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Abstract Broken k-diamond partitions were introduced in 2007 by Andrews and
Paule. Let �k(n) denote the number of broken k-diamond partitions of n. In 2010,
Radu and Sellers provided many beautiful congruences for �k(n) modulo 2 when
k = 2, 3, 5, 6, 8, 9, 11. Among them when k = 8, they showed that �8(34n+ r) ≡ 0
(mod 2) when r ∈ {11, 15, 17, 19, 25, 27, 29, 33}. In this article, by using properties
of modular forms, we extend this result for �8(n). We have completely determined
the behavior of �8(2n + 1) modulo 2. As a consequence, we obtain many more
congruences for �8(n) modulo 2.
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1 Introduction

In 2007, Andrews and Paule [1] introduced a new class of combinatorial objects called
broken k-diamond partitions. Let �k(n) denote the number of broken k-diamond
partitions of n, and they proved that

∞∑

n=0

�k(n)qn =
∞∏

n=1

(1 − q2n)(1 − q(2k+1)n)

(1 − qn)3(1 − q(4k+2)n)
. (1)
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In [1], they proved a congruence for �1(n) that for all n ≥ 0, �1(2n + 1) ≡ 0
(mod 3). They also conjectured several other congruences modulo 2 satisfied by cer-
tain �k(n). Since then, mathematicians have provided numerous additional congru-
ences satisfied by �k(n) for small integers k. For example, Hirschhorn and Sellers [3]
proved some parity results for �1(n) and �2(n):

�1(4n + 2) ≡ 0 (mod 2)

�1(4n + 3) ≡ 0 (mod 2)

�2(10n + 2) ≡ 0 (mod 2)

�2(10n + 6) ≡ 0 (mod 2).

After that, Chan [2] provided a different proof of the above results and obtained
some new congruences for �2(n) modulo 5. Paule and Radu [6] extended the results
of �2(n) modulo 5, and made four conjectures about �3(n) modulo 7 and �5(n)

modulo 11. Two of those conjectures were proved by Xiong [10] in 2011, and the
other two were proved by Jameson [4] recently. See more results of congruences for
�k(n) in Radu and Sellers [7–9], Yao [11], etc.

In 2010, Radu and Sellers [7] provided many beautiful congruences for �k(n)

modulo 2 when k = 2, 3, 5, 6, 8, 9, 11. Among them when k = 8, they proved that
for all n ≥ 0,

�8(34n + r) ≡ 0 (mod 2) (2)

when r ∈ {11, 15, 17, 19, 25, 27, 29, 33}. In our article, by using properties ofmodular
forms, we have obtainedmanymore congruences for�8(n)modulo 2. In fact, we have
completely determined the behavior of �8(2n + 1) modulo 2. It can be characterized
in the following theorem:

Theorem 1 The broken 8-diamond partition function is defined by

∞∑

n=0

�8(n)qn :=
∞∏

n=1

(1 − q2n)(1 − q17n)

(1 − qn)3(1 − q34n)
, (3)

and then we have

∞∑

n=0

�8(2n + 1)qn ≡
∞∏

n=1

(1 − qn)3 + q2
∞∏

n=1

(1 − q17n)3 (mod 2). (4)

With the help of the well-known identity [5, thm 1.60]

q ·
∞∏

n=1

(1 − q8n)3 =
∞∑

n=0

(−1)n(2n + 1)q(2n+1)2 , (5)
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equation (4) can be changed to

∞∑

n=0

�8(2n + 1)q8n+1 ≡
∞∑

n=0

q(2n+1)2 +
∞∑

n=0

q17(2n+1)2 (mod 2). (6)

That means �8(2n + 1) ≡ 1 (mod 2) if and only if 8n + 1 is a square or 17 times
a square. So we obtain a corollary to judge whether a congruence for �8(n) holds or
not:

Corollary 1 Let A, B be two nonnegative integers, B < A, then the congruence

�8(2An + 2B + 1) ≡ 0 (mod 2) (7)

holds for all n ≥ 0 if and only if 8B + 1 is a quadratic nonresidue mod 8A and
136B + 17 is a quadratic nonresidue mod 136A.

Based on the above corollary, we can derive many new congruences for �8(n)

modulo 2. Following the notation in [7], we write

f (tn + r1, r2, . . . , rm) ≡ 0 (mod 2)

to mean that, for each i ∈ {1, 2, . . . ,m},

f (tn + ri ) ≡ 0 (mod 2).

