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Abstract Recently, Sandon and Zanello (Ramanujan J 33: 83–120, 2014) conjectured
29 highly non-trivial colored partition identities. In this paper, we establish 17 of
them and prove analogous colored partition identities of the remaining 12 conjectural
identities by using the theory of Ramanujan’s theta functions. We also present some
new colored partition identities of the same type.
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1 Introduction

Recently, Sandon and Zanello [12] determined a unified combinatorial framework to
look at a large number of colored partition identities, and studied combinatorially the
five identities, proved by Berndt [10], corresponding to modular equations of prime
degrees 3, 5, 7,11, and 23 of the Schröter, Russell, and Ramanujan type. In [13], they
further found several new and highly non-trivial colored partition identities by using
their master bijection, i.e., Theorem 2.1 in [12], and conjectured 29 more identities
(In fact, they conjectured 30 identities, but analytic proof of one of the identities
was already given by Baruah and Berndt in [3, Theorem 8.1]). Their conjectures are
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formulated in terms of certain sets of integers satisfying the conditions of their master
bijection and the partition identities are stated as corollaries. As mentioned by Berndt
and Zhou [6], these conjectures and corollaries are different formulations of the same
phenomena; their corollaries are not less general than the corresponding conjectures.
Three of their conjectured identities are proved analytically by Berndt and Zhou [6]
with the help of Ramanujan’s formulas for multipliers. In [7], they proved all the
remaining conjectures of Sandon and Zanello [13].

Following Sandon and Zanello [13], for given integers C ≥ 1, 0 ≤ Ai ≤ C/2 and
0 ≤ Bi ≤ C/2, let S be the set containing one copy of all positive integers congruent
to ±Ai modulo C for each i , and let T be the set containing one copy of all positive
integers congruent to ±Bi modulo C for each i . Let DS(N ) (respectively, DT (N ))
be the number of partitions of N into distinct elements of S (respectively, T), where
such partitions require to have an odd number of parts if no Ai (respectively, no Bi ) is
equal to zero. Then the theorems and conjectures on colored partitions of Sandon and
Zanello in [12] and [13] are identities connecting DS(N ) and DT (N ). For example,
Corollary to Conjecture 3.24 in [13] can be stated as follows.

Conjecture 1.1 Let S be the set containing one copy of the even positive integers
that are not multiples of 25, and T be the set containing one copy of the odd positive
integers that are not multiples of 25. Then, for any N ≥ 4,

DS(N ) = DT (N − 3).

Obviously, the above is incorrect for odd N as S contains only even elements. The
corrected form, which has been proved by Berndt and Zhou [6] by using a 25th degree
modular equation of Ramanujan, can be stated as follows.

Theorem 1.2 If S and T are as defined in Corollary 1.1, then, for any N ≥ 2, the num-
ber of partitions of 2N into an odd number of distinct elements of S is equinumerous
to the number of partitions of 2N − 3 into distinct elements of S.

Berndt and Zhou [6] also proved two similar conjectures of Sandon and Zanello
[13] as well as several new partition identities arising from Ramanujan’s formulas for
multipliers.

Now, refer to the italicized text in the second paragraph of this introduction. If we
do not restrict the parity of the number of partitions into distinct elements of S (or,
T ), then some of the partition identities conjectured by Sandon and Zanello [13] take
different forms. The aim of the paper is to present new partition identities without
restricting the parity of number of partitions into distinct elements of S (or, T ). We
also prove 17 conjectures of Sandon and Zanello [13] that do not require to restrict the
parity of number of partitions into distinct elements of S (or, T ). These correspond to
Corollaries to Conjectures 3.26, 3.32, 3.34–3.38, 3.40, 3.41, 3.43–3.46, and 3.48–3.51
in [13].

