

More parity results for broken 8-diamond partitions

Yudong Wang

Received: 8 July 2014 / Accepted: 13 November 2014 / Published online: 7 January 2015 © Springer Science+Business Media New York 2015

Abstract Broken *k*-diamond partitions were introduced in 2007 by Andrews and Paule. Let $\Delta_k(n)$ denote the number of broken *k*-diamond partitions of *n*. In 2010, Radu and Sellers provided many beautiful congruences for $\Delta_k(n)$ modulo 2 when $k = 2, 3, 5, 6, 8, 9, 11$. Among them when $k = 8$, they showed that $\Delta_8(34n + r) \equiv 0$ (mod 2) when *r* ∈ {11, 15, 17, 19, 25, 27, 29, 33}. In this article, by using properties of modular forms, we extend this result for $\Delta_{8}(n)$. We have completely determined the behavior of $\Delta_8(2n + 1)$ modulo 2. As a consequence, we obtain many more congruences for $\Delta_8(n)$ modulo 2.

Keywords Broken k -diamond partitions \cdot Congruences \cdot Modular forms

Mathematics Subject Classification 11P83 · 11F11

1 Introduction

In 2007, Andrews and Paule [\[1](#page-6-0)] introduced a new class of combinatorial objects called broken *k*-diamond partitions. Let $\Delta_k(n)$ denote the number of broken *k*-diamond partitions of *n*, and they proved that

$$
\sum_{n=0}^{\infty} \Delta_k(n) q^n = \prod_{n=1}^{\infty} \frac{(1-q^{2n})(1-q^{(2k+1)n})}{(1-q^n)^3(1-q^{(4k+2)n})}.
$$
 (1)

Y. Wang (\boxtimes)

This work was supported by the National Nature Science Foundation of China (Grant No. 11071160).

Department of Mathematics, Shanghai Jiao Tong University, Dongchuan Road No.800, Shanghai 200240, China e-mail: wyd007001@sjtu.edu.cn

In [\[1\]](#page-6-0), they proved a congruence for $\Delta_1(n)$ that for all $n \geq 0$, $\Delta_1(2n + 1) \equiv 0$ (mod 3). They also conjectured several other congruences modulo 2 satisfied by certain $\Delta_k(n)$. Since then, mathematicians have provided numerous additional congruences satisfied by $\Delta_k(n)$ for small integers *k*. For example, Hirschhorn and Sellers [\[3\]](#page-6-1) proved some parity results for $\Delta_1(n)$ and $\Delta_2(n)$:

> $\Delta_1(4n + 2) \equiv 0 \pmod{2}$ $\Delta_1(4n + 3) \equiv 0 \pmod{2}$ $\Delta_2(10n + 2) \equiv 0 \pmod{2}$ $\Delta_2(10n + 6) \equiv 0 \pmod{2}$.

After that, Chan [\[2](#page-6-2)] provided a different proof of the above results and obtained some new congruences for $\Delta_2(n)$ modulo 5. Paule and Radu [\[6](#page-6-3)] extended the results of $\Delta_2(n)$ modulo 5, and made four conjectures about $\Delta_3(n)$ modulo 7 and $\Delta_5(n)$ modulo 11. Two of those conjectures were proved by Xiong [\[10](#page-7-0)] in 2011, and the other two were proved by Jameson [\[4](#page-6-4)] recently. See more results of congruences for $\Delta_k(n)$ in Radu and Sellers [\[7](#page-7-1)[–9\]](#page-7-2), Yao [\[11\]](#page-7-3), etc.

