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Abstract A partition of a positive integer n is a non-increasing sequence of positive
integers whose sum is n. It may be represented by a Ferrers diagram. These diagrams
contain corners which are points of degree two. We define corners of types (a, b),
(a+, b) and (a+, b+), and also define the size of a corner. Via a generating function,
we count corners of each type and corners of size m. We also find asymptotics for the
number of corners as n tends to infinity.
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1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers
whose sum is n, and the number of such partitions is denoted by P(n) (we define
P(0) = 1). A standard result is

∑

j≥0

P( j)x j = 1∏
j≥1(1 − x j )

.

Many researchers, for example George Andrews, have focused on the number of
partitions satisfying certain conditions (for example, see [1–5,8,10,11] and references
therein). For instance, if Q(n) is the number of partitions of n with distinct parts and
Q(0) := 1, then we have the generating function

∑

j≥0

Q( j)x j =
∏

j≥0

(1 + x j ).

In this paper, we define a new statistic, namely a corner for such partitions. This is
related both to descents and the number of occurrences of a part (of fixed size). It is
simple to describe corners in terms of the associated Ferrers diagrams.

The Ferrers diagram of an integer partition proves to be a useful tool for visualizing
partitions. It is constructed by stacking left-justified rows of cells, where the number
of cells in the i th row corresponds to the size of the i th part.

A corner of a partition π is a point of degree two in the corresponding Ferrers
diagram. We denote the number of corners of π by cor(π). For example, if π =
4422111, then cor(π) = 6, see Fig. 1. Moreover, we define cork(π) to be the number
of corners at line y = k in the Ferrers diagram of π , where the topmost horizontal
line of the Ferrers diagram is the line y = 0. For example, for the partition illustrated
below, cor0(π) = 2 (corners E and F), cor2(π) = 1 (corner C) and so on. More
generally, we are interested in several types of corners. We say that a corner is of type
(a, b) if it is at the bottom right of a specific maximal a × b rectangle (where b is
its length and a its height). For such a maximal rectangle, there are no cells below it
and no cells to its right. Thus, corner B is at the bottom right of the 2 by 1 rectangle,
with cells marked by X. So that B is a (2, 1) corner. Here, we shall only consider
corners which are at the bottom-right extremities of such b by a rectangles. So for

Fig. 1 The 6 corners of
π = 4422111, with A, B and C
of type (a, b)
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Table 1 Summary of main results

Types of corners Generating function for the Main term asymptotics for the
total number of such corners average number of such corners

All corners −3 + 3 − 2x

(1 − x)
∏

j≥1

(
1 − x j )

√
6n

π

(a, b)

xab
a∏

i=1

(
1 − xi

)

∏

i≥1

(
1 − xi

) b+a+1∏

i=b+1

(
1 − xi

)

a!b!√6n

π(a + b + 1)!

(a+, b)

xab
a∏

i=1

(
1 − xi

)

∏

i≥1

(
1 − xi

) a+b∏

i=b

(
1 − xi

)

a!(b − 1)!√6n

π(a + b)!

(a+, b+)

xab
a−1∏

i=1

(
1 − xi

)

∏

i≥1

(
1 − xi

) a+b−1∏

i=b

(
1 − xi

)

(a − 1)!(b − 1)!√6n

π
(
a + b − 1

)!

size m
1

∞∏

l=1

(
1 − xl

)

m−1∑

p=1

x p(m−p)
p∏

i=1

(
1 − xi

)

m+1∏

i=m−p+1

(
1 − xi

)
1

m + 1

m−1∑

a=1

(
m

a

)−1 √
6n

π

convenience, we ignore the 3 corners D, E and F at levels x = 0 and y = 0. Thus,
the partition in Fig. 1 has corners C of type (2, 2), B of type (2, 1) and A of type
(3, 1).

We observe that a corner of type (a, b) in the Ferrers diagram of π corresponds to
consecutive parts c , c − b in the partition π such that the multiplicity of c is exactly
a and the last occurrence of c is followed by a part of size c − b. We also consider
corners of type (a+, b); these are corners of type ( j, b) for any j ≥ a. Similarly, we
define corners of type (a+, b+). Finally, we define the size of corners of type (a, b)
to be a + b.

We summarize some of the main results obtained in this paper in Table 1.

2 Corners at level k

Let Pm = Pm(x, t0, t1, . . .) be the generating function for the number of partitions
of n where the first part is m and tk marks the number of corners at level k (y = k,
measured downwards with y = 0 at the top). Each partition π with first part m can be
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204 A. Blecher et al.

written as π = mπ ′, where π ′ is either empty or its largest part is less than or equal
to m. Therefore we obtain

Pm(x, t0, t1, . . .) = xm
(
t20
t21

Pm(x, t1, t2, . . .)

+ t20
t1

m−1∑

j=1

Pj (x, t1, t2, . . .) + t20 t
2
1

)
.

Define P(z, x, t0, t1, . . .) := ∑
m≥1 Pm(x, t0, t1, . . .)zm . Multiplying the above equa-

tion by zm and summing over m ≥ 1, we derive the following result.

Proposition 2.1 The generating function P(z, x, t0, t1, . . .) satisfies the following
functional equation:

P(z, x, t0, t1, . . .) = t20
t21

P(xz, x, t1, t2, . . .) + t20 t
2
1 xz

1 − xz

+ t20 xz

t1(1 − xz)
P(xz, x, t1, t2, . . .).