In each of our partition identities, the number of partitions of a positive integer n
into distinct elements of a particular set A will be denoted by PA(n). For example, the
identity analogous to the previous theorem is

PS(2N ) = 2PT (2N − 3) + a(N ),
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where a(N ) is the difference of the number of partitions of N into an even number of
distinct nonmultiples of 25 and the number of partitions of N into an odd number of
distinct nonmultiples of 25. By Euler’s famous pentagonal number theorem, it is clear
that

∞∑

n=0

a(n)qn = (q; q)∞
(q25; q25)∞ ,

where, here and in the sequel, for any complex number a and |q| < 1, we define

(a; q)∞ :=
∞∏

k=0

(1 − aqk).

We extensively employ Ramanujan’s theta function identities to arrive at the parti-
tion identities. In the next few paragraphs, we introduce Ramanujan’s theta functions
and some preliminary results.

Ramanujan’s general theta function f (a, b) for |ab| < 1 is defined by

f (a, b) :=
∞∑

k=−∞
ak(k+1)/2bk(k−1)/2. (1.1)

If we set a = qe2i z , b = qe−2i z , and q = eπ iτ , where z is complex and Im(τ ) > 0,
then f (a, b) = ϑ3(z, τ ), where ϑ3(z, τ ) denotes one of the classical theta functions
in its standard notation. Jacobi’s famous triple product identity can be written as

f (a, b) = (−a, ab)∞(−b; ab)∞(ab; ab)∞. (1.2)

Three special cases of f (a, b) are given in the following lemma.

Lemma 1.3 [8, p. 36, Entry 22 ]. If |q| < 1, then

ϕ(q) := f (q, q) =
∞∑

k=−∞
qk

2 = (−q; q2)2∞(q2; q2)∞,

ψ(q) := f (q, q3) = 1

2
f (1, q) =

∞∑

k=0

qk(k+1)/2 = (q2; q2)∞
(q; q2)∞ ,

and f (−q) = f (−q,−q2)=
∞∑

k=0

(−1)kqk(3k−1)/2+
∞∑

k=1

(−1)kqk(3k+1)/2 = (q; q)∞,

where the product representations in the above arise from (1.2).

After Ramanujan, we also define

χ(q) := (−q; q2)∞,
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which is the generating function for the number of partitions of a positive integer into
distinct odd parts.

Some more results are given in the next two lemmas.

Lemma 1.4 [8, p. 45, Entry 29]. If ab = cd, then

f (a, b) f (c, d) + f (−a,−b) f (−c,−d) = 2 f (ac, bd) f (ad, bc), (1.3)

and

f (a, b) f (c, d) − f (−a,−b) f (−c,−d) = 2a f
(
b/c, ac2d

)
f
(
b/d, acd2

)
.

(1.4)

Lemma 1.5 [8, p. 40, Entry 25]. We have

ϕ(q) + ϕ(−q) = 2ϕ(q4),

ϕ(q) − ϕ(−q) = 4qψ(q8),

ϕ2(q) − ϕ2(−q) = 8qψ2(q4),

and

ϕ2(q) + ϕ2(−q) = 2ϕ2(q2).

Next, we give the definition of a modular equation as understood by Ramanujan.
The complete elliptic integral of first kind K (k) is defined as

K (k) : =
π/2∫

0

dϕ√
1 − k2 sin2 ϕ

= π

2

∞∑

n=0

( 12 )
2
n

(n!)2 k
2n

= π

2
2F1

(
1

2
,
1

2
; 1; k2

)
, (0 < k < 1) (1.5)

where the series representation is found by expanding the integrand in a binomial
series and integrating termwise, and 2F1 (a, b; c; z), |z| < 1 denotes the ordinary
hypergeometric function. The number k is called the modulus, and k′ := √

1 − k2

is called the complementary modulus. Let K , K ′, L , and L ′ denote complete elliptic
integrals of first kind associated with the moduli k, k′, �, and �′, respectively. Suppose
that the equality

n
K ′

K
= L ′

L
(1.6)

holds for some positive integer n. Then a modular equation of degree n is a relation
between the moduli k and �, which is implied by (1.6). Ramanujan recorded his
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modular equations in terms of α and β, where α = k2 and β = �2. We then say that
β has degree n over α. The corresponding multiplier m is defined by

m = K

L
.

