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Abstract We compute the critical L-values of some weight 3, 4, or 5 modular forms,
by transforming them into integrals of the complete elliptic integral K . In doing so,
we prove closed-form formulas for some moments of K ′3. Many of our L-values
can be expressed in terms of Gamma functions, and we also obtain new lattice sum
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114 M. Rogers et al.

1 Introduction

Let K and K ′ denote the complete elliptic integrals of the first kind, defined as follows:

K (k) : =
1∫

0

du√
(1 − u2)(1 − k2u2)

= π

2
2F1

(
1
2 , 12
1

; k2
)

,

K ′(k) : = K (k′), k′ :=
√
1 − k2.

One of the present authors (Wan) studied integrals of elliptic integrals, or “moments
of elliptic integrals” in [17]. That paper includes several conjectures which have since
been settled. The last remaining conjecture is

1∫

0

K ′(k)3dk = �8
( 1
4

)
128π2 . (1)

There are several versions of (1). For instance, we can reformulate the integral using
transformations for K ′. We can also use integration by parts, because derivatives of
elliptic integrals equal linear combinations of elliptic integrals. Some examples found
in [17] include

1∫

0

K ′(k)3dk = 10

3

1∫

0

K (k)3dk = 5

1∫

0

kK ′(k)3dk. (2)

In the first part of this paper, we prove formula (1), and provide some intuition about
how to discover related integrals. We also settle some additional integrals involving
K ′3, and give closed-form evaluations of integrals containing higher powers of K ′
(see Eqs. (20) and (21)). In the second part of the paper, we study a more general
phenomenon, where critical L-values of odd weight modular forms can be expressed
in terms ofGammavalues. Some new lattice sums are produced fromour investigation.

We note that Y. Zhou, in a 2013 paper [19], used methods based on spherical
harmonics to prove both Eqs. (1) and (12). Zhou also applied his ideas to many other
integrals.

2 Critical L-values

One of the main goals of this paper is to connect integrals like (1) to critical L-values
of modular forms. We say that a function f (τ ) is a modular form of weight k and level
N , if it satisfies

f

(
aτ + b

cτ + d

)
= (cτ + d)k f (τ ),
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Moments of elliptic integrals and critical L-values 115

whenever
(a
c

b
d

) ∈ SL2(Z), and c ≡ 0 mod N . We also require that f (τ ) be holo-
morphic in the upper half plane, and that it vanish at the cusps (that is, it is a cusp
form). The most interesting modular forms are the Hecke eigenforms, whose Fourier
series

f (τ ) =
∞∑
n=1

ane
2π inτ

have multiplicative coefficients an . If we attach an L-series to f (τ ),

L( f, s) =
∞∑
n=1

an
ns

, (3)

then L( f, s) has ameromorphic continuation to the complex plane.We say that L( f, j)
is a critical L-value if j ∈ {1, 2, . . . , k − 1}. These numbers typically hold arithmetic
significance; some properties of critical L-values are summarized in [9]. For instance,
the Birch and Swinnerton-Dyer conjecture predicts the value of L( f, 1), whenever
f (τ ) is a weight 2 cusp form attached to an elliptic curve. In Theorem 1, we prove
that Eq. (1) is equivalent to an explicit formula for a critical L-value of a weight 5
cusp form. In particular, we prove

30L(g, 4) =
1∫

0

K ′(k)3dk, (4)

where
g(τ ) := η4(τ )η2(2τ)η4(4τ),

and η(τ) is the usual Dedekind eta function. We then use properties of g(τ ) to prove
Eq. (1) in Theorem 2.

Formula (4) naturally suggests looking at critical L-values of different modular
forms. Martin has classified all of the possible multiplicative eta quotients [10]. While
it is possible to consider a much larger class of modular forms than just multiplicative
eta quotients, these are typically the easiest examples to work with. Martin’s list
contains precisely two examples of weight 5. The first is g(τ ) above, and the second
example is

h(τ ) := η38(8τ)

η14(4τ)η14(16τ)
.