In 2010, Radu and Sellers [\[7\]](#page-7-1) provided many beautiful congruences for $\Delta_k(n)$ modulo 2 when $k = 2, 3, 5, 6, 8, 9, 11$. Among them when $k = 8$, they proved that for all $n > 0$,

$$
\Delta_8(34n+r) \equiv 0 \pmod{2} \tag{2}
$$

when $r \in \{11, 15, 17, 19, 25, 27, 29, 33\}$. In our article, by using properties of modular forms, we have obtained many more congruences for $\Delta_8(n)$ modulo 2. In fact, we have completely determined the behavior of $\Delta_8(2n + 1)$ modulo 2. It can be characterized in the following theorem:

Theorem 1 *The broken 8-diamond partition function is defined by*

$$
\sum_{n=0}^{\infty} \Delta_8(n) q^n := \prod_{n=1}^{\infty} \frac{(1 - q^{2n})(1 - q^{17n})}{(1 - q^n)^3 (1 - q^{34n})},
$$
(3)

and then we have

$$
\sum_{n=0}^{\infty} \Delta_8(2n+1)q^n \equiv \prod_{n=1}^{\infty} (1-q^n)^3 + q^2 \prod_{n=1}^{\infty} (1-q^{17n})^3 \pmod{2}.
$$
 (4)

With the help of the well-known identity [\[5,](#page-6-5) thm 1.60]

$$
q \cdot \prod_{n=1}^{\infty} (1 - q^{8n})^3 = \sum_{n=0}^{\infty} (-1)^n (2n+1) q^{(2n+1)^2},
$$
 (5)

 $\textcircled{2}$ Springer

equation [\(4\)](#page-1-0) can be changed to

$$
\sum_{n=0}^{\infty} \Delta_8(2n+1)q^{8n+1} \equiv \sum_{n=0}^{\infty} q^{(2n+1)^2} + \sum_{n=0}^{\infty} q^{17(2n+1)^2} \pmod{2}.
$$
 (6)

That means $\Delta_8(2n + 1) \equiv 1 \pmod{2}$ if and only if $8n + 1$ is a square or 17 times a square. So we obtain a corollary to judge whether a congruence for $\Delta_8(n)$ holds or not:

Corollary 1 *Let A*, *B be two nonnegative integers, B* < *A, then the congruence*

$$
\Delta_8(2An + 2B + 1) \equiv 0 \pmod{2} \tag{7}
$$

holds for all n \geq 0 *if and only if* $8B + 1$ *is a quadratic nonresidue mod* 8*A and* 136*B* + 17 *is a quadratic nonresidue mod* 136*A.*

Based on the above corollary, we can derive many new congruences for $\Delta_8(n)$ modulo 2. Following the notation in [\[7](#page-7-1)], we write

$$
f(tn + r_1, r_2, \dots, r_m) \equiv 0 \pmod{2}
$$

to mean that, for each $i \in \{1, 2, \ldots, m\}$,

$$
f(tn + r_i) \equiv 0 \pmod{2}.
$$

Example 1 The following congruences hold for all $n \geq 0$:

We can also directly obtain infinite families of congruences for $\Delta_8(n)$ modulo 2.

Corollary 2 *Let p be a odd prime,* $p \neq 17$ *, and* $t > 0$ *and* $\alpha \geq 0$ *are integers with* $(p, t) = 1$, and $t \cdot p^{2\alpha+1} \equiv 1 \pmod{8}$ *. Then the following congruence holds for all n* ≥ 0*:*

$$
\Delta_8 \left(2p^{2\alpha+2}n + \frac{1}{4}(p^{2\alpha+1}t - 1) + 1 \right) \equiv 0 \pmod{2}.
$$
 (8)

We will prove these theorems and corollaries in Sects. [3](#page-4-0) and [4.](#page-6-6) Note that after examining small congruences for $\Delta_8(n)$ modulo 2 by computer, we find that Corollary [1](#page-2-0) has covered all congruences in the form $\Delta_8(An + B) \equiv 0 \pmod{2}$ for $A \le 100$.