If q = exp(−πK ′/K ), then one of the fundamental results in the theory of elliptic
functions [8, Entry 6, p. 101] is given by

ϕ2(q) = 2

π
K (k) = 2F1

(
1

2
,
1

2
; 1; k2

)
,

where ϕ is as defined in Lemma 1.3.
The above identity enables one to derive formulas for ϕ, ψ , f , and χ at different

arguments in terms of α , q, and z := 2F1
( 1
2 ,

1
2 ; 1;α

)
. In particular, Ramanujan

recorded the following identities.

Lemma 1.6 [8, pp. 122 – 124, Entries 10–12]. We have

ϕ(q) = √
z,

ϕ(−q) = √
z(1 − α)1/4,

ϕ(−q2) = √
z(1 − α)1/8,

ψ(q) =
√
zα1/8

√
2q1/8

,

ψ(−q) =
√
z (α(1 − α))1/8√

2q1/8
,

ψ(q2) =
√
zα1/4

2q1/4
,

f (q) =
√
z (α(1 − α))1/24

21/6q1/24
,

f (−q2) =
√
z (α(1 − α))1/12

21/3q1/12
.

Suppose that β has degree n over α. If we replace q by qn above, then the same
evaluations hold with α replaced by β and z replaced by zn := 2F1

( 1
2 ,

1
2 ; 1;β

)
.

In the next six sections, we prove 17 of the conjectures in [13] and find analogous
partition identities for the remaining 12 conjectures. It would be clear from our proofs
of the partition identities that more such colored partition identities could be found.
In the last section of this paper, we present some new colored partition identities of
the same type.
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2 Partition identities analogous to conjectures 3.24, 3.25, and 3.27 of [13]

As mentioned in the previous section, each of the modified versions of Conjectures
3.24, 3.25, and 3.27 of [13] have been proved by Berndt and Zhou [7] by employing a
certain kind of Ramanujan modular equation involving multipliers. In this section, we
present three analogous partition identities without restricting the parity of the number
of distinct elements of S (and/or, T ). It is worthwhile to mention that the same kind
of partition identities may be obtained from other analogous modular equations of
Ramanujan involving multipliers.

Theorem 2.1 (Analogs to Corollary to Conjecture 3.24 of [13] and to Theorem 3.3
of [6]) Let S be the set containing one copy of the even positive integers that are not
multiples of 25, and T be the set containing one copy of the odd positive integers that
are not multiples of 25. Let a(N ) be the difference of the number of partitions of N
into an even number of distinct non multiples of 25 and the number of partitions of N
into an odd number of distinct non multiples of 25. Then PS(2) = 2 + a(1) and for
N > 1, we have

PS(2N ) = 2PT (2N − 3) + a(N ). (2.1)

Proof From [8, p. 291, Entry 15(i)], we recall a modular equation of degree 25 as

(
β

α

)1/8

+
(
1 − β

1 − α

)1/8

−
(

β(1 − β)

α(1 − α)

)1/8

− 2

(
β(1 − β)

α(1 − α)

)1/12

= √
m,

where β has degree 25 over α, andm is themultiplier connecting α and β. Transcribing
this modular equation, with the aid of Lemma 1.6, we have

q3
{

ψ(q25)

ψ(q)
− ψ(−q25)

ψ(−q)

}
= 1 + 2q2

f (−q50)

f (−q2)
− ϕ(−q50)

ϕ(−q2)
,

which can be transformed into the q-product identity

(−q2; q2)∞
(−q50; q50)∞ = q3

{
(−q; q2)∞

(−q25; q50)∞ − (q; q2)∞
(q25; q50)∞

}
+ 2q2 + f (−q2)

f (−q50)
.