It is standard to prove, using formulas such as (9) below, that

192L(h, 4) =
1∫

0

K ′(k)3√
k(1 − k2)3/4

dk,
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116 M. Rogers et al.

and based on the previous example, we guess that L(h, 4) should also be related to
Gamma values. We discovered the following identity after a brief numerical search:

1∫

0

K ′(k)3√
k(1 − k2)3/4

dk = 3�8( 14 )

32
√
2π2

. (5)

Westartedby calculating the integral on the left to highnumerical precision (denoted
I ), and then we used the PSLQ algorithm to search for a linear dependencies in the
set

{log |I |, logπ, log�(1/3), log�(1/4), . . . , log 2, log 3, log 5, . . . } .

Bailey and Borwein [1] used PSLQ to discover many identities among moments of
elliptic integrals – far more than what is currently proven.

The crucial property which allows us to prove (1) and (5) is that the attached
modular forms are also binary theta functions. It is often possible to rewrite the L-
functions of the modular forms as Hecke L-functions involving Grossencharacters,
but this connection is not usually essential. In Section 4, we describe some additional
integrals which arise from weight 3 cusp forms. We think that it is noteworthy that
there appears to be fewer interesting formulas for L-values attached to even weight
cusp forms. We discuss this in the conclusion.

3 Proof of the conjectures

We relate conjecture (1) to critical L-values in the following theorem. The proof is
typical of the approach we use for subsequent integrals, so we spell out the details.

Theorem 1 Let g(τ ) = η4(τ )η2(2τ)η4(4τ). Formula (1) is equivalent to

L(g, 4) = �8
( 1
4

)
3840π2 . (6)

Proof The proof follows from Ramanujan-style manipulations. Set k = √
α, and

notice that
1∫

0

K ′(k)3dk = π3

16

1∫

0

2F1

(
1
2 , 12
1

; 1 − α

)3 dα√
α

.

Now we make a change of variables. Set

q = exp

(
−π

2F1
( 1
2 , 12
1

; 1 − α
)

2F1
( 1
2 , 12
1

;α
)

)
, (7)
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Moments of elliptic integrals and critical L-values 117

and notice that [3, Eqs. (2.3.10)]

dα = α(1 − α)2F1

(
1
2 , 12
1

;α

)2 dq

q
. (8)

It is standard to show that q ∈ (0, 1) when α ∈ (0, 1), and q is monotone with
respect to α. The integral becomes

1∫

0

K ′(k)3dk = − 1

16

1∫

0

√
α(1 − α)2F1

(
1
2 , 12
1

;α

)5

log3 q
dq

q
.

Consider the Dedekind eta function with respect to q, where q = e2π iτ :

η(q) := q1/24
∞∏
n=1

(1 − qn).

By [2][p. 124, Entry 12], we have

√
α(1 − α)2F1

(
1
2 , 12
1

;α

)5

= 4
η14(q2)

η4(q4)
, (9)

and the integral reduces to

1∫

0

K ′(k)3dk = −1

4

1∫

0

η14(q2)

η4(q4)
log3 q

dq

q
= −4

1∫

0

η14(q4)

η4(q8)
log3 q

dq

q
.

From [16, Entry t8,12,48 and Entry t8,18,60a], we can show that

η14(q4)

η4(q8)
= 4η4(q2)η2(q4)η4(q8) + η4(q)η2(q2)η4(q4).

Therefore, the integral becomes

1∫

0

K ′(k)3dk = − 16

1∫

0

η4(q2)η2(q4)η4(q8) log3 q
dq

q
− 4

1∫

0

η4(q)η2(q2)η4(q4)

log3 q
dq

q
= − 5

1∫

0

η4(q)η2(q2)η4(q4) log3 q
dq

q
.
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118 M. Rogers et al.