Now, we are ready to study the total number of corners in a partition. Let
P(z, x, t) := P(z, x, t, t, . . .). Proposition 2.1 with t j = t for all j ≥ 0 gives

P(z, x, t) = P(xz, x, t) + t4xz

1 − xz
+ t xz

(1 − xz)
P(xz, x, t),

which is equivalent to

P(z, x, t) = t4xz

1 − xz
+

(
1 + xzt

1 − xz

)
P(xz, x, t).

By iterating this equation for z = 1, x, x2, . . ., and solving for P(1, x, t), we obtain
the following result.

Theorem 2.2 The generating function for the number of partitions of n according to
the number of corners counted by t is given by

P(1, x, t) = t4
∑

j≥1

x j

1 − x j

j−1∏

i=1

1 − (1 − t)xi

1 − xi
.

We shall need the lemma below for the work that follows:

Lemma 2.3 For all a, b ≥ 1,

(a)
∑

j≥0

x jb

∏ j
i=1(1 − xi )

= 1
∏

i≥b

(
1 − xi

)
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Counting corners in partitions 205

and

(b)
∑

j≥0

x jb
j+a∏

i= j+1

(
1 − xi

) =
∏a

i=1

(
1 − xi

)
∏b+a

i=b

(
1 − xi

) .

Proof (a) We have

f (b) : =
∑

j≥0

x jb

∏ j
i=1

(
1 − xi

) = 1 +
∑

j≥0

x ( j+1)b

∏ j+1
i=1

(
1 − xi

)

= 1 +
∑

j≥0

x ( j+1)b − x ( j+1)b+ j+1 + x ( j+1)b+ j+1

∏ j+1
i=1

(
1 − xi

)

= 1 +
∑

j≥0

x ( j+1)b

∏ j
i=1

(
1 − xi

) +
∑

j≥1

x j (b+1)

∏ j
i=1

(
1 − xi

) = xb f (b) + f (b + 1),

which implies that f (b) = 1
1−xb

f (b + 1). We use the fact that f (1) = 1∏
i≥1(1−xi )

to

complete the proof of the first identity.
(b) Next we prove the second identity using induction on a. For a = 1, we have

∑

j≥0

x jb
j+1∏

i= j+1

(
1 − xi

) = 1 − x(
1 − xb

)(
1 − xb+1

) .

Now, assume that the claim holds for all 1, 2, . . . , a, and let us prove it for a + 1.
Firstly, we have

g(a, b) : =
∑

j≥0

x jb
j+a∏

i= j+1

(1 − xi )

=
∑

j≥0

(
x jb − x jb+ j+a+1 + x jb+ j+a+1

) j+a∏

i= j+1

(
1 − xi

)

=
∑

j≥0

x jb
j+a+1∏

i= j+1

(1 − xi ) + xa+1
∑

j≥0

x j (b+1)
j+a∏

i= j+1

(1 − xi )

= g(a + 1, b) + xa+1g(a, b + 1).
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Thus, by the induction hypothesis, we have

g(a + 1, b) =
∏a

i=1

(
1 − xi

)
∏b+a

i=b

(
1 − xi

) − xa+1

∏a
i=1

(
1 − xi

)
∏b+a+1

i=b+1

(
1 − xi

)

=
∏a+1

i=1

(
1 − xi

)
∏b+a+1

i=b

(
1 − xi

)
(
1 − xa+b+1

1 − xa+1 − xa+1(1 − xb)

1 − xa+1

)

=
∏a+1

i=1

(
1 − xi

)
∏b+a+1

i=b

(
1 − xi

) ,

which completes the induction. ��
We now find the derivative of the generating function t−4P(1, x, t) with respect to

t and thereafter substitute t = 1:

d

dt
(t−4P(1, x, t))

∣∣∣
t=1

=
∑

j≥1

x j

1 − x j

j−1∑

i=1

xi
∏ j−1

m=1

(
1 − xm

)

= x

1 − x

∑

j≥0

x j

∏ j−1
m=1

(
1 − xm

)

− 1

1 − x

∑

j≥0

x2 j
∏ j−1

m=1

(
1 − xm

) − 1 by Lemma 2.3

= x

1 − x

1
∏

i≥1

(
1 − xi

) − 1

1 − x

1
∏

i≥2

(
1 − xi

) − 1

= − 1 + 2x − 1

(1 − x)
∏

j≥1(1 − x j )
.

Theorem 2.4 Thus, the generating function for the total number of corners is

−3 + 3 − 2x

(1 − x)
∏

j≥1

(
1 − x j

) .

This implies that the total number of corners in all partitions of n is given by

3P(n) +
n∑

j=1

P(n − j).

Remark 2.5 For any given partition π , the total number of corners is equal to the
number of distinct part sizes inπ plus 3.Distinct part sizes in partitions have previously
been studied in [7,10].

By using Theorem 2.2 and the q-binomial theorem, we obtain
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Theorem 2.6 The generating function for the number of partitions with exactly m+4
corners is given by

∑

j≥1

x j

∏ j
i=1

(
1 − xi

)
j−1∑

i=0

(−1)i−mx(
i+1
2 )

[ j − 1
i

]

x

(
i

m

)
.

Another application of our general result in Proposition 2.1 is to study the total
number of corners at line y = 2k for any k ≥ 0. In order to do that, we define

Q(z, x, t) = P(z, x, t, 1, t, 1, . . .) and Q′(z, x, t) = P(z, x, 1, t, 1, t, . . .).

Proposition 2.1 shows

Q(z, x, t) = t2xz

1 − xz
+ t2

1 − xz
Q′(xz, x, t)

and

Q′(z, x, t) = 1

t2
Q(xz, x, t) + t2xz

1 − xz
+ xz

t (1 − xz)
Q(xz, x, t).