Example 1 The following congruences hold for all n ≥ 0:

�8(18n + 9, 15) ≡ 0 (mod 2)
�8(26n + 9, 11, 15, 19, 23, 25) ≡ 0 (mod 2)
�8(34n + 11, 15, 17, 19, 25, 27, 29, 33) ≡ 0 (mod 2)
�8(36n + 9, 15, 27, 33) ≡ 0 (mod 2)
�8(38n + 9, 11, 17, 23, 25, 27, 29, 33, 37) ≡ 0 (mod 2)
�8(42n + 17, 19, 25, 29, 35, 37) ≡ 0 (mod 2)
�8(50n + 17, 27, 37, 47) ≡ 0 (mod 2).

We can also directly obtain infinite families of congruences for �8(n) modulo 2.

Corollary 2 Let p be a odd prime, p �= 17, and t > 0 and α ≥ 0 are integers with
(p, t) = 1, and t · p2α+1 ≡ 1 (mod 8). Then the following congruence holds for all
n ≥ 0:

�8

(
2p2α+2n + 1

4
(p2α+1t − 1) + 1

)
≡ 0 (mod 2). (8)

We will prove these theorems and corollaries in Sects. 3 and 4. Note that after
examining small congruences for�8(n)modulo 2 by computer, we find that Corollary
1 has covered all congruences in the form �8(An + B) ≡ 0 (mod 2) for A ≤ 100.
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2 Preliminaries

In this section, we will introduce some notations of modular forms. The Dedekind’s
eta function η(z) is defined as

η(z) := q1/24
∞∏

n=1

(1 − qn),

where q = 2π i z, z ∈ H,H is the upper half complex plane. A function f (z) is called
an eta-quotient if it can be written as

f (z) =
∏

δ|N
η(δz)rδ ,

where δ and N are positive integers and rδ is an integer corresponding to δ. Let
Mk(Γ0(N ), χ) (resp. Sk(Γ0(N ), χ)) denote the set of all holomorphic modular forms
(resp. cusp forms) with respect to Γ0(N )with weight k and character χ ; the following
theorem helps us to determine when an eta-quotient is of a modular form:

Theorem 2 [5, thm 1.64] If f (z) = ∏
δ|N η(δz)rδ is an eta-quotient with k =

1
2

∑
δ|N rδ , with the additional properties that

∑

δ|N
δrδ ≡ 0 (mod 24)

and

∑

δ|N

N

δ
rδ ≡ 0 (mod 24),

then f (z) satisfies

f

(
az + b

cz + d

)
= χ(d)(cz + d)k f (z)

for every

(
a b
c d

)
∈ Γ0(N ). Here the character χ is defined by χ(d) :=

(
(−1)k ·s

d

)
,

where s := ∏
δ|N δrδ . Moreover, if f (z) is holomorphic (resp. vanishes) at all of the

cusps of Γ0(N ), then f (z) ∈ Mk(Γ0(N ), χ) (resp. Sk(Γ0(N ), χ)).

And the orders of an eta-quotient at cusps are determined by

Theorem 3 [5, thm 1.65] Let c, d, and N be the positive integers with d|N and
gcd(c, d) = 1. If f (z) is an eta-quotient satisfying the conditions of Theorem 2.1 for
N, then the order of vanishing of f (z) at the cusp c

d is
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N

24

∑

δ|N

gcd(d, δ)2rδ
gcd(d, N

d )dδ
.

If d is a positive integer and f (q) = ∑∞
n=0 a(n)qn is a formal power series, we

define the operator U (d) by

f (q)|U (d) :=
∞∑

n=0

a(dn)qn .

Proposition 2.22 in [5] shows that if d|N , f (z) ∈ Mk(Γ0(N ), χ), then f (z)|U (d) ∈
Mk(Γ0(N ), χ). Also note that the U (d) operator has the property

[( ∞∑

n=0

a(n)qn
)( ∞∑

n=0

b(n)qdn
)]

|U (d) =
( ∞∑

n=0

a(dn)qn
) ( ∞∑

n=0

b(n)qn
)

. (9)

For the purposes of studying congruences, we introduce the Sturm’s Theorem, to
show that every holomorphic modular formmodulo M is determined by its “first few”
coefficients. Let f (q) = ∑∞

n=0 a(n)qn be a formal power series with a(n) ∈ Z and
M be a positive integer, and define the order of f modulo M by

ordM ( f ) := min{n : a(n) �≡ 0 (mod M)},

then Sturm’s Theorem can be stated as

Theorem 4 [5, thm 2.58] Suppose that f (z), g(z) ∈ Mk(Γ0(N ), χ)
⋂

Z[[q]] and M
is prime. If

ordM ( f (z) − g(z)) ≥ 1 + kN

12

∏

p|N

(
1 + 1

p

)
,

where the product is over all prime divisors p of N , then f (z) ≡ g(z) (mod M).