Switching to the more traditional notation for η in terms of τ , we have

1∫

0

K ′(k)3dk = 30L(g, 4),

where g(τ ) = η4(τ )η2(2τ)η4(4τ). It follows that (1) and (6) are equivalent. ��
In order to prove (6), we require the fact that g is a binary theta function. Glaisher

[7] showed that

g(τ ) = 1

4

∑
(n,m)∈Z2

(n − im)4qn
2+m2

, (10)

where as usual q = e2π iτ .

Theorem 2 Formula (6) is true.

Proof Using the definition (3) and Eq. (10), we have

L(g, 4) = 1

4

∑
(n,m) 	=(0,0)

(n − im)4

(n2 + m2)4
= 1

4

∑
(n,m) 	=(0,0)

1

(n + im)4
.

The Weierstrass invariant g2(τ ) can be defined by

g2(τ ) := 60
∑

(n,m) 	=(0,0)

1

(n + τm)4
,

and can be calculated using

g2(τ ) = 64

3
(1 − k2 + k4)K 4(k), (11)

where k, K , and τ obey the classical relations k = θ22 (eπ iτ )/θ23 (eπ iτ ) and K =
π
2 θ23 (eπ iτ ). In the language of Eisenstein series, g2(τ ) = 120ζ(4)E4(τ ).
Standard evaluations show that k = 1/

√
2 when τ = i , and thus

L(g, 4) = 1

240
g2(i) = 1

15
K 4

(
1√
2

)
.

Since K (1/
√
2) = �2( 14 )/(4

√
π), we obtain

L(g, 4) = �8( 14 )

3840π2 ,

completing the proof. ��
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Moments of elliptic integrals and critical L-values 119

Remark 1 Wan used numerical experiments to observe that the moments of K ′3 and
K 2K ′ are related by a rational factor [17]:

1∫

0

K ′(k)3dk = 3

1∫

0

K (k)2K ′(k)dk. (12)

We sketch a proof of Eq. (12) here.We can use Tricomi’s Fourier series [17, Sect. 6]

K (sin t) =
∞∑
n=0

�(n + 1
2 )

2

�(n + 1)2
sin((4n + 1)t),

to deduce that

∞∑
n=0

�2(n + 1
2 )

�2(n + 1)

π/2∫

0

cos((4n + 2)t) cos(t)F(sin t)dt =
1∫

0

(
k′K ′(k) − kK (k)

)
F(k)dk,

(13)
whenever F is selected so that summation and integration are interchangeable. To
derive (13), perform the change of variables k 
→ cos t on the right-hand side, and
then use the trigonometric identity

cos(t) cos((4n + 1)t) − sin(t) sin((4n + 1)t) = cos((4n + 2)t).

We then set F(k) = K 2(k)/k′ in (13). The right-hand side simplifies under the
transformation k 
→ k′, and cancellations occur on the left-hand side due to orthogo-
nality. After simplifying, we have

π2

8

∞∑
n=0

�4(n + 1
2 )

�4(n + 1)
4F3

(
1
2 , 12 ,−n,−n

1, 12−n, 12−n
; 1

)
=

1∫

0

K ′(k)3 − K (k)2K ′(k)dk.

The sum is precisely 2
∫ 1
0 K (k)2K ′(k)dk, as established near the end of [17]. This

proves (12).
Closed forms such as (1) and (12), together with the use of Legendre’s relation

in [17], produce additional evaluations involving the complete elliptic integral of the
second kind E , for example

1∫

0

E(k)K ′(k)2dk = π3

12
+ �8( 14 )

384π2 .

♦

Before proving (5), we note that there are various reformulations of the integral.
For example, a quadratic transformation gives
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120 M. Rogers et al.

1∫

0

K ′(k)3√
k(1 − k2)3/4

dk = 1

8
√
2

1∫

0

(1 + k)3K ′(k)3

k3/4
√
1 − k

dk.

