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Abstract An improved estimate is given for |θ(x) − x |, where θ(x) = ∑
p≤x log p.

Four applications are given: the first to arithmetic progressions that have points in
common, the second to primes in short intervals, the third to a conjecture by Pomerance
and the fourth to an inequality studied by Ramanujan.
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1 Introduction

Oneversion of the prime number theorem is that θ(x) ∼ x , where θ(x) = ∑
p≤x log p.

Several applications call for an explicit estimate on the error θ(x) − x . Schoenfeld
[21, Thm 11] proved that for

ε0(x) =
√

8

17π
X1/2e−X , X = √

(log x)/R0, R0 = 9.6459, (1)

the following inequality holds:

|θ(x) − x | ≤ xε0(x) (x ≥ 101).
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226 T. Trudgian

The pair of numbers (R0, 17) in (1) is particularly interesting. These arise from [20,
Thm 1], namely the theorem that

ζ(s) has no zeroes in the region σ ≥ 1 − 1

R log | tB | (t ≥ t0) (2)

for R = R0, B = 17 and t0 = 21. Ramaré and Rumely [17, p. 409] proved
(2) with (R, B, t0) = (R0, 38.31, 1000); Kadiri [12] proved (2) with (R, B, t0) =
(5.69693, 1, 2).

A meticulous overhaul of Schoenfeld’s paper would be required to furnish a ‘gen-
eral’ version of (2), that is, one in which B and R are chosen for maximal effect. This
article does not attempt such an overhaul. Rather, forcing B to be 17 in (2) means that
many of the numerical estimations in Schoenfeld’s article can be let through to the
keeper. With B = 17, one can obtain admissible values of R and t0 in (2) as follows.

Let the Riemann hypothesis be true up to height H : by Platt [15] we have H =
3.061 × 1010. Let ρ represent a non-trivial zero of ζ(s) with ρ = β + iγ . Using
Kadiri’s result, we see that

β ≤ 1 − 1

5.69693 log t
≤ 1 − 1

R log | t
17 |

provided that

t ≥ exp

{
R log 17

R − 5.69693

}

.

Set H = exp{R log 17/(R−5.69693)}, whencewemay take R = 6.455.We conclude
that there are no zeroes in

σ ≥ 1 − 1

6.455 log | t
17 |

, (t ≥ 24). (3)

This enables us to prove good bounds for θ(x) − x and for ψ(x) − x , where ψ(x) =∑
pm≤x log p, as indicated in the following theorem.

Theorem 1 Let

ε0(x) =
√

8

17π
X1/2e−X , X = √

(log x)/R, R = 6.455.

Then

|θ(x) − x | ≤ xε0(x) (x ≥ 149)

|ψ(x) − x | ≤ xε0(x) (x ≥ 23).

Throughout Schoenfeld’s paper numerous bounds on x are imposed, where X =√
(log x)/R0. Fortunately, for our purposes, all of these arise from bounds imposed on
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Prime number theorem 227

X . For example, the first bound in [21, (7.30)] requires X ≥ 17/2π . With our value of
R, we need log x ≥ 48 compared with Schoenfeld’s requirement log x ≥ 71. Making
these slight changes throughout pp. 342–348 of [21], we find that

|ψ(x) − x |, |θ(x) − x | ≤ xε0(x) (log x ≥ 1163). (4)

In order to prove Theorem 1, we cover small values of x following the approach on
pp. 348–349 of [21] but using the superior bounds on |ψ(x) − x | as given by Faber
and Kadiri [6]. We make use of Eq. (5.3∗) in [21], namely

ψ(x) − θ(x) < 1.001093x1/2 + 3x1/3 ≤ A(x0)x (x ≥ x0),

where A(x0) = 1.001093x−1/2
0 +3x−2/3

0 . For e25 ≤ x ≤ e45 we have, by [6, Table 3],

|ψ(x) − x |, |θ(x) − x | ≤ (A(e25) + 4.9 × 10−5)
xε0(x)

ε0(e45)
≤ 0.003xε0(x).

Now for e45 ≤ x ≤ e1163 we have

|ψ(x) − x |, |θ(x) − x | ≤ (A(e45) + 1.1 × 10−8)
xε0(x)

ε0(e1162)
≤ 0.006xε0(x).

Hence (4) is true for all x ≥ e25. For x < e25, note that ε0(x) increases for X < 1
2

and decreases thereafter. Therefore

ε0(x) ≥ min{ε0(2), ε0(e25)} ≥ 0.075. (5)

Theorem 10 in [19] gives θ(x) > 0.93x for x ≥ 599. This, combined with (5), shows
that

θ(x) − x > −xε0(x) (x ≥ 599). (6)

Since ψ(x) ≥ θ(x), the inequality in (6) also holds with ψ(x) in place of θ(x). Using
ψ(x) ≤ 1.04x (see Theorem 12 in [19]) and (5) gives

θ(x) ≤ ψ(x) ≤ 1.04x < x + xε0(x) (2 ≤ x ≤ e25).

