(k—1)z
—1/f(z)+/ —[1 ! ]tz‘ Ldr

=@ —v¥()+ w(kz) = ¥ (kz).
For the second, we may start with the expansion [16, p. 944]

1 ad . .
Y+ D =y@+—=—y+ > (=D x <L
X

j=2
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Functional equations for the Stieltjes constants 587

Then
v (2) = —(_ D™ n '+§:( /¢ )_( G i)'l)!zjfnq’
so that
i( 1)" W(")(Z)
n=0
Sve g(k - %:n' + i(—l)ji(j)—(j(i;1)!1)!zj_”_1

j—1
—w(z)——+ +Z< D¢z~ 1Z<k 1)"( )

n=1

—w(z)——+ +Z< /et =1

j=2

1 1 1 1
=v() — w + -+ vk +— —¥(@) — - =vka).
z z kz z

O
A third method of proof follows from the representations
e’} 1 k k
=— =—lna—» — > DY 1
0@ = Y@ =-Ina=-2> —=>( >(€) n(¢ +a)
k=1 £=0
and
00 j—1
1)/
D(a 111” )+ — 1! —‘f()(
y@) = (=1 (); Z() TR
O

The fourth method of proof follows the first proof of Proposition 3 so we omit it.
Proposition 3. We have the multiplication formula

(s ka) =D (S o 1)(1 —'"C(s + 1. 2).

n=0

being a case of a more general result of Truesdell [30]. We then expand both sides
about s = 1. Equating the coefficients of (s — 1) on both sides gives another means
of demonstrating Proposition 2. Equating the coefficients of (s — 1)! and using Propo-
sition 2 gives part (a). Equating the coefficients of (s — 1)? gives part (b). O
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588 M. W. Coffey

For a second method of proof of part (a), we may use the integral representation
forRes > l andRea > 0,

5 1 —(a Dt
) = 1 )/ dar,

so that

(s, a)
as

1 00 4§ 1,—(a—1)t
Z““S)“S"’”r(s)/o i

Then

Z_:(l s —ag(;’ 2

N

s=n+1

o0

. 1 00 tne—(a—l)t
=Z(1—k) v+ D +1,2)+— —  Intds
n! Jo el — 1

00 00 —(k—1)tz _
=— Z(l -+ Den+1,2) +/ ef(zfl)’[et—]] Int dr.
n=1 0 ¢ -
Now
00 —(k—=Dytz _
/ rf—le—(z—”f[e,—”dr =65 (s k2) = £(5, D,
0 el — 1
giving
00 —(k—Dtz _
/ ts‘le‘(z‘l)’—[e - 1] Int dr
0 el —1
0 0
= P ()[E (s, k2) — £(5. )]+ T(s) [i(s, k2) — 2, z)} .
as as
Since by (1.1)
) 1 1 n+1
S =+ Z @G~ 1!
1
=G n@e -1 rta )< ~ D+ 0l — D2,
we find

> —(z—1)t [e"®=Dr 1]
/0 ¢ e dr =y [ kD) — YOI+ kD) — 72,

el —
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Functional equations for the Stieltjes constants 589

and the Proposition again follows. O

Remarks Obviously we may evaluate the integrals

o -tz _
/ e T
0 1

el —

in terms of the difference y;(kz) — y;(2).
The harmonic numbers H, = > ;_, 1/k = /(n) + y and generalized harmonic
numbers

“1 —1r!
HD =3 = —((r _) o [W*“(n +1) - w“*‘)(l)]
k=1 :

(_1)}’—1 /l (" —1) o
= In
r—D'Jo -1

enter the representations of Proposition 3 and for the higher Stieltjes constants. This
is part of the elaboration of the following discussion section.

Proposition 4. We first write, for0 < p < ¢,

1 x4 l_xp 1
1t = /0 (T)ln( lnx)dx—Z/ (x_wk)ln( In x)dx.