Experimentally, we discover the binary theta expansion

h(τ ) =
∞∏
n=1

(1 − (−1)nq4n)14

(1 − q8n)4
(14)

= 1

2

∞∑
m,n=−∞

(−1)m(2n + 1 − 2im)4 q(2m)2+(2n+1)2 . (15)

The proof of (15) is slightly tedious. We may show that both sides are modular
forms on �0(16), that their Fourier coefficients agree for sufficiently many terms, and
then appeal to the valence formula. Alternatively, the double sum can be built up from
formulas of derivatives of θ2(q4) and θ4(q4) (Ramanujan’s ϕ(−q4) and ψ(q8)) in [2,
pp. 122–123]. The result can be written in terms of k and K , and then reduced to the
product (14).

Theorem 3 Formula (5) is true.

Proof From (15), we have the (lattice) sum

2L(h, 4) =
∞∑

m,n=−∞

(−1)m(2n + 1 − 2im)4(
(2n + 1)2 + (2m)2

)4 =
∞∑

m,n=−∞

(−1)m

(2n + 1 + 2im)4
,

so it remains to show

∞∑
m,n=−∞

(−1)m

(2n + 1 + 2im)4
= �8( 14 )

1024
√
2π2

. (16)

This can be achieved using routine manipulations on g2(τ ). By (11), we have

∑
(m,n) 	=(0,0)

(−1)m

(n + mτ)4
= 1

60

(
2g2(2τ) − g2(τ )

)
.

This leads to

∑
m,n

(−1)m

(2n + 1 + mτ)4
= 1

60

(
2g2(2τ) − g2(τ )

) − 1

24
1

60

(
2g2(τ ) − g2(τ/2)

)

= 1

960

(
g2(τ/2) − 18g2(τ ) + 32g2(2τ)

)
. (17)

Now (16) follows by setting τ = 2i in (17) and simplifying. The required values
of k (which are the 1st, 4th, and 16th singular values) and K at these values can be
found in [2], [3], and [21]. ��
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Moments of elliptic integrals and critical L-values 121

Example 1 We may look at other critical L-values of g and h. Simple calculations
give

L(g, 3) = 1

2π

1∫

0

kK ′(k)2K (k)dk,

L(g, 2) = 1

π2

1∫

0

kK (k)2K ′(k)dk,

L(g, 1) = 1

π3

1∫

0

kK (k)3dk.

One may notice the similarity between L(g, 3) and L(g, 2); indeed they are related
by the substitution k 
→ k′. This similarity can be explained, since g is a weight
5 modular form, so there is a functional equation connecting L(g, s) and L(g, 5 −
s) (with some Gamma factors). In view of (12), (2), and [17, Thm. 5], the values
π5−s L(g, s) where s ∈ {1, 2, 3, 4} are all related to each other by rational constants.

Similarly, we have L(h, 1) = 384/π3 L(h, 4), which can be explained by either
using the functional equation or a substitution in the integral. Experimentally, we also
observe that L(h, 4) = π

4 L(h, 3); an integral formulation for this is

1∫

0

K ′(k)2K (k)√
k(1 − k2)3/4

dk = �8( 14 )

32
√
2π2

, (18)

and an equivalent formulation as a sum is

∞∑
m,n=−∞

(−1)m(2n + 1 − 2mi)

(2n + 1 + 2im)3
= �8( 14 )

256
√
2π2

.

We are very grateful to Y. Zhou, who has kindly supplied us with a proof of (18)
(plus some generalizations) using techniques from [19]; since such techniques differ
significantly from the ones in the current paper, we do not include the proof here. Our
approach to (18) is modular (using some ideas from [13]), but is more complicated,
and we will present it in future work. In general, we expect the critical L-values of odd
weight modular forms to be related by algebraic constants and powers of π , though
the computation of these constants is not trivial—see the conclusion for discussion. ♦

Remark 2 Generalizations of (1) are possible. We start with the level 4, weight 9
modular form [18, Part 1C]

f (q) = 1

4

∑
m,n

(m − in)8qm
2+n2 .
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122 M. Rogers et al.