Therefore,

Q(z, x, t) = t2xz(1 + t2x − x2z)

(1 − xz)(1 − x2z)
+ 1 + (t − 1)x2z

(1 − xz)(1 − x2z)
Q(x2z, x, t).

Iterating infinitely many times, we obtain

Q(z, x, t) = t2xz
∑

j≥0

(
x2 j (1 + t2x − x2 j+2z)

∏ j
i=1(1 + (t − 1)x2i z)
∏2 j+2

i=1 (1 − xi z)

)
.

Thus, we may state the following result.

Theorem 2.7 The generating function Q(1, x, t), where t marks the number of cor-
ners at even levels, is given by

Q(1, x, t) = t2x
∑

j≥0

x2 j
∏ j

i=1

(
1 + (t − 1)x2i

)

∏2 j+1
i=1

(
1 − xi

)

+ t4x2
∑

j≥0

x2 j
∏ j

i=1

(
1 + (t − 1)x2i

)

∏2 j+2
i=1

(
1 − xi

) .
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For the total number of such corners, we calculate

d

dt
Q(1, x, t)

∣∣∣
t=1

= 2
∑

j≥0

x2 j+1

∏2 j+1
i=1

(
1 − xi

) + x
∑

j≥0

x2 j
∑ j

i=1 x
2i

∏2 j+1
i=1

(
1 − xi

)

+ 4
∑

j≥0

x2 j+2

∏2 j+2
i=1

(
1 − xi

) + x2
∑

j≥0

x2 j
∑ j

i=1 x
2i

∏2 j+2
i=1

(
1 − xi

) ,

which implies

d

dt
Q(1, x, t)

∣∣∣
t=1

= 2 − x2

1 − x2
∑

j≥0

x2 j+1

∏2 j+1
i=1

(
1 − xi

) + 3 − 2x2

1 − x2
∑

j≥0

x2 j
∏2 j

i=1

(
1 − xi

) − 3.

(1)

Note that
∑

j≥0
x j y j

∏ j
i=1

(
1−xi

) = 1∏
j≥1

(
1−yx j

) . By splitting the respective sums above

into thosewith the largest part odd (and generating function
∏

j≥1
1

1−x j −
∏

j≥1
1

1+x j ),

or the largest part even (with generating function
∏

j≥1
1

1−x j +∏
j≥1

1
1+x j ), we obtain

d

dt
Q(1, x, t) |t=1 = 5 − 3x2

2
(
1 − x2

) ∏
j≥1

(
1 − x j

) + 1

2
∏

j≥1

(
1 + x j

) − 3. (2)

Using the facts that 1∏
j≥0

(
1−x j

) = ∑
j≥0 P( j)x j and 1∏

j≥0

(
1+x j

) = ∑
j≥0 P

′( j)x j

(see sequence A081362 in [9]), we find

Theorem 2.8 Let n ≥ 1, then the total number of corners at even level 2k, where
k ≥ 0, in all partitions of n is given by

1

2
(5P(n) + P ′(n)) +

∑

j≥1

P(n − 2 j).

3 Corners of type (a, b)

In this section, we study partitions according to the number of corners of type (a, b).
Let

Pk;a,b(x) := Pk;a,b(x, q)

be the generating function for the number of partitions of n according to the number
of corners of type (a, b)with first part of size k, where x marks the size of the partition
and q the number of such corners. Then

123
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Pk;a,b(x) = xk

1 − xk

k−1∑

j=0

Pj;a,b(x) + (q − 1)xka Pk−b;a,b(x),

where P0;a,b(x) := 1. This is equivalent to

Pk;a,b(x) = xk
k∑

j=0

Pj;a,b(x) + (q − 1)xka(1 − xk)Pk−b;a,b(x)δk≥b for k ≥ 0.

Define Pa,b(x, y, q) := ∑
k≥0 Pk;a,b(x)yk . By multiplying the last recurrence by yk

and summing over k ≥ 0, we get the following result.

Theorem 3.1 The generating function Pa,b(x, y, q) satisfies

Pa,b(x, y, q) = 1

1 − xy
Pa,b(x, xy, q)

+ (q − 1)ybxab
(
Pa,b

(
x, xa y, q

) − xb Pa,b
(
x, xa+1y, q

))
.

Now we will find an explicit formula for the generating function P1,b(x, y, q). To
do that we need the following lemma.

Lemma 3.2 Let A0 = {1} and A1 = {a0}. For n ≥ 2, we define An to be the set

An−1 · an−1 ∪ An−2 · bn−2,

where B · x = {π · x | π ∈ B}. Assume that αi = aiαi+1 +biαi+2 for all i ≥ 0. Then

α0 =
⎛

⎝
∑

π∈An+1

π

⎞

⎠ αn+1 +
⎛

⎝
∑

π∈An

π

⎞

⎠ bnαn+2,

for all n ≥ 0.

Proof We proceed by induction on n. For n = 0, the statement reduces to α0 =
a0α1 + b0α2, which holds. Assume that the claim holds for n, and let us prove it for
n + 1. By the induction hypothesis, we have

123



210 A. Blecher et al.

α0 =
⎛

⎝
∑

π∈An+1

π

⎞

⎠ αn+1 +
⎛

⎝
∑

π∈An

π

⎞

⎠ bnαn+2

=
⎛

⎝
∑

π∈An+1

π

⎞

⎠ (
an+1αn+2 + bn+1αn+3

) +
⎛

⎝
∑

π∈An

π

⎞

⎠ bnαn+2

=
⎛

⎝
∑

π∈An+1

πan+1 +
∑

π∈An

πbn

⎞

⎠ αn+2 +
⎛

⎝
∑

π∈An+1

π

⎞

⎠ bn+1αn+3,

which, by the definition of the sets An , implies

α0 =
⎛

⎝
∑

π∈An+2

π

⎞

⎠αn+2 +
⎛

⎝
∑

π∈An+1

π

⎞

⎠ bn+1αn+3.