All that remains is to verify (6) and the analogous inequality for ψ(x) for values of
x ≤ 599—a computational dolly.

2 The difference π(x) − li(x)

Letπ(x) denote the number of primes not exceeding x and li(x) denote the logarithmic
integral, namely

li(x) = lim
ε→0+

(∫ 1−ε

0

dt

log t
+

∫ x

1+ε

dt

log t

)

.
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228 T. Trudgian

Concerning the difference π(x) − li(x), we have

|π(x) − li(x)| ≤ 0.4394
x

(log x)3/4
exp(−√

(log x)/9.696) (x ≥ 59), (7)

due to Dusart [4, Thm 1.12].1 Good bounds on π(x) − li(x) can be obtained from
good bounds on θ(x) − x , since

π(x) − li(x) = θ(x)

log x
+

∫ x

2

θ(t)

t log2 t
dt −

∫ x

2

dt

log t
− li(2)

= θ(x) − x

log x
+ 2

log 2
+

∫ x

2

θ(t) − t

t log2 t
dt − li(2). (8)

Using Theorem 1 we can prove

Theorem 2

|π(x) − li(x)| ≤ 0.2795
x

(log x)3/4
exp

(

−
√

log x

6.455

)

(x ≥ 229).

Proof We split up the range of integration in (8) so that
∫ x
2 = ∫ x0

2 + ∫ x
x0

= I1 + I2 for
some x0 ≥ 149. To estimate I2, we use Theorem 1 and consider

g(t) = tε0(t)

(log t)α+ 1
4

.

The value of α in the expression for g(t) must be less than 7/4. Following Dusart we
choose α = 7/5, whence it is easy to verify that ε0(t)/(log t)2 < g′(t) for all t ≥ 149.

To estimate I1, we invoke [19, Thm 19]

θ(t) < t, t < 108.

Interchanging summation and integration, we have

∫ x0

2

θ(t)

t log2 t
dt =

∫ x0

2

∑
p≤t log p

t log2 t
dt =

∑

p≤x0

log p
∫ x0

p

dt

t log2 t
= π(x0) − θ(x0)

log x0
.

1 There is also the result of Ford [7]

π(x) − li(x) = O(x exp{−0.2098(log x)3/5(log log x)−1/5}).

It appears that this result has not been made explicit.
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Therefore (8) becomes

|π(x) − li(x)| ≤ xε0(x)

log x
+ xε0(x)

(log x)33/20
+ 2

log 2
− li(2) − x0ε0(x0)

(log x0)33/20

+
∫ x0

2

dt

log2 t
− π(x0) + θ(x0)

log x0
.

We may choose x0 in (8) subject to 149 ≤ x0 ≤ 108. Choosing x0 = 108 shows, in
<3min usingMathematica on a 1.8-GHz laptop, that

|π(x) − li(x)| ≤ xε0(x)

log x
+ xε0(x)

(log x)33/20
≤ 1.151

xε0(x)

log x
(9)

for x ≥ 108. For smaller x , we note that byKotnik [13]π(x) < li(x) for 2 ≤ x ≤ 1014.
Therefore

max
x∈[pk ,pk+1)

|π(x) − li(x)| = max
x∈[pk ,pk+1)

li(x) − π(x) ≤ li(pk+1) − k. (10)

Using (10) we verify (9) for all x ≥ pk with k ≥ 48, which is equivalent to x ≥ 229,
which proves the theorem. 	


3 Applications

We now present four applications of Theorems 1 and 2. We stress that explicit results
of this nature have many uses throughout the literature; our list of four applications is
by no means exhaustive. One striking example of this applicability is Helfgott’s proof
of the ternary Goldbach conjecture [11]. In [11, §7], Helfgott makes frequent use of
estimations for the number of primes in short intervals and the size of the Chebyshev
functions.

3.1 Intersecting arithmetic progressions

Let Nt (k) denote the maximum number of distinct arithmetic progressions of k num-
bers such that any pair of progressions has t members in common. Ford [8] considers
the following example.

Example 1 For 1 ≤ i < j ≤ k, let Bi j be the arithmetic progression, the i th element
of which is 0 and the j th element of which is k!.

Ford shows, in Theorem 3 of [8], that, for all k ≥ 108000, N2(k) = k(k − 1)/2,
and that every configuration of k(k − 1)/2 arithmetic progressions with 2 points in
common is equivalent (up to translations and dilations) to the arithmetic progression
in Example 1. We are able to use Theorem 1 to prove
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230 T. Trudgian

Corollary 1 For k ≥ 104848, we have N2(k) = k(k − 1)/2 and that every configura-
tion of k(k − 1)/2 arithmetic progressions with 2 points in common is equivalent to
the arithmetic progression in Example 1.