2 Preliminaries

In this section, we will introduce some notations of modular forms. The Dedekind's eta function $\eta(z)$ is defined as

$$
\eta(z) := q^{1/24} \prod_{n=1}^{\infty} (1 - q^n),
$$

where $q = 2\pi i z$, $z \in H$, H is the upper half complex plane. A function $f(z)$ is called an eta-quotient if it can be written as

$$
f(z) = \prod_{\delta|N} \eta(\delta z)^{r_{\delta}},
$$

where δ and *N* are positive integers and r_{δ} is an integer corresponding to δ . Let $M_k(\Gamma_0(N), \chi)$ (resp. $S_k(\Gamma_0(N), \chi)$) denote the set of all holomorphic modular forms (resp. cusp forms) with respect to $\Gamma_0(N)$ with weight *k* and character χ ; the following theorem helps us to determine when an eta-quotient is of a modular form:

Theorem 2 [\[5](#page-6-5), thm 1.64] *If* $f(z) = \prod_{\delta|N} \eta(\delta z)^{r_{\delta}}$ *is an eta-quotient with* $k =$ $\frac{1}{2} \sum_{\delta|N} r_{\delta}$, with the additional properties that

$$
\sum_{\delta|N} \delta r_{\delta} \equiv 0 \pmod{24}
$$

and

$$
\sum_{\delta|N} \frac{N}{\delta} r_{\delta} \equiv 0 \pmod{24},
$$

then f (*z*) *satisfies*

$$
f\left(\frac{az+b}{cz+d}\right) = \chi(d)(cz+d)^k f(z)
$$

for every $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$. Here the character χ is defined by $\chi(d) := \left(\frac{(-1)^k \cdot s}{d} \right)$, *where* $s := \prod_{\delta|N} \delta^{rs}$. Moreover, if $f(z)$ is holomorphic (resp. vanishes) at all of the *cusps of* $\Gamma_0(N)$ *, then* $f(z) \in M_k(\Gamma_0(N), \chi)$ (resp. $S_k(\Gamma_0(N), \chi)$).

And the orders of an eta-quotient at cusps are determined by

Theorem 3 [\[5](#page-6-5), thm 1.65] *Let c, d, and N be the positive integers with d*|*N and* $gcd(c, d) = 1$ *. If* $f(z)$ *is an eta-quotient satisfying the conditions of Theorem 2.1 for N*, then the order of vanishing of $f(z)$ at the cusp $\frac{c}{d}$ is

$$
\frac{N}{24} \sum_{\delta|N} \frac{\gcd(d, \delta)^2 r_{\delta}}{\gcd(d, \frac{N}{d}) d\delta}.
$$

If *d* is a positive integer and $f(q) = \sum_{n=0}^{\infty} a(n)q^n$ is a formal power series, we define the operator $U(d)$ by

$$
f(q)|U(d):=\sum_{n=0}^{\infty}a(dn)q^n.
$$

Proposition 2.22 in [\[5](#page-6-5)] shows that if $d|N, f(z) \in M_k(\Gamma_0(N), \chi)$, then $f(z)|U(d) \in$ $M_k(\Gamma_0(N), \chi)$. Also note that the $U(d)$ operator has the property

$$
\left[\left(\sum_{n=0}^{\infty} a(n) q^n \right) \left(\sum_{n=0}^{\infty} b(n) q^{dn} \right) \right] |U(d) = \left(\sum_{n=0}^{\infty} a(dn) q^n \right) \left(\sum_{n=0}^{\infty} b(n) q^n \right). \tag{9}
$$

For the purposes of studying congruences, we introduce the Sturm's Theorem, to show that every holomorphic modular form modulo *M* is determined by its "first few" coefficients. Let $f(q) = \sum_{n=0}^{\infty} a(n)q^n$ be a formal power series with $a(n) \in \mathbb{Z}$ and *M* be a positive integer, and define the order of *f* modulo *M* by

$$
\mathrm{ord}_M(f) := \min\{n : a(n) \neq 0 \pmod{M}\},\
$$

then Sturm's Theorem can be stated as

Theorem 4 [\[5](#page-6-5), thm 2.58] *Suppose that* $f(z), g(z) \in M_k(\Gamma_0(N), \chi) \cap \mathbb{Z}[[q]]$ *and* M *is prime. If*

$$
\operatorname{ord}_M(f(z) - g(z)) \ge 1 + \frac{kN}{12} \prod_{p|N} \left(1 + \frac{1}{p} \right),
$$

where the product is over all prime divisors p of N, then $f(z) \equiv g(z) \pmod{M}$ *.*