With the above theorems, we can now start our proof of Theorem 1. We will
frequently use the following congruence during the proof:

∞∏

n=1

(1 − qn)2 ≡
∞∏

n=1

(1 − q2n) (mod 2). (10)

3 Proof of Theorem 1

Proof In this section, we will prove Eq. (4). Define eta-quotients F(z) and G(z) as
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F(z) := η(z)3η(2z)43η(17z)

η(34z)

= q3
∞∏

n=1

(1 − qn)3(1 − q2n)43(1 − q17n)

(1 − q34n)

and

G(z) := η(z)44η(2z)2 + η(z)43η(2z)η(17z)η(34z)

= q2
∞∏

n=1

(1 − qn)44(1 − q2n)2

+ q4
∞∏

n=1

(1 − qn)43(1 − q2n)(1 − q17n)(1 − q34n).

By Theorems 2 and 3, it is easy to verify that F(z),G(z) ∈ Mk(Γ0(N ), χ), where
k = 23, N = 34 ∗ 24, and χ(d) = (−1

d

)
. Applying operator U (2) to F(z), and using

Sturm’s Theorem, after checking the first 23 ∗ 8 ∗ 18 coefficients of F(z)|U (2) and
G(z) by computer, we find that

F(z)|U (2) ≡ G(z) (mod 2). (11)

On the other hand, by the definition of �8(n) in Eq. (3) (we define �8(n) = 0 if n
is not a nonnegative integer), using Eq. (10), we can see that

F(z) ≡ q3
∞∏

n=1

(1 − q2n)(1 − q17n)

(1 − qn)3(1 − q34n)
(1 − q2n)45

≡
(
q3

∞∑

n=0

�8(n)qn
) ∞∏

n=1

(1 − q2n)45 (mod 2),

so we have

F(z)|U (2) ≡
[( ∞∑

n=0

�8(n − 3)qn
)( ∞∏

n=1

(1 − q2n)45
)]

|U (2)

≡
( ∞∑

n=0

�8(2n − 3)qn
) ( ∞∏

n=1

(1 − qn)45
)

(by Eq. 9)

≡
(
q2

∞∑

n=0

�8(2n + 1)qn
)( ∞∏

n=1

(1 − qn)45
)

(mod 2). (12)
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Also note that

G(z) ≡ q2
∞∏

n=1

(1 − qn)48 + q4
∞∏

n=1

(1 − qn)45(1 − q17n)3 (mod 2) (13)

Combining (11), (12), and (13) together, we get Eq. (4). 	


4 Proof of Corollaries 1 and 2

Since we have proved Theorem 1, those corollaries are quite simple. From Eq.
(6), we know that if �8(2(An + B) + 1) ≡ 0 (mod 2) for all n ≥ 0, then both
8(An + B) + 1 and 17 ∗ (8(An + B) + 1) cannot be squares, which is equiva-
lent to say that 8B + 1 is a quadratic nonresidue mod 8A and 136B + 17 is a
quadratic nonresidue mod 136A. For example, let A = 9, then 8A = 72, and
8B+1 ∈ S := {1, 9, 17, 25, 33, 41, 49, 57, 65}. Among S, only 17, 33, 41, 57, 65 are
quadratic nonresidues mod 72, which means B ∈ {2, 4, 5, 7, 8}. Similarly, 136B+17
is a quadratic nonresidue mod 136A if and only if B ∈ {0, 3, 4, 6, 7}. Thus, only
B = 4 and B = 7 suit both conditions. Substituting A and B in �8(2(An + B) + 1),
we obtain the first result in Example 1.

To prove Corollary 2, write

2p2α+2n + 1

4
(p2α+1t − 1) + 1 = 2

(
p2α+2n + 1

8
(p2α+1t − 1)

)
+ 1.

By Theorem 1, we need to show that

8

(
p2α+2n + 1

8
(p2α+1t − 1)

)
+ 1 = p2α+1(8pn + t)

is neither a square, nor 17 times a square. This is obvious because under our assumption,
ordp

(
p2α+1(8pn + t)

) = 2α + 1. Now we complete our proof.
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