By performing logarithmic differentiation on the integral

/(_IHX)a = —T'(@Lig(@™ "),

X —w

one then has the following expressions:

q—1
-1 oLig
Ly==> (-1 [y In (‘”"wk ) ()

k=1

o

and

q—1 2
_ P _ 2, T w — 1
_é(wk 1)[(;/ + 6)ln( ” )

aLig

+2y == (@ 1)
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590 M. W. Coffey

We next present the partial derivatives of the polylogarithm function. These result
from expansion of the following expression in powers of s — 1 [14]:

In" z
s |Inz| < 2m,

1 00
Lig(z) = (1 — 5)In*~! (Z) +D s —n)
n=0

n

wherein the polar part of the first term on the right is cancelled by the pole 1/(s — 1)
of the n = 0 term of the sum. We obtain

dLig Y b4 1,
=y —-—=-—=— In(—1 — —In“(—1
a5 () . N-S TR Y n(—Inz) 7 In (=Inz)
> In" z
!
+2 = — (2.6)
n=1
and
°Li, 1 3 2 2 2 2
(2) = - [—Zy —yan - —6y“In(—Inz) —7°In(—Inz) — 6y In“(—Inz)
asz "l 6
ad In" z
—21n%(—Inz) —4((3)] R A 2.7
= n!
Part (a) then makes use of the first derivative and the sum ZZ;; (a),f —-1)=—q.
For the second evaluation of IX | we use

pa’
S|
I;‘q =q Z/ (x?71 — xP~Hx?" InkF (= In x)dx
0
m=0

o0 00
=q Z/ (ef(qfl)” - ef(pfl)”) e~ @tk dy.
0
m=0

By using logarithmic differentiation of the Gamma function integral,

i i [y +In(p +mq) y+ln(m+1)q]
pq_qm:0 p+mgq (m + 1)gq

p i In(m+ p/q) In(m+1)
= — 1 = _
(y+nq)[y+w(q)]+,;[ m+p/q m+1 ]

=—(y +1ng) [7/ +v (3)] + (2) -1,
q q
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Functional equations for the Stieltjes constants 591

wherein we applied (1.2) and the well-known summation (e.g., [16, p. 943])

as 1 1
w<x>=—y—k20(x+k—m).

The other evaluation of (b) goes similarly, with

OO 00
2 =g Z/ (e—(q—l)u _ e—(p—l)u) o= am+Du 12 ) 4
0
m=0
< 1
=2 [—6(m Iy [67/2 +a% + 12y In(m + 1g + 610 (m + l)q]
m=0

- |6y* + 7%+ 12y In(mq + p)q + 61In>(mq + ]
6(m+p/q)[y y In(mq + p)q (mgq p)]

2 00
Y ln(m+1)q_ln(mq+p)
_(YJFG)[YJH/I( )}Lz Z[ m+1 m+p/q}

o 2 2
In +1 In“(mg + p
Z[ (m+1)g  In“(mq }
m=0 1 +P/

~(e ) [ (9)] =2 [ (F) =)

i |:1n2(m+ ) e+ p/q) (1n(m+ 1) 1n(m+p/q))
m+41 m+ p/q +1 m+ p/q

+1n? ( ! — 1 )]
9 m+1 m+p/q
.2 m? 2 p
=\v +?+2ylnq+lnq y+v 7
—2(y +1Ingq) [m (2) - V1i| +rv -7 (2) :
q q

Remark For applications or computation with Proposition 4, it is important that the
values of ln(:i:a) 1y are kept to the principal branch, e g, with —7 < Im Inz < m.
This requirement maintains a real-valued result for / [,
Elaboration of the partial derivative (2.6).
The partial derivative (2.6) may also be represented as

o0 z* o Inz)1 1 1
=/ Z—lnxd.x+/ Zx (m+_2_n_;) Pl(x)d-x’
1 X 1 X X X

(2.8)

O

q°

L)
as

s=1
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592 M. W. Coffey

following from [8]

oLi 0 Zx o 1 1 1 1
_ﬂ:/ Z—Slnxdx+/ z* ((nz) oy -5 nx)P1(x)dxa
1 1

Js x X xS+l xS+l

wherein Pj(x) = ,Bl (x — [x]). We relate (2.6) and (2.8). By using the expansion

X o0 i _x/
¥ = ijo In/ 27, we have

a gx 0 lan )
ZInxdr=» ——[l+a/(jlna—1)]
1ox =

n2a

1
=—ylna—-T0,—alnz)Ina + 3

+Inz3F3(1,1,1;2,2,2;1Inz)
—alnz3F3(1,1,1;2,2,2;alnz) —Inaln(—alnz),

where , Fy; is the generalized hypergeometric function and the incomplete Gamma

function I' (¢, x) = I'(«) — Z;O:o % The asymptotic form of the 3 3 function

as a — oo may be considered as in [11] and the result is

00 X )/2 2
/ —lnxdx——~|——+1nZ3F3(1112221nz)
1 X 2 12

1
+yln(—Inz) + E1n2(—1nz), lz| < 1. (2.9)

This result (2.9) may also be obtained as a reduction of a Meijer-G function. However,
we omit details of this evaluation.