With the above theorems, we can now start our proof of Theorem [1.](#page-1-1) We will frequently use the following congruence during the proof:

$$
\prod_{n=1}^{\infty} (1 - q^n)^2 \equiv \prod_{n=1}^{\infty} (1 - q^{2n}) \pmod{2}.
$$
 (10)

3 Proof of Theorem [1](#page-1-1)

Proof In this section, we will prove Eq. [\(4\)](#page-1-0). Define eta-quotients $F(z)$ and $G(z)$ as

² Springer

$$
F(z) := \frac{\eta(z)^3 \eta(2z)^{43} \eta(17z)}{\eta(34z)}
$$

= $q^3 \prod_{n=1}^{\infty} \frac{(1-q^n)^3 (1-q^{2n})^{43} (1-q^{17n})}{(1-q^{34n})}$

and

$$
G(z) := \eta(z)^{44} \eta(2z)^2 + \eta(z)^{43} \eta(2z) \eta(17z) \eta(34z)
$$

= $q^2 \prod_{n=1}^{\infty} (1 - q^n)^{44} (1 - q^{2n})^2$
+ $q^4 \prod_{n=1}^{\infty} (1 - q^n)^{43} (1 - q^{2n}) (1 - q^{17n}) (1 - q^{34n}).$

By Theorems [2](#page-3-0) and [3,](#page-3-1) it is easy to verify that $F(z)$, $G(z) \in M_k(\Gamma_0(N), \chi)$, where $k = 23$, $N = 34 * 24$, and $\chi(d) = \left(\frac{-1}{d}\right)$. Applying operator $U(2)$ to $F(z)$, and using Sturm's Theorem, after checking the first $23 * 8 * 18$ coefficients of $F(z) | U(2)$ and $G(z)$ by computer, we find that

$$
F(z)|U(2) \equiv G(z) \pmod{2}.
$$
 (11)

On the other hand, by the definition of $\Delta_8(n)$ in Eq. [\(3\)](#page-1-2) (we define $\Delta_8(n) = 0$ if *n* is not a nonnegative integer), using Eq. (10) , we can see that

$$
F(z) \equiv q^3 \prod_{n=1}^{\infty} \frac{(1-q^{2n})(1-q^{17n})}{(1-q^n)^3(1-q^{34n})} (1-q^{2n})^{45}
$$

$$
\equiv \left(q^3 \sum_{n=0}^{\infty} \Delta_8(n) q^n \right) \prod_{n=1}^{\infty} (1-q^{2n})^{45} \pmod{2},
$$

so we have

$$
F(z)|U(2) \equiv \left[\left(\sum_{n=0}^{\infty} \Delta_8(n-3)q^n \right) \left(\prod_{n=1}^{\infty} (1-q^{2n})^{45} \right) \right] |U(2)|
$$

$$
\equiv \left(\sum_{n=0}^{\infty} \Delta_8(2n-3)q^n \right) \left(\prod_{n=1}^{\infty} (1-q^n)^{45} \right) \text{ (by Eq. 9)}
$$

$$
\equiv \left(q^2 \sum_{n=0}^{\infty} \Delta_8(2n+1)q^n \right) \left(\prod_{n=1}^{\infty} (1-q^n)^{45} \right) \pmod{2}. \quad (12)
$$

² Springer

Also note that

$$
G(z) \equiv q^2 \prod_{n=1}^{\infty} (1 - q^n)^{48} + q^4 \prod_{n=1}^{\infty} (1 - q^n)^{45} (1 - q^{17n})^3 \pmod{2} \tag{13}
$$

Combining (11) , (12) , and (13) together, we get Eq. (4) .