This completes the induction step. ��

Clearly, the set An in the statement of the above Lemma 3.2 can be described
bijectively as all sequences π0π1 · · · πs such that π0 = 0, πs ∈ {n − 1, n − 2} and
π j − π j−1 = 1, 2 for all j = 1, 2, . . . , s. We denote all such sequences by Bn . For
each word π = π0π1 · · · π j ∈ Bn , we define

J (π) = {i |πi+1 − πi = 2 with i = 0, 1, . . . , j − 1, or πi = π j = n − 2},
I (π) = {i |πi+1 − πi = 1 with i = 0, 1, . . . , j − 1, or πi = π j = n − 1}.

Therefore,

∑

π∈An

π =
∑

π∈Bn

∏

i∈J (π)

bπi

∏

i∈I (π)

aπi .

By Theorem 3.1 with a = 1, the generating function Pa,b(x, y, q) satisfies

P1,b(x, y, q) =
(

1

1 − xy
+ (q − 1)ybxb

)
P1,b(x, xy, q)

− (q − 1)ybx2b P1,b
(
x, x2y, q

)
.

Define αi = P1,b
(
x, xi y, q

)
, ai = 1

1−xi+1y
+ (q − 1)ybxb(i+1) and

bi = (1 − q)ybxb(i+2); so

αi = aiαi+1 + biαi+2,

123
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where lim j→∞ α j = 1. Hence, by Lemma 3.2 (note that bi → 0 when i → ∞), we
have

α0 =
∑

π∈B∞

∏

i∈J (π)

bπi

∏

i∈I (π)

aπi ,

where B∞ = limn→∞ Bn which is the set of all sequences π0π1π2 · · · such that
π0 = 0 and πi+1 − πi is 1 or 2. So we can state the following result.

Theorem 3.3 The generating function P1,b(x, y, q) is given by

P1,b(x, y, q)
∏

i≥1

(
1

1−xi y
+ (q − 1)ybxbi

)

=
∑

π∈B∞

(1 − q)|J (π)|yb|J (π)|x2b|J (π)|+b
∑

i∈J (π) πi

∏
i∈J (π),m=1,2

(
1

1−xπi+m y
+ (q − 1)ybxb(πi+m)

) .

Note that J (π) = ∅ if and only if π = 0123 · · · . Thus the above theorem with
q = 1 becomes

P1,b(x, y, 1) =
∏

i≥1

1

1 − xi y
,

as is well known.
Also, note that |J (π)| = 1 if and only if there exists i ≥ 0 such that

π = 012 · · · i(i + 2)(i + 3)(i + 4) · · · ,

and |J (π)| = 2 if and only if there exists i ′ > i + 1 ≥ 1 such that

π = 012 · · · i(i + 2)(i + 3) · · · i ′(i ′ + 2)(i ′ + 3)(i ′ + 4) · · · .

(Similarly, we can characterize all the infinite sequences with J (π) = m). Then the
above theorem shows that

P1,b(x, y, q)
∏

i≥1

(
1

1−xi y
+ (q − 1)ybxbi

)

= 1 + (1 − q)ybxb
∑

s≥1

xbs(
1

1−xs y + (q − 1)ybxbs
) (

1
1−xs+1y

+ (q − 1)ybxbs+b
)

+
∑

π∈B∞, |J (π)|≥2

(1 − q)|J (π)|yb|J (π)|x2b|J (π)|+b
∑

i∈J (π) πi

∏
i∈J (π),m=1,2

(
1

1−xπi+m y
+ (q − 1)ybxb(πi+m)

) .
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212 A. Blecher et al.

Another way to solve the recurrence αi = aiαi+1 + biαi+2 in Lemma 3.2 is by
using continued fractions. Note that αi

αi+1
= ai + bi

αi+1
αi+2

, for all i ≥ 0. Therefore,

αi

αi+1
= ai + bi

ai+1 + bi+1

ai+2 + . . .

.

So, multiplying over all i ≥ 0, assuming that lim j→∞ α j = 1, we obtain

α0 =
∏

i≥0

⎛

⎜⎜⎜⎜⎝
ai + bi

ai+1 + bi+1

ai+2 + . . .

⎞

⎟⎟⎟⎟⎠
.

Thus, if we define αi = P1,b(x, xi y, q), ai = 1
1−xi+1y

+ (q − 1)ybxb(i+1) and bi =
(1 − q)ybx (2+i)b, we have the following result.

Theorem 3.4 The generating function P1,b(x, y, q) is given by

∏

i≥0

⎛

⎜⎜⎜⎜⎜⎜⎝

1

1 − xi+1y
+ (q − 1)ybxb(i+1)+ (1−q)ybx(2+i)b

1
1−xi+2 y

+ (q − 1)ybxb(i+2)+ (1−q)ybx(3+i)b

1
1−xi+3 y

+(q−1)ybxb(i+3)+
. . .

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Note that by comparing Theorems 3.3 and 3.4, we get the following corollary.