Proof Analogous to Lemmas 3.3 and 3.4 in [8], we can show that, for k ≥ e280, there
is always a prime in the interval [k, k + a], where

a = 0.56k(log k)1/4 exp(−√
(log k)/6.455). (11)

We now follow the proof of Theorem 3 in [8] using our (11) in place of his a =
0.44k(log k)1/4 exp(−0.321979

√
log k). 	


It is worthwhile to remark that Corollary 1 could be improved if the method in [9]
were made explicit. However, it seems unlikely that one could reduce the bound on k
in Corollary 1 to a height below which direct computation could be carried out.

3.2 Primes in short intervals

Various results have been proved about the existence of a prime in a short interval
[x, x + f (x)], where f (x) = o(x). For example, Dusart [5, Prop. 6.8] has shown
that there exists a prime in the interval [x, x + x

25 log2 x
] whenever x ≥ 396738. We

improve this in

Corollary 2 For all x ≥ 2898242, there is a prime in the interval

[

x, x

(

1 + 1

111 log2 x

)]

.

We first prove the following:

Lemma 1 For x ≥ e35 we have

|θ(x) − x | ≤ 0.0045x

log2 x
. (12)

Proof Using (5.3∗) of [21] we have

|θ(x) − x | log2 x
x

≤
( |ψ(x) − x |

x
log2 x + 1.001093 log2 x√

x
+ 3 log2 x

x2/3

)

= B(x),

(13)
say. According to Table 3 in [6], |ψ(x) − x | ≤ 7.4457 × 10−7 for x ≥ e35, whence
B(x) is bounded above by

(

7.4457 × 10−7 log2 x + 1.001093 log2 x√
x

+ 3 log2 x

x2/3

) ∣
∣
∣
∣
x=e75

, x ∈ [e35, e75],
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Table 1 Bounding θ(x) − x
Interval Bound on B(x) in (13)

[e35, e75] 0.0042

[e75, e1500] 0.0037

[e1500, e2000] 0.0038

[e2000, e2500] 0.0045

[e2500, e3000] 0.0044

[e3000, e4000] 0.0036

which is bounded above by 0.0042. We continue in this way, using intervals of the
form [ea, eb], Faber and Kadiri’s bounds at ea and evaluating B(x) at x = eb. The
results are summarised below in Table 1.

Taking the maximum entry in the right-hand column of the table proves Lemma 1
for e35 ≤ x ≤ e4000. When x ≥ e4000 we use Theorem 1. This completes the proof of
the lemma. 	

Note that one could refine this result by takingmore intermediate steps in the argument.
For example, one could use the interval [e2000, e2100] to try to reduce the bound of
0.0045. We have not pursued this since the entry e2100 is not in Table 3 in [6] and,
while it could be calculated, the above lemma is sufficient for our purposes.

We now use Lemma 1 to exhibit primes in short intervals. Indeed, for x ≥ e35,
Lemma 1 shows that

θ

{

x

(

1 + 1

c log2 x

)}

− θ(x)

is positive provided that c ≤ 111.1107 . . .. Taking c = 111, we conclude that there
is always a prime in the interval [x, x(1 + 1/(111 log2 x))] whenever x ≥ e35. This
establishes Corollary 2 when x ≥ e35 ≈ 1.58 × 1015. Rather than performing the
herculean, if not impossible, feat of examining all those x < e35 we proceed as
follows.

Suppose that pn+1− pn ≤ X1 for all pn ≤ x1, where x1 ≥ e35. That is, themaximal
prime gap of all primes up to x1 is at most X1. Therefore, pn+1 ≤ pn + X1 which

will be lesser than pn
(
1 + 1

111 log2 pn

)
as long as

pn
log2 pn

≥ 111X1. (14)

If (14) holds for all y1 ≤ pn ≤ x1, we can conclude that Corollary 2 holds for all
x ≥ y1. If y1 is still too high for a direct computation over all integers less than y1, then
we may play the same game again, namely find an x2 ≥ y such that pn+1 − pn ≤ X2.

Nyman and Nicely [14, Table 1] show that one may take x1 = 1.68× 1015, which
is greater than e35, and X1 = 924. It is easy to verify that (14) holds for all pn ≥
3.05 × 107. We can now check relatively swiftly that the maximal prime gap for
pn < 3.06× 107 is 210. We may now verify Corollary 2 for all x ≥ 5.63× 106. After
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232 T. Trudgian

two more applications of this method, using the fact that the maximal prime gap for
pn < 5.7 × 106 is 159, and for pn < 4 × 106 is 148 we see that Corollary 2 is true
for all x ≥ 3.8 × 106.