Expanding the brackets in f (q) binomially, we see that each sum in the expansion
is a product of θ3(q) = ∑

n q
n2 and its derivatives. Using k = θ22 (q)/θ23 (q), we

conclude that

f (q) = 8(4k2k′2 + k4k′4)
π9 K 9(k). (19)

We also have the following L-value:

L( f, 8) = 1

4

∑
(n,m) 	=(0,0)

1

(m + in)8
= �16( 14 )

210 525π4 ;

the last equality holds, since as an Eisenstein series the sum equals 1
2ζ(8)E8(i) and

E8 = E2
4 . Writing L( f, 8) as an integral using (19), we obtain

1∫

0

k(4 + k2 − k4)K ′(k)7dk = 3�16( 14 )

212 5π4 . (20)

Experimentally, L( f, 8 − i)/π i are all related by rational constants. Since

∑
(n,m) 	=(0,0)

1

(m + in)4k

can always be expressed as a rational number times a power of K (1/
√
2) [8], we

have found generalizations of the above result which involve higher powers of K ′, for
instance

1∫

0

k(16 − 92k2 + 93k4 − 2k6 + k8)K ′(k)11dk = 189�24( 14 )

215 65π6
. (21)

Moments of higher powers of K ′, the observation about rational constants above, as
well asmany other integrals involving the complete elliptic integrals will be elaborated
in a future paper.1 ♦

4 Weight 3 cases and lattice sums

In this section, we note some additional formulas for critical L-values of weight 3
cusp forms. The ideas for the proof below are borrowed from [11].

1 J.G. Wan and I. J. Zucker, K integrals from lattice sums, preprint, 2013.
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Moments of elliptic integrals and critical L-values 123

Theorem 4 Suppose that f (τ ) = η3(rτ)η3(sτ), where r + s ≡ 0 (mod 8). Then,

L( f, 2) = 8π2

√
rs3

( ∞∑
n=0

(−1)
n(n+1)

2 q
(2n+1)2

8

)4

= 8√
rs3

kr/s k
′
r/s K

2(kr/s), (22)

where q = e−π
√
r/s , and kp denotes the pth singular value of K .

Proof The Jacobi triple product gives

η3(τ ) =
∞∑
n=1

nχ−4(n)e
2π in2τ

8 .

If we write L( f, 2) as a real-valued integral, then

L( f, 2) = 4π2

∞∫

0

∑
n,k≥1

nkχ−4(n)χ−4(k)e
− 2πrn2u

8 − 2πsk2u
8 udu.

Applying the involution for the weight 3/2, theta function leads to

L( f, 2) = 4π2

√
s3

∞∫

0

∑
n,k≥1

nkχ−4(n)χ−4(k)e
− 2πrn2u

8 − 2πk2
8su

du√
u

.

By absolute convergence, we evaluate the integral first using standard results –
which produces a Bessel K function with order 1/2. Simplifying, we get

L( f, 2) = 8π2

√
rs3

∑
n,k≥1

kχ−4(k)χ−4(n)q
nk
2 = 8π2

√
rs3

∑
k≥1

kχ−4(k)q
k
2

1 + qk

= 8π2

√
rs3

( ∞∑
k=0

(−1)
k(k+1)

2 q
(2k+1)2

8

)4

.