Corollary 3.5 We have

P1,b(x, y, q) =
∏

i≥1

(
1

1 − xi y
+ (q − 1)ybxbi

)

×
∑

π∈B∞

(1 − q)|J (π)|yb|J (π)|x2b|J (π)|+b
∑

i∈J (π) πi

∏
i∈J (π),m=1,2

(
1

1−xπi+m y
+ (q − 1)ybxb(πi+m)

)
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=
∏

i≥0

⎛

⎜⎜⎜⎜⎝
1

1 − xi+1y
+ (q − 1)ybxb(i+1)

+ (1 − q)ybx (2+i)b

1
1−xi+2 y

+ (q − 1)ybxb(i+2) + (1−q)ybx (3+i)b

1
1−xi+3 y

+(q−1)ybxb(i+3)+. . .

⎞

⎟⎟⎟⎟⎠
.

3.1 Total number of corners of type (a, b)

Using Theorem 3.1, we find the generating function for the total number of corners of
type (a, b) to be

d

dq
Pa,b(x, y, q)

∣∣∣
q=1

= 1

1 − xy

d

dq
Pa,b(x, xy, q)

∣∣∣
q=1

+ ybxab
(
Pa,b

(
x, xa y, 1

) − xbPa,b
(
x, xa+1y, 1

))
.

Using Pa,b(x, y, 1) = 1∏
j≥1(1−x j y)

, this is equivalent to

d

dq
Pa,b(x, y, q)

∣∣∣
q=1

= 1

1 − xy

d

dq
Pa,b(x, xy, q)

∣∣∣
q=1

+ ybxab
1 − xb + xa+b+1y
∏

j≥a+1

(
1 − x j y

) .

By iterating this an infinite number of times, and noting that d
dq Pa,b(x, xs, q)

∣∣∣
q=1

→ 0

as s → ∞, we have

d

dq
Pa,b(x, 1, q)

∣∣∣
q=1

=
∑

j≥a

x jb

∏ j−a
i=1

(
1 − xi

)
1 − xb + x j+b+1

∏
i≥ j+1

(
1 − xi

)

= xab
∏

i≥1

(
1 − xi

)
∑

j≥0

x jb(1 − xb + x j+a+b+1)
j+a∏

i= j+1

(
1 − xi

)
.

(3)

Thus, by Lemma 2.3 and Eq. (3),

d

dq
Pa,b(x, y, q)

∣∣∣
q=1

= xab
(
1−xb

)
∏

i≥1

(
1−xi

)
( ∏a

i=1

(
1−xi

)
∏b+a

i=b

(
1−xi

) +xa+b+1

∏a
i=1

(
1−xi

)
∏b+a+1

i=b

(
1 − xi

)

)
.

This is captured in the following theorem.
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Fig. 2 Bijection between
number of (a, b) corners in Pn
and parts of multiplicity a + 1 in
Pn+b

b
a

b a+1
x...x

π : Pn −→ Pn+b

Theorem 3.6 The generating function for the total number of corners of type (a, b)
in all partitions is given by

d

dq
Pa,b(x, 1, q)

∣∣∣
q=1

= xab
∏a

i=1

(
1 − xi

)
∏

i≥1

(
1 − xi

)∏b+a+1
i=b+1

(
1 − xi

) .

Example 3.7 Theorem 3.6 for b = 1 leads to

d

dq
Pa,1(x, 1, q)

∣∣∣
q=1

= xa(1 − x)(
1 − xa+1

)(
1 − xa+2

)∏
i≥1

(
1 − xi

)

= 1

x

(
1

1 − xa+1 − 1

1 − xa+2

)
1

∏
i≥1

(
1 − xi

) ,

which implies that the total number of corners of type (a, 1) in all partitions of n is
given by

∑

j≥0

(P(n + 1 − j (a + 1)) − P(n + 1 − j (a + 2))).

Let Pn denote the set of all partitions of size n. There is a simple correspondence
between the total number of corners of type (a, b) in Pn and the number of parts ≥ b
of multiplicity a + 1 in Pn+b. We illustrate the bijection in Fig. 2.

Note, however, that the distributions of corners of type (a, b) and of parts of multi-
plicity a+1 are quite different. For example, for the case where a = 1, the generating
function for partitions with no parts of multiplicity 2 is

∏∞
i=1(

1
1−xi

− x2i ), whereas
by setting q = 0 in Theorem 3.4, the generating function for partitions with no corner
of type (1, b) is

P1,b(x, y, 0)

=
∏

i≥0

⎛

⎜⎜⎜⎜⎝
1

1 − xi+1y
− ybxb(i+1) + ybx (2+i)b

1
1−xi+2y

− ybxb(i+2) + ybx (3+i)b

1
1−xi+3 y

−ybxb(i+3)+. . .

⎞

⎟⎟⎟⎟⎠
.
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4 Corners of type (a+, b)

We define a corner of type (a+, b) to be a corner of type ( j, b) for any j ≥ a. Let

Pk;a+,b(x) := Pk;a+,b(x, q)

be the generating function for the number of partitions according to the number of
corners of type (a+, b) with first part k. Then for k ≥ b,

Pk;a+,b(x) = (
xk + x2k + · · · + xk(a−1))

k−1∑

j=0

Pj;a+,b(x)

+ xka

1 − xk

⎛

⎝(q − 1)Pk−b;a+,b(x) +
k−1∑

j=0

Pj;a+,b(x)

⎞

⎠

with Pk;a+,b(x) = xk

(1−x)(1−x2)···(1−xk )
for k = 0, 1, . . . , b − 1. Thus,

Pk;a+,b(x) = xk
k∑

j=0

Pj;a+,b(x) + xka(q − 1)Pk−b;a+,b(x)δk≥b.