4 Proof of Corollaries [1](#page-2-0) and [2](#page-2-1)

Since we have proved Theorem [1,](#page-1-1) those corollaries are quite simple. From Eq. [\(6\)](#page-2-2), we know that if $\Delta_8(2(An + B) + 1) \equiv 0 \pmod{2}$ for all $n \ge 0$, then both $8(An + B) + 1$ and $17 * (8(An + B) + 1)$ cannot be squares, which is equivalent to say that $8B + 1$ is a quadratic nonresidue mod $8A$ and $136B + 17$ is a quadratic nonresidue mod 136*A*. For example, let $A = 9$, then $8A = 72$, and 8*B* +1 ∈ *S* := {1, 9, 17, 25, 33, 41, 49, 57, 65}. Among *S*, only 17, 33, 41, 57, 65 are quadratic nonresidues mod 72, which means $B \in \{2, 4, 5, 7, 8\}$. Similarly, 136*B* + 17 is a quadratic nonresidue mod 136*A* if and only if $B \in \{0, 3, 4, 6, 7\}$. Thus, only $B = 4$ and $B = 7$ suit both conditions. Substituting *A* and *B* in $\Delta_8(2(An + B) + 1)$, we obtain the first result in Example 1.

To prove Corollary [2,](#page-2-1) write

$$
2p^{2\alpha+2}n + \frac{1}{4}(p^{2\alpha+1}t - 1) + 1 = 2\left(p^{2\alpha+2}n + \frac{1}{8}(p^{2\alpha+1}t - 1)\right) + 1.
$$

By Theorem [1,](#page-1-1) we need to show that

$$
8\left(p^{2\alpha+2}n + \frac{1}{8}(p^{2\alpha+1}t - 1)\right) + 1 = p^{2\alpha+1}(8pn + t)
$$

is neither a square, nor 17 times a square. This is obvious because under our assumption, ord_{*p*} $(p^{2\alpha+1}(8pn + t)) = 2\alpha + 1$. Now we complete our proof.

Acknowledgments The author is grateful to the anonymous referee for the useful suggestions.

References

- 1. Andrews, G.E., Paule, P.: MacMahon's partition analysis XI: broken diamonds and modular forms. Acta Arith. **126**, 281–294 (2007)
- 2. Chan, S.H.: Some congruences for Andrews–Paule's broken 2-diamond partitions. Discret. Math. **308**, 5735–5741 (2008)
- 3. Hirschhorn, M.D., Sellers, J.A.: On recent congruence results of Andrews and Paule. Bull. Aust. Math. Soc. **75**, 121–126 (2007)
- 4. Jameson, M.: Congruences for broken *k*-diamond partitions. Ann. Comb. **17**, 333–338 (2013)
- 5. Ono, K.: The web of modularity: arithmetic of the coefficients of modular forms and *q*-series. In: CBMS Regional Conferences Series in Mathematics. American Mathematical Society (2004)
- 6. Paule, P., Radu, S.: Infinite families of strange partition congruences for broken 2-diamonds. Ramanujan J. **23**, 409–416 (2010)
- 7. Radu, S., Sellers, J.A.: Parity results for broken *k*-diamond partitions and (2*k* + 1)-cores. Acta Arith. **146**, 43–52 (2011)
- 8. Radu, S., Sellers, J.A.: Infinitely many congruences for broken 2-diamond partitions modulo 3. J. Comb. Number Theory **4**, 195–200 (2013)
- 9. Radu, S., Sellers, J.A.: An extensive analysis of the parity of broken 3-diamond partitions. J. Number Theory **133**, 3703–3716 (2013)
- 10. Xiong, X.: Two congruences involving Andrews–Paule's broken 3-diamond partitions and 5-diamond partitions. Proc. Jpn. Acad. Ser. A **87**(5), 65–68 (2011)
- 11. Yao, X.M.: New parity results for broken 11-diamond partitions. J. Number Theory **140**, 267–276 (2014)