By using respectively the partial derivative of (1.1) with respect to s and then (2.8)
and (2.9), we have these additional expressions for the partial derivative (2.6):

dLi; 2 g2 1
@) =-n— =T —yin-Ing = SIn’(=Ing)

In"
—Inz3F3(1,1,1;2,2,2;Inz) — Zy’HZ ~Zn
j=0 J! n=1
2 2
1
Z_%_%—yln( an)—Elnz(—an)

—Inz3F3(1,1,1;2,2,2;1nz)

o 1 I§ 1 1
_/ & (MjL_z_?) Py (x)dx
1

X X
y_m In(—Inz) — ~In?(—Inz)
=—"——— —yln(—=Inz) — =In"(—1In
2 12 7 Y73 ‘

—Inz3F3(1,1,1;2,2,2;1nz)
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o ' i [(nz)In(y+)) 1 ln(y—l—j)]( 1)
- v + - —~ ) dy.
;/oz [ i o2 ot JUT2) Y

By comparing (2.6) with the second expression above, we conclude that

n

ad In" z
n-2¢0-m—
n=1

(Inz)Inx 1 Inx

o0
=Inz3F3(1,1,1;2,2,2;Inz) +/ z* (— +—= - —2) Pi(x)dx.
1 b by X

Proposition 5. Let Ci(a) = yx(a) — (lnk a)/a. With B, (x) being the Bernoulli poly-
nomials, their periodic extension is denoted as P, (x) = B, (x — [x]) and we have the
representation [32]

n+1

_ sm+1,n+1—k) [® In* x
Cn(a)z(_l)" 1,@'% A [ Pn(x—a))mdx, n>1,

(2.10)

with s(n, k) as the Stirling numbers of the first kind. We recall the Fourier expansions
of P,(x) [1, p. 805],

o0

1 2(2n)! Z cos2wk(x —a)

P2n(x - CZ) = (_l)ni (27.[)2;1 k2n ’

k=1
and

P2n71(x — a) — (—1)" 2(21’1 — 1)' sin 27Tk(x — a)

2n—1 2n—1
Q2m)*n par k"
We therefore obtain
202n)! — 1
Py,(x —a) = (—1)”*1 (z(nr)lgn Z ﬁ[cos 2wkx + 2mka sin 2wkx + O(az)]
k=1

and

22n — 1)!
(27T)2”_1

=1
Pop_i(x —a) = (—1)" > Ly [8in 2kx — 27ka cos 2k + 0a?)).
k=1

These forms are then inserted into (2.10). Noting that Ci (1) = y4, the a’term produces
Yk, Cr(a) — yx as a — 0 and hence the result. |
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3 Discussion

Here we first discuss the equivalence of Proposition 3 as a case of an addition formula
which we have previously presented [12] (Proposition 1). We then show applications
of differences of Stieltjes constants to some classic integrals of analytic number theory.
We exhibit a new proof technique for certain log—log integrals.

As regards the Truesdell representation of ¢ (s, kz), we note

(s+n - 1) I P G ) R N ()

n n! nl I'l—s—n)
1 T'(s+n) 1
e
n!  T'(s) n!
so that
< (S)” n_n
g5, k) =D (1= K)"2"E(s +n, 2).
= n

On the other hand, an old formula of Wilton [31] may be written as

oo

—b)J
cea+0) = T ()06 + joa). bl <lal. Rea >0,
=0
Thus the two formulas correspond with b = —(1 — k)z and a = z. Lemma 1 of [12]

provides the derivative values

d 14
() o

Therefore, from Proposition 1 of [12], we know the general form of the multiplication
formula for the Stieltjes constants,

=(=D)/Tus(i+ 1,0+ 1).

s=1

k—1)i=tz/-1

() 14
12
yoka) = @) + (1! Y G- §(—1>"(k)s(j,k+1)k!;“—k>(j,z).
j=2 i

k=0

The Stirling numbers of the first kind may indeed be written with the generalized
harmonic numbers, and the first few are givenby s(n+1, 1) = (—1)"nl,s(n+1,2) =
(=1 nlH,, s(n41,3) = (=" [H2— HP),and s(n+1,4) = (= 1" 2 [ H3 —
3H,H® + 2.