Define Pa+,b(x, y, q) := ∑
k≥0 Pk;a+,b(x, q)yk . By multiplying the last recurrence

by yk and summing over k ≥ 0, we get

Pa+,b(x, y, q) = 1

1 − xy
Pa+,b(x, xy, q) + (q − 1)xab yb Pa+,b(x, x

a y, q). (4)

We solve the recursion in the case where a = 1.

Theorem 4.1 The generating function P1+,b(x, y, q) is given by

P1+,b(x, y, q) =
∏

i≥1

(
1

1 − xi y
+ (q − 1)(xi y)b

)
.

Moreover, the generating function for the number of partitions without corners of types
(1+, b) is given by

P1+,b(x, 1, 0) =
∏

i≥1

(
1

1 − xi
− xib

)
.

Proof By (4) with a = 1, we have

P1+,b(x, y, q) =
(

1

1 − xy
+ (q − 1)(xy)b

)
P1+,b(x, xy, q),
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which, by repeated iteration and using limi→∞ P1+,b(x, xi y, q) = 1, implies

P1+,b(x, y, q) =
∏

i≥1

(
1

1 − xi y
+ (q − 1)(xi y)b

)
,

as required. ��

4.1 Total number of corners of type (a+, b)

Differentiating Eq. (4) with respect to q, then substituting q = 1 and using
Pa+,b(x, y, 1) = 1∏

j≥1(1−x j y)
, we obtain

d

dq
Pa+,b(x, y, q)

∣∣∣
q=1

= 1

1 − xy

d

dq
Pa+,b(x, xy, q)

∣∣∣
q=1

+ xab yb Pa+,b(x, x
a y, 1).

This implies

d

dq
Pa+,b(x, y, q)

∣∣∣
q=1

= xab yb∏
j≥a+1(1 − x j y)

+ 1

1 − xy

d

dq
Pa+,b(x, xy, q)

∣∣∣
q=1

.

Iterating infinitely many times, we obtain

d

dq
Pa+,b(x, y, q)

∣∣∣
q=1

=
∑

j≥0

x (a+ j)b yb
∏ j

i=1

(
1 − xi y

) ∏
i≥a+1+ j

(
1 − xi y

) .

By Lemma 2.3, this leads to the following result.

Theorem 4.2 The generating function for the total number of corners of type (a+, b)
in all partitions of n is given by

d

dq
Pa+,b(x, 1, q)

∣∣∣
q=1

= xab
∏a

i=1

(
1 − xi

)
∏

i≥1

(
1 − xi

) ∏a+b
i=b

(
1 − xi

) .

Example 4.3 Theorem 4.2 for a = 1 shows that

d

dq
P1+,b(x, 1, q)

∣∣∣
q=1

= 1
∏

i≥1

(
1 − xi

)
(

1

1 − xb
− 1

1 − xb+1

)
.

Thus, the total number of corners of type (1+, b) in all the partitions of n is given by

∑

j≥1

(P(n − bj) − P(n − (b + 1) j)).
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1

a
j

b

a+1

j

π : Pn −→ Pn+b

A

CC

A

Fig. 3 Bijection between number of (a+, b) corners in Pn and parts in Pn+b

We note that a simple bijection between a Ferrers diagram and its transpose implies
that the above results also count corners of type (a, b+).

We also note that the number of corners of type (a+, b) in the partitions of n equals
the number ≥ b of parts of size a + 1 in the partitions of n + b. We illustrate the
bijection in Fig. 3.

First, we add b cells to the first part of size j − b and then conjugate the a+ 1 parts
of size j ; thereafter we rearrange all parts (in the right-hand side drawing in Fig. 3) in
descending order.

Example 4.4 For a = 2, the corners of type (2+, 1) in the partition 2211 maps to the
two different partitions: 322 and 331. Also, the corner of type (2+, 1) in the partition
111111 (resp. 21111, 3111, 411) maps to the partition 31111 (resp. 3211, 331, 43).

5 Corners of type (a+, b+)

Let Pk;a+,b+(x) := Pk;a+,b+(x, q) be the generating function for the number of
partitions of n according to the number of corners of type (a+, b+) with first part k.
Then for k ≥ b,

Pk;a+,b+(x) =
(
xk + x2k + · · · + xk(a−1)

) k−1∑

j=0

Pj;a+,b+(x)

+ xka

1 − xk

⎛

⎝q
k−b∑

j=0

Pj;a+,b+(x) +
k−1∑

j=k−b+1

Pj;a+,b+(x)

⎞

⎠

with Pk;a+,b+(x) = xk

(1−x)(1−x2)···(1−xk )
for k = 0, 1, . . . , b − 1. Thus,

Pk;a+,b+(x) = xk
k∑

j=0

Pj;a+,b+(x) + (q − 1)xka
k−b∑

j=0

Pj;a+,b+(x).
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Define Pa+,b+(x, y, q) := ∑
k≥0 Pk;a+,b+(x, q)yk . Multiplying the last recurrence

by yk and summing over k ≥ 0, we get

Pa+,b+(x, y, q) = 1

1 − xy
Pa+,b+(x, xy, q) + (q − 1)xab yb

1 − xa y
Pa+,b+(x, xa y, q).

(5)
For a = 1, we obtain the following result.

Theorem 5.1 The generating function P1+,b+(x, y, q) is

P1+,b+(x, y, q) =
∏

i≥1

1 + (q − 1)
(
xi y

)b

1 − xi y
.