The final Lambert series identity follows from [20, Table 1]. The connection with
singular values follows from standard theta function manipulations, leading to

L( f, 2) = 2π2

√
rs3

θ22 (q)θ24 (q),

and from the fact that kp = θ22 (e−π
√
p)/θ23 (e−π

√
p). ��
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Theorem 5 The following evaluations are true:

f (τ) L( f, 2)

η6(4τ)
�4( 14 )

64π

η3(2τ)η3(6τ)
�6( 13 )

217/3π2

η3(τ )η3(7τ)
�2( 17 )�2( 27 )�2( 47 )

224π2

η3(3τ)η3(5τ) ± η3(τ )η3(15τ)
�( 1

15 )�( 2
15 )�( 4

15 )�( 8
15 )

30
√
54 ∓ 6π

η5(4τ)η5(8τ)

η2(2τ)η2(16τ)

�2( 18 )�2( 38 )

64
√
2π

η18(8τ)

η6(4τ)η6(16τ)

�4( 14 )

32
√
2π

η2(τ )η(2τ)η(4τ)η2(8τ)
�2( 18 )�2( 38 )

192π

Proof For the first four entries in the table, we use Theorem 4. The singular values kp,
as well as K (kp), are well tabulated in [2] and [21]. For instance, for the third entry,
we need

k7 =
√
2(3 − √

7)

8
, K (k7) = �( 17 )�( 27 )�( 47 )

4 4
√
7π

.

In general, kp is algebraic and K (kp) involves only algebraic numbers and Gamma
functions.

The last three entries are weight 3 cusp forms in Martin’s list [10]. For the third last
one, we convert it to the following integral:

L( f, 2) = 1

4
√
2

1∫

0

K (k)√
k(1 − k)

dk,

which can be evaluated using the series representation of K and interchanging the
order of integration and summation.

For the second last entry, we have

L( f, 2) = 1

8

1∫

0

K (k)√
k(1 − k2)3/4

dk.

The evaluation of this integral follows from [17, Eq. (8)]. Indeed, many integrals
over a single K have closed forms, and the two integrals we just evaluated can also be
done by a computer algebra system.

123



Moments of elliptic integrals and critical L-values 125

For the last entry in the table, we obtain

L( f, 2) = 1

2
√
2

1∫

0

K (k)√
1 + k

dk.

Denoting the integral by I1, we use the moments of K ′ found in [17] and a quadratic
transformation to produce

I1 = 1√
2

1∫

0

K ′(x)√
1 + x

dx = 1

2
√
2

[
�2( 18 )�

2( 38 )

16π
− 4F3

(
3
4 ,1,1, 54
3
2 , 32 , 32

; 1
)]

. (23)

Similarly, with the auxiliary integral I2 := ∫ 1
0 K (x)/

√
x(1 + x) dx , we have

I2 = 1√
2

1∫

0

K ′(x)√
1 − x

dx = 1

2
√
2

[
�2( 18 )�

2( 38 )

16π
+ 4F3

(
3
4 ,1,1, 54
3
2 , 32 , 32

; 1
)]

. (24)

Experimentally, it is observed that I2 = 2I1, which can be shown as follows.
We know that I1/(2

√
2) = L( f, 2). On the other hand, it is readily verifiable that

I2/(2
√
2) = L( f0, 2), where f0(q) := − f (−q). Consequently, by looking at the

q-expansion of f0 − f and using the fact that the coefficients of f are multiplicative,
we deduce that I2 − I1 = I1. The desired evaluation of I1 now follows by combining
(23) and (24), and inter alia we also obtain a closed form for the 4F3. ��
Remark 3 Here, we retain the notation used in the last part of the proof above. First,
with f (τ ) = η2(τ )η(2τ)η(4τ)η2(8τ), Somos showed that

f (τ ) = 1

2

∑
(n,m) 	=(0,0)

(m2 − 2n2)qm
2+2n2 .

Second, it is known that the series (3) for the L-value of a weight k cusp form
converges conditionally for some s < (k + 1)/2.