We now examine x ≤ 3.8× 106. An exhaustive search took less than two minutes
onMathematica—this completes the proof of Corollary 2.

There are several ways in which this result could be improved. Extending the work
done by Nyman and Nicely [14] makes a negligible difference to the choice of c.
Probably, the best plan of attack is to reduce the size of the coefficient in Lemma 1.
For example, if the coefficient in (12) were reduced to 0.0039, we could take c = 128.

Finally, the result in Corollary 2 ought to be compared with the sharpest known
result for a different short interval. Ramaré and Saouter [18, Table 1] proved that there
is always a prime in the interval

(x(1 − �−1), x], � = 212215384, x ≥ e150.

Corollary 2 improves on this whenever x ≥ 3.2× 10600 ≈ e1383. Although this value
of x is large by anyone’s standards, it appears that Corollary 2 could be useful in
searching for primes between cubes—see [2].

3.3 A conjecture by Pomerance

Consider numbers k > 1 for which the first φ(k) primes coprime to k form a reduced
residue system modulo k. Following the lead of Hajdu et al. [10], we call such an
integer k a P-integer. For example, 12 is a P-integer and 10 is not since

{5, 7, 11, 13} ≡ {5, 7, 11, 1}, {3, 7, 11, 13} ≡ {3, 7, 11, 3},

and, whereas the first is a reduced residue system, the second is not. From [16, Thm
2], Pomerance deduced that there can be only finitely many P-integers. Hajdu et al.
[op. cit.] proved, inter alia, that if k is a P-integer such that k > 30, then 1011 <

k < 103500. As noted by Hajdu et al., one may improve (7) using the zero-free region
proved by Kadiri, that is, using our Theorem 1. We do this thereby proving

Corollary 3 If k is a P-integer, then k < 101805.

Proof We use Theorem 2 instead of Lemma 2.1(iii) in [10] and proceed as in [10, §5].
Let k ≥ 101805 and define

f0(k) = k

log k/2
+ k

log2 k/2
+ 1.8k

log3 k/2
− k

log k
− k

log2 k
− 2.51k

log3 k
− log k,

fn(k) = k

4(n + 1) log2(nk + k)
− 1.118

nk + k

(log nk)3/4
exp(−√

log(nk)/6.455),

(15)
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where the constant 1.118 is four times that appearing in Theorem 2. Lemma 3.1 in
[10] gives the following:

k is not a P-integer if f0(k) +
L∑

n=1

fn(k) > 0, (16)

where L satisfies

L ≥ log k − log h(k)

h(k)
− 2, h(k) = 1.7811 log log k + 2.51/(log log k).

When k ≥ 101805 we have L ≥ 273. We verify that the condition in (16) is met for
273 ≤ L ≤ 3800. We now proceed as in [10, p. 181] with 3800 and k = 101805 in
place of 1500 and k = 103500, respectively. 	


The numbers 1.8 and 2.51 appearing in (15) are worth a mention. These are approx-
imations to the number 2 that appears in the expansion

π(x) ∼ x

log x
+ x

log2 x
+ 2x

log3 x
+ · · ·

Replacing these numbers in (15) by 2, a situation in which one could not possibly
improve, makes a negligible difference. Indeed, such a substitution could not improve
the bound in Corollary 3 to k < 101803.

It is certainly possible that a refined version of Theorem 1 could resolve completely
the Pomerance conjecture. Indeed, using a slightly different approach, Togbé andYang
have announced in [22] a proof of the conjecture.

3.4 An equality studied by Ramanujan

Ramanujan [1, Ch. 24] proved that

π(x)2 <
ex

log x
π

( x

e

)
(17)

holds for all sufficiently large values of x . In a paper to appear, Dudek and Platt [3]
have used Theorem 1 to show that, using the Riemann hypothesis, (17) is true for all
x > 38, 358, 837, 682. It seems difficult to prove this unconditionally: in this case
Dudek and Platt are able to show that (17) is true for all x ≥ exp(9658).

4 Conclusion

Theorems 1 and 2 could be improved in several ways: First, if one knew that the
Riemann hypothesis had been verified to a height greater than 3.061×1010, one could
reduce the coefficient in the zero-free region in (3). Second, one could try to improve
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234 T. Trudgian

Kadiri’s zero-free region either by reducing the value of R or by improving the size
of B in (2). A higher verification of the Riemann hypothesis has a mild influence on
this method of proof.

Third, one may feed any improvements in a numerical verification of the Riemann
hypothesis and the zero-free region into Faber and Kadiri’s argument, thereby improv-
ing the estimate onψ(x)−x . Finally, onemay try to overhaul completely Schoenfeld’s
paper in order to provide a bespoke version of Theorem 1.

Acknowledgments I am grateful to Szymon Brzostowski for verifying one of the computations leading
to Corollary 2.
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