Note that Pa+,b+(x, y, 1) = 1∏
j≥1(1−x j y)

. By differentiating Eq. (5) with respect

to q and then substituting q = 1, we obtain

d

dq
Pa+,b+(x, y, q)

∣∣∣
q=1

= 1
1−xy

d
dq Pa+,b+(x, xy, q)

∣∣∣
q=1

+ xab yb

1−xa y Pa+,b+(x, xa y, 1),

which implies

d

dq
Pa+,b+(x, y, q)

∣∣∣
q=1

= 1

1 − xy

d

dq
Pa+,b+(x, xy, q)

∣∣∣
q=1

+ xab yb
∏

j≥a

(
1 − x j y

) .

Iterating infinitely many times, we obtain

d

dq
Pa+,b+(x, y, q)

∣∣∣
q=1

=
∑

j≥0

x (a+ j)b yb
∏

i≥a+ j

(
1 − xi y

) ∏ j
i=1

(
1 − xi y

) .

By Lemma 2.3b, this implies the following result.

Theorem 5.2 The generating function for the total number of corners of type
(a+, b+) in all partitions is given by

d

dq
Pa+,b+(x, 1, q)

∣∣∣
q=1

= xab
∏a−1

i=1

(
1 − xi

)
∏

i≥1(1 − xi )
∏a+b−1

i=b

(
1 − xi

) .

Example 5.3 Theorem 5.2 for a = 1 shows that

d

dq
P1+,b+(x, 1, q)

∣∣∣
q=1

= xb

(1 − xb)
∏

i≥1

(
1 − xi

) .
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Thus, the total number of corners of type (1+, b+) in all partitions of n is given by

∑

j≥1

P(n − bj).

6 Corners of size m

We shall define the size of a corner of type (a, b) to be m when m = a + b. In this
section, we find the generating function that counts the total number of corners of size
m in partitions of n. For a corner of size m, where m is fixed, there are p parts of size
k followed by a part of size k + p −m, for 1 ≤ p ≤ m − 1. We denote the generating
function by Pk,m(x) := Pk,m(x, q), where q marks such corners, as illustrated in
Fig. 4.

Clearly, the generating function satisfies the following equation:

Pk,m = xk

1 − xk

k−1∑

j=0

Pj,m + (q − 1)
m−1∑

p=1

xkp Pk+p−m,m .

Multiplying by (1 − xk) and simplifying,

Pk,m = xk
k∑

j=0

Pj,m + (q − 1)(1 − xk)
m−1∑

p=1

xkp Pk+p−m,m . (6)

We now define Pm(x, y, q) := ∑
k≥0 Pk,m(x, y, q)yk . Thus after multiplying (6) by

yk , summing over all k and interchanging the order of summation, we have

Fig. 4 Corner of size m

k

p

m-p
k-m+p corner of size m
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Pm(x, y, q) =
∞∑

j=0

Pj,m
(xy) j

1 − xy
+ (q − 1)

m−1∑

p=1

(
x p y

)m−p ∑

r≥0

(
x p y

)r−p+m
Pr,m

− (q − 1)
m−1∑

p=1

∑

r≥0

(
x1+p y

)r−p+m
Pr,m (where r = k + p − m)

= Pm(x, xy, q)

1 − xy
+ (q − 1)

m−1∑

p=1

Pm
(
x, x p y, q

)(
x p y

)m−p

− (q − 1)
m−1∑

p=1

Pm
(
x, x p+1y, q

)(
x p+1y

)m−p
. (7)

Following the previous procedure for finding the total number of corners, we compute

dPm(x, y, q)

dq

∣∣∣
q=1

= 1

1 − xy

dPm(x, xy, q)

dq

∣∣∣
q=1

+
m−1∑

p=1

Pm
(
x, x p y, 1

)(
x p y

)m−p

−
m−1∑

p=1

Pm
(
x, x p+1y, 1

)(
x p+1y

)m−p
. (8)

The generating function for all partitions is Pm(x, y, 1) = 1∏
j≥1(1−x j y)

. Therefore

dPm(x, y, q)

dq

∣∣∣
q=1

= 1

1 − xy

dPm(x, xy, q)

dq

∣∣∣
q=1

+
m−1∑

p=1

1 − xm−p
(
1 − x1+p yv)

∏
j≥1

(
1 − x j+p y

)
(
x p y

)m−p
. (9)

After infinitely many iterations and noticing that dPm(x,xs ,q)
dq → 0 as s → ∞, we

obtain our result

Theorem 6.1 The generating function for the total number of corners of size m is

dPm(x, 1, q)

dq

∣∣∣
q=1

=
∞∑

i=0

1
∏i

l=1

(
1 − xl

)
m−1∑

p=1

(
x p+i

)m−p(1 − xm−p + xm+1+i
)

∏
j≥1

(
1 − x p+i+ j

)

(10)

= 1
∏∞

l=1

(
1 − xl

)
m−1∑

p=1

x p(m−p) ∏p
i=1

(
1 − xi

)
∏m+1

i=m−p+1

(
1 − xi

) . (11)

Here, Eq. (11) follows from Eq. (10) by using Lemma 2.3.
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7 Asymptotics

To find asymptotic estimates for the various types of corners studied above, we need
to study generating functions of the form P(x)F(x), where P(x) is the generating
function for the number of partitions. In the paper [6], the authors show how such
asymptotic expansions can be obtained in a quasi-automatic way from expansions of
F(x) around x = 1. For the convenience of the reader, we state the relevant results
from [6] that we need:

Theorem 7.1 Suppose that the function F(z) satisfies

|F(z)| = O(eC/(1−|z|)η ) as |z| → 1 for some C > 0 and η < 1, (12)

and F(e−t ) = atb + O( f (|t |)) as t → 0, t > 0, for real numbers a, b. Then one
has

1

p(n)
[xn]P(x)F(x) = a

(
2π√

24n − 1

)b

×
I|b+3/2|

(√
2π2

3

(
n − 1

24

))

I3/2

(√
2π2

3

(
n − 1

24

))

+ O
(
exp

(
−n1/2−ε

)
+ f

(
π√
6n

+ O
(
n−1/2−ε

)))

as n → ∞ for any 0 < ε <
1−η
2 , where Iν denotes a modified Bessel function of the

first kind.