We demonstrate how differences of Stieltjes constants may be used to efficiently
evaluate some example log—log integrals, including

U n(—1
IiE/ —1’1( le) dx.
o 1E+x+x2

@ Springer



Functional equations for the Stieltjes constants 595

For I_,

I_:/ (l+x)ln(—lnx)dx
o \I+

_Z( 1)'"/ (1 4+ x)x¥" In(— In x)dx

m=0

00 00
Z ™ / (1 + e e B+t 1n 4 du
— 0

o
1 1 nGm+2)  InGm+ 1)
S S
n;)( ) |:y(3m+2+3m+1)+ 42 T 3mal ]

27 1% n6 1 N 1 1 1
= — _— n — —
3/3 6 m+1/3 m+1/6 m+5/6 m+2/3

m=0

In(m+1/3) In(m+1/6) In(m+5/6) ln(m+2/3)]
m+1/3 m+1/6  m+5/6  m+2/3

oo 2)n () ()0 (]

We used polygamma function values and (1.2).
For 1.,

Lrl—x
I :/ (—3) In(—Inx)dx
0 1—x

S |
- Z/ (1 = x)x>" In(— Inx)dx
m=0 0
0 00
= Z / (1 — e )e CmtD 1n 4 du
m=0 0

_i 1 1 +ln(3m+2) In3m + 1)
i "\Zm+2 3m+1 3m+ 2 3m + 1

L In3(m +2/3) In3(m+1/3)
N 3f+ Z[ m+2/3 m+1/3 ]

el 0)n ()
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More generally,

; _/1 In(—1Inx) d
+n — 0 xn—l+xn—2+..,+x+l x

o (3)- (2 0) 0]

14 :/1 x?1In(—Inx)
+n 0

X
=2 4 x4 1

_(y+Inn) [w(cﬂrl)_w(wﬂ)}
n n n
L) (5 e
n n n

1
74 :/ x4 1In(—Inx) dx
0

B A B L

_(y+Inn) q+2 q+1
- 2n I:l/f( 2n )+w( 2n )
n+q+2 n+q-+1
(75 - ()]
1 n+gq+2 n+gq+1
+E|:yl( 2n )+J/1( 2n )

-V _q+2 -y _q+1 Reg > —1
2n 2n ’ '
Similarly,

"n(—Inx) T 1 3 1
— dx = — In4)= + - “)-vl-)1.
LA 712 X (y +1n )44-4[V1(4) V1(4)]
= [, LRt
o 14+xP 2 Jo cosh(pu/2)
(y +1In2p) 1 p+1
=L " lyl—)-v|=—
2p 2p 2p
1 p+1 1
_ —_— — - 5 R 01
T2 [”( 2p ) ”(Zp)] °re

and for n odd,
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and

2 E/l lnz(—lnx)dx
0

P 1 4+ xP

17, = ) p+1 1

= — — 4+2yIn2p+1n?2 ) —-v(—
2p[)f+6+ynp+n p[W(zp wzp
1 1 +1

+ —(y +1n2p) |:)/1 (—) ! (p—)]
P 2p 2p

N 1 1 p+1
2p Y2 2p Y2 2p ,

with the limits

lim J, = —y, plem I =y*+¢Q.

p—>00
As they should be, these limits are consistent with Corollary 3 and the more general

Proposition 5.
From the J,, evaluation follows the integral identity

W2 G ()l [ (5 Gl o

_ /1 [In(2x)—In(x + 1)]
0

In(—In x)dx.
Inx

An analogous result applies for

1 1 _
/ Jl%dp = / [In@x) —In(x + D] lnz(— Inx)dx.
0 0

Inx

As an extension of J,, for Re p > 0 and Re ¢ > —1, we have

1 x4
J,(f E/ In(— Inx)dx
o 1+xP

_ (y+In2p) g+1\ (p+qg+]
2 [w(Zp) I/I( 2p )}

LU[ (praxl)_ (a+1
2[7 Y1 2P Y1 217 s

1 1
lim Jg :_—y—l- n(g + ).
p—00 q+1

with
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Propositions 1 and 4 apply to all of these integrals. As a brief example, one finds

Un(=Inx) 7r|: 87 2(3/4) V27T (3/4)
125/ —  dx==|ln——— = 17
0

T2 T a4 —ln4i|=Eln ra/4

The value of I has been known for a long time, and it may of course be writ-
ten in many equivalent forms. However, the following method of evaluation may be

new.