In particular, the series for L( f, 2) converges, and so by looking at the partial sums,
we have

I1 = √
2

∑
(m,n) 	=(0,0)

m2 − 2n2

(m2 + 2n2)2
,

where we sum over expanding ellipses m2 + 2n2 ≤ M, M → ∞. Similarly,

I2 = √
2

∑
(m,n) 	=(0,0)

(−1)m+1 m2 − 2n2

(m2 + 2n2)2
.
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Subtracting the sums gives another proof that I2 − I1 = I1. Since the sum
for I2 has better convergence properties (it can be summed over expanding rec-
tangles), we will deal exclusively with alternating versions of the lattice sums
we encounter. Note that we can decompose f into weight 3/2 theta functions
(η2(τ )η2(4τ)/η(2τ)) · (η2(2τ)η2(8τ)/η(4τ)), and therefore obtain a different series
expansion. Such expansions imply the alternating sum identities

∑
(m,n) 	=(0,0)

(−1)m+1(m2 − 2n2)

(m2 + 2n2)2
=

∑
m,n

18(−1)m(3m + 1)(3n + 1)

((3m + 1)2 + 2(3n + 1)2)2
= �2( 18 )�

2( 38 )

48π
.

(25)
♦

Example 2 The first entry in Theorem 5 ( f (τ ) = η6(4τ)) corresponds to the result

L( f, 2) = 1

4

1∫

0

K (k)√
1 − k2

dk = �4( 14 )

64π
, (26)

and may be expressed as a lattice sum using a binary theta expansion of f :

∑
(m,n) 	=(0,0)

(−1)m+1 m2 − 4n2

(m2 + 4n2)2
= �4( 14 )

32π
. (27)

Combined with well-known lattice sum evaluations [20], consequences of (27)
include

∑
(m,n) 	=(0,0)

(−1)mn2

(m2 + 4n2)2
= �4( 14 )

256π
− 3π log 2

32
,

∑
(m,n) 	=(0,0)

(−1)m+1m2

(m2 + 4n2)2
= �4( 14 )

64π
+ 3π log 2

8
.

On the other hand,

L( f, 1) = 1

π

1∫

0

K (k)√
1 − k2

dk = �4( 14 )

16π2 ,

which is consistent with the functional equation satisfied by L( f, s).
We note that (26) actually is a specialization of [6, Equation after (5.14)], which

states

∞∑
n=1

an
n2

qn/4 = π
√
k

4K (k)
3F2

(
3
4 , 34 ,1
5
4 , 54

; k2
)

,
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where an are the coefficients in the q-expansion of f , and as usual k = θ22 (q)/θ23 (q);
taking the limit k → 1− and appealing to the Stolz-Cesàro theorem recovers (26). ♦

Example 3 The second entry in Theorem 5 ( f (τ ) = η3(2τ)η3(6τ)) gives the non-
trivial integral evaluation

L( f, 2) =
1∫

0

(3 + 6p)−
1
2 K

(
p

3
2 (2 + p)

1
2

(1 + 2p)
1
2

)
dp = �6( 13 )

2
17
3 π2

, (28)

where we have used the parametrization of the degree 3 modular equation and multi-
plier [2, Ch. 19]. We also have L( f, 1) = √

3/π L( f, 2), which can be shown from
(28) either by the functional equation or by a cubic transformation. We note that (28)
(after a change of variable) appears in a very different context in [4, Sect. 3].

The lattice sum associated with (28) is

∑
(m,n) 	=(0,0)

(−1)m+n+1 m2 − 3n2

(m2 + 3n2)2
= �6( 13 )

2
14
3 π2

. (29)

For the third entry in Theorem 5, we do not seem to obtain a reasonably concise
integral involving K (due to the apparent lack of a parametrization for the degree 7
modular equation). Using the binary theta function for η3(τ )η3(7τ) [5], we obtain the
sum ∑

(m,n) 	=(0,0)

(−1)m(2n2 − m2)

(m2 + mn + 2n2)2
= �2( 17 )�

2( 27 )�
2( 47 )

56π2 . (30)

♦

Example 4 An L-value of the function g used in the proof of (1) also gives some inter-
esting lattice sum evaluations. Using the closed form for L(g, 3), the multiplicativity
of the coefficients of g, and results in [20], we deduce

∑
(m,n) 	=(0,0)

(−1)m+nm2n2

(m2 + n2)3
= �8( 14 )

29 3π3 − π log 2

8
,

∑
(m,n) 	=(0,0)

(−1)m+nm4

(m2 + n2)3
= − �8( 14 )

29 3π3 − 3π log 2

8
, (31)

∑
(m,n) 	=(0,0)

(−1)mm2n2

(m2 + n2)3
= − �8( 14 )

210 3π3 − π log 2

16
.