It is also shown in [6] that the quotient of modified Bessel functions simplifies, with

h = |b + 3/2| − 1/2 and m =
√

2π2

3

(
n − 1

24

)
, to

I|b+3/2|
(√

2π2

3

(
n − 1

24

))

I3/2

(√
2π2

3

(
n − 1

24

)) = m

m − 1
×

h∑

j=0

(h + j)!
j !(h − j)!

(
− 1

2m

) j

+ O(e−2m).

(13)

In our applications, we apply (13) together with Theorem 7.1. Thereafter, we use
computer algebra to obtain asymptotic formulae in terms of powers of n.

Firstly, in the case of the total number of corners of type (a, b), we have
d
dq Pa,b(x, y, q)

∣∣∣
q=1

= P(x)Fa,b(x), where

Fa,b(x) = xab
∏a

i=1(1 − xi )
∏b+a+1

i=b+1 (1 − xi )
.
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To apply Theorem 7.1, we need to consider the Taylor expansion of Fa,b(e−t ):

Fa,b(e
−t ) = e−tab ∏a

i=1(1 − e−i t )
∏a+1

i=1 (1 − e(i+b)t )

= 1 − abt

t

∏a
i=1(i − i2t/2)

∏a+1
i=1 ((i + b) − (i + b)2t/2)

+ O(t). (14)

Now
a∏

i=1

(i − i2t/2) = a!(1 − ta(a + 1)/4) + O(t2) (15)

and

a+1∏

i=1

((i+b)−(i + b)2t/2)= (a + b + 1)!
b! (1 − t (a + 1)(2b + a + 2)/4) + O(t2).

(16)

Substituting these into (14) gives

Fa,b(e
−t ) = a!b!

(a + b + 1)!
(
1

t
− ab − a − b − 1

2

)
+ O(t). (17)

Using this in Theorem 7.1 leads to

Theorem 7.2 The average number of corners of type (a, b) in a random partition of
n is

a!b!√6n

π(a + b + 1)! − a!b! (π2ab − π2a − π2b − π2 − 6
)

2π2(a + b + 1)! + O(n−1/2).

In the case of the total number of corners of type (a+, b), we have
d
dq Pa,b(x, y, q)

∣∣∣
q=1

= P(x)Fa,b(x), where

Fa,b(x) = xab
∏a

i=1(1 − xi )
∏b+a

i=b (1 − xi )
.

From this we find

Fa,b(e
−t ) = a!(b − 1)!

(a + b)!
(
1

t
− b(a − 2)

2

)
+ O(t). (18)

Using this in Theorem 7.1 leads to
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Theorem 7.3 The average number of corners of type (a+, b) in a random partition
of n is

a!(b − 1)!√6n

π(a + b)! − a!(b − 1)! (π2ab − 2π2b − 6
)

2π2(a + b)! + O(n−1/2).

Next for the total number of corners of type (a+, b+), we have

Fa,b(x) = xab
∏a−1

i=1 (1 − xi )
∏b+a−1

i=b (1 − xi )
.

This yields

Fa,b(e
−t ) = (a − 1)!(b − 1)!

(a + b − 1)!
(
1

t
− ab

2

)
+ O(t). (19)

Using this in Theorem 7.1 leads to

Theorem 7.4 The average number of corners of type (a+, b+) in a random partition
of n is

(a − 1)!(b − 1)!√6n

π(a + b − 1)! − (a − 1)!(b − 1)! (π2ab − 6
)

2π2(a + b − 1)! + O(n−1/2).

For the total number of corners treated in Theorem 2.4, we use F(x) = 2x−1
1−x + 4

in Theorem 7.1 to obtain

Theorem 7.5 The average number of corners in a random partition of n is

√
6n

π
+ 6 + 5π2

2π2 + O(n−1/2).

For the total number of corners at even level, the contribution of 1
2

∏
j≥1(1+x j )

to (2)

is asymptotically negligible; therefore, we may take F(x) = 5−3x2

2(1−x2)
in Theorem 7.1

to obtain

Theorem 7.6 The average number of corners at even level in a random partition of
n is √

6n

2π
+ 3

2π2 + 2 + O(n−1/2).

Finally, for the total number of corners of size m we take

F(x) =
m−1∑

a=1

xa(m−a)
∏a

i=1(1 − xi )
∏m+1

i=m−a+1(1 − xi )
,

in Theorem 7.1, with the aid of the expansions (17) applied to cases (a,m − a) with
1 ≤ a ≤ m − 1, to obtain
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Theorem 7.7 The average number of corners of size m in a random partition of n is

1

m + 1

m−1∑

a=1

(
m

a

)−1
(√

6n

π
+ π2

(
a2 − am + m + 1

) + 6

2π2

)
+ O(n−1/2).
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