Demonstration 1

_ [TIn(=Inx) _ w/2 =T T LO/®
L= /0 l—i-—xzdx B /;1/4 ndntan)dx = 7 [ln (g) 2 F(5/4)} .

The method below applies to a large variety of integrals, enabling another determi-
nation of differences of Stieltjes constants at rational arguments. A key feature of these
integrals is integrands with polynomial denominators with zeros at roots of unity.

Proof Write

1 [y 1
L =— - — - ) In(—Inx) dx,
2i Jo \x—i x+i

and then apply

/1 In(—Inx) (a — 1) aLi,
——dx=—-yh -
0o X—a a as

and (2.6) for the partial derivative to find

(a ", 3.1
1

S§S=

h="T 4 Tw(5)+ zii“l_”)() "= (-1

:n[£+ ()] g( 2;{4_(1)2’m)(2)2m+1'

Next separate the m = 0 term of the sum and use the functional equation of the zeta
function, 7' 72z (z) = 2T (1 — 2)¢ (1 — z) sin %2 5, along with ¢ (=2m) = 0 form > 1,

to determine that for m > 1, 2(—=1)"¢’(— 2m) Qm)!1c(2m + 1)/(27)?". There
results

L=

-|>|:l

S 2m+1)
[”H"( ) 2 6’"(2m+1):|

m=1
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Using (e.g., [16, p. 939])

0 x2n+1 1
2 on+ ]§(2n+ I)=—-yx+ E[lnF(l —x)—InT'x + D], [|x| <1,
(3.2)
completes the evaluation.! O

As a further indication of the applicability of this method, we mention

Lemmal For —m <§ <,

. r 1+i)
In(—1 $ ( 2

Iwz/ Gl T e o) — s —— 22

0 x2—2xcosd+1 2sind | F(l L

P

We only sketch the proof as this is a known integral.

Proof We let w = ¢'® and use the factorization (x — w)(x — w*) = x* — (w0 4+ w*)x +
|w|? = x? — 2x cos 8 + 1, giving

1 1 1 1
1, = " / — " In(— In x)dx.
w—o0"Jp \¥x—ow x—ow

We employ the integral (3.1), the partial derivative (2.6), and finally the summation
(3.2). Along the way we use elementary relations such as 1/w* = w and

* _ s )
n [u] =1In (l—e) = ]n[e’(‘SJr”)] =i(§+m).

o*(w — 1) 1 —ei8

Similarly, integrals of the form

/1 In?(—Inx)
———dx,
0 p(x)

with p a polynomial having as zeros roots of unity, may be evaluated with the aid of

Un?(—1 2 —1
[ (1))
0 X —a 6 a

- AL 92Li;
Y ds ds2

@ - @™,
1 =1

sS= N

! Details of the evaluation of the integrals /4 by this method are separately available from the author.
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and the partial derivative (2.7). In summary, this method comprises the use of partial
fractions, logarithmic differentiation of a polylogarithm integral, application of the
partial derivatives of Lis at s = 1, application of the functional equation of the Riemann
zeta function, and summation to In I" constants where pertinent.

Many other integrals follow from the results of this paper. For instance, for |a| = 1

buta # 1 or Rea > 1, we have

/

In(—Inx) P 1 1/ 9\™ oLi,
Y = ey | —— o (1) 22
(x —a)nt! m (a—1m gm m! \ 9a ds

@)

This follows from (3.1) and (2.6). In particular,

J

In(=lnx) 1 B In(lna) ~=¢'(=n) ,
(x—a)zdx_a y[lna (a—l)i|+ Ina +nZ:(:) n! (@)

Such a result may be combined with the use of partial fractions to yield yet other
integrals.
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