♦
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5 Even weight cases and conclusion

For even weight cusp forms, we do not seem to obtain formulas for the L-values in
terms of Gamma functions; instead hypergeometric functions are involved. Consider
the following pair of weight 4 examples:

f1(τ ) = η16(4τ)

η4(2τ)η4(8τ)
, f2(τ ) = η4(2τ)η4(4τ).

All of the critical L-values of f1 and f2 reduce to special values of hypergeometric
functions. Furthermore, there are some very curious relations between the L-values
of both cusp forms:

L( f1, 3) = π

2
L( f2, 2) = π2

8
L( f1, 1) = 1

8

1∫

0

K (k)2√
1 − k2

dk = π3

32
4F3

(
1
2 , 12 , 12 , 12
1,1,1

; 1
)

.

(32)

The last equality follows from [17, Eq. 35]. Similarly, we have

L( f2, 3) = π

4
L( f1, 2) = π2

4
L( f2, 1) = 1

8

1∫

0

K (k)K ′(k)√
1 − k2

dk = 1

4

1∫

0

K (k)2dk

= π4

128
7F6

(
5
4 , 12 , 12 , 12 , 12 , 12 , 12

1
4 ,1,1,1,1,1

; 1
)

. (33)

The second last equality comes from [17, Sect. 5.4], while the hypergeometric
evaluation follows from [17, Eqs. 3 and 18]. Curiously, this last integral also appears
in connection with random walks [4, Sect. 3].

5.1 Conclusion

As developed by Manin and Shimura (see e. g. [15, Thm. 1]), and also recorded in [9,
Sect. 3.4], the critical L-values of a modular form f satisfy the following property:
the ratios L( f, 2k)/L( f, 2k − 2) and L( f, 2k + 1)/L( f, 2k − 1) can all be expressed
in terms of algebraic (often rational) numbers and powers of π , where s is the weight
and k = 1, 2, . . .. When the weight s is odd, the functional equation relating L( f, k)
to L( f, s − k) then implies that all the critical L-values of f are related by constants
of said type. The explicit algebraic numbers involved may be found using Rankin’s
method, as explained in [14], though the computation is highly non-trivial and tedious.

It was simple to directly verify this property for f1 and f2 studied above. On the
other hand, more effort and ad hoc strategies were needed to show that for the weight
5 cusp forms g and h, all the critical L-values are related by rational multiples and
powers of π . (Nevertheless, we believe that these approaches are still easier than
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Rankin’s method for the cusp forms concerned.) It would be valuable to find a general
and more approachable method for computing the ratio of two critical L-values.

We conclude with two more observations and directions for further research:

(1) It seems that the critical L-values of someevenweight cusp forms canbe expressed
as hypergeometric functions, while those of odd weight cusp forms can often be
expressed in terms of Gamma functions. It would be interesting to explain this
discrepancy, because the Ramanujan zeta function and various other interesting
zeta functions are attached to such cusp forms (see e. g. [12]). It would also be
illuminating to see if many other critical L-values of odd weight cusp forms
evaluate in terms of Gamma functions.

(2) As shown above, L( f1, s)/L( f2, s−1)/π is a rational number. (Note that f2 is f1
twisted by the non-trivial Dirichlet character of conductor 4.) Are there other pairs
of even weight modular forms with the same property? If so, is there a method to
find, given one function in the pair, the other function?
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