Thus,

∞∑

n=0

PS(n)qn = q3
{ ∞∑

n=0

PT (n)qn −
∞∑

n=0

PT (n)(−q)n

}
+ 2q2 + f (−q2)

f (−q50)
.

Equating the coefficients of q2N from both sides of the above, and noting that

∞∑

n=0

a(n)qn = f (−q)

f (−q25)
,

we easily arrive at (2.1).
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Corollary 2.2 For N ≥ 0,

PS(10N + 6) = 2PT (10N + 3), (2.2)

PS(10N + 8) = 2PT (10N + 5), (2.3)

and, for N ≥ 1,

PS(10N + 2) = 2PT (10N − 1). (2.4)

Furthermore,

a(10) = a(17) = a(20) = a(43) = a(45) = a(67) = a(117) = 0;

i.e.,

PS(20)=2PT (17), PS(34) = 2PT (31), PS(40) = 2PT (37), PS(86) = 2PT (83),

PS(90) = 2PT (87), PS(134) = 2PT (131), PS(234) = 2PT (231),

and

a(25n) > 0, a(25n+5) > 0, a(25n+7) > 0, a(25n+17) > 0, a(25n + 22 > 0;
a(25n + 2) < 0, a(25n + 10) < 0, a(25n + 12) < 0, a(25n + 15) < 0,

a(25n + 20) < 0.

Proof We recall from [8, p. 82] that

∞∑

n=0

a(n)qn = f (−q)

f (−q25)
= f (−q10,−q15)

f (−q5,−q20)
− q − q2

f (−q5,−q20)

f (−q10,−q15)
.

Extracting various terms from both sides of the above, we find that

a(1) = −1, a(5n + 1) = 0, for n ≥ 1,

a(5n + 3) = 0 = a(5n + 4), for n ≥ 0, (2.5)
∞∑

n=0

a(5n)qn = f (−q2,−q3)

f (−q,−q4)
,

and

∞∑

n=0

a(5n + 2)qn = − f (−q,−q4)

f (−q2,−q3)
.

From (2.5) and (2.1), we arrive at (2.2)–(2.4).
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Next, let γ (n) and δ(n) be defined by

∞∑

n=0

γ (n)qn :=
∞∑

n=0

a(5n)qn = f (−q2,−q3)

f (−q,−q4)
= 1

q−1/5R(q)

and

∞∑

n=0

δ(n)qn :=
∞∑

n=0

a(5n + 2)qn = − f (−q,−q4)

f (−q2,−q3)
= −q−1/5R(q),

where R(q) is the famous Rogers-Ramanujan continued fraction, defined by

R(q) := q1/5

1
+ q

1
+ q2

1
+ q3

1
+ . . . , |q| < 1. (2.6)

The coefficients γ (n) and δ(n) have been extensively studied by various authors.
We refer to Chapt. 4 of [1] for many references. In particular, from [1, pp. 111–113,
Corollary 4.2.1 and Corollary 4.2.2], we have

γ (2) = γ (4) = γ (9) = 0, δ(3) = δ(8) = δ(13) = δ(23) = 0,

γ (5n) > 0, γ (5n + 1) > 0, γ (5n + 2) < 0, γ (5n + 3) < 0, γ (5n + 4) < 0,

δ(5n) < 0, δ(5n + 2) < 0, δ(5n + 1) > 0, δ(5n + 3) > 0, δ(5n + 4) > 0.

Therefore,

a(10) = a(20) = a(17) = a(42) = a(45) = a(67) = a(117) = 0,

a(25n) > 0, a(25n+5) > 0, a(25n+7) > 0, a(25n+17) > 0, a(25n + 22) > 0,

a(25n + 2) < 0, a(25n + 10) < 0, a(25n + 12) < 0, a(25n + 15) < 0,

a(25n + 20) < 0,

which completes the proof. ��
Theorem 2.3 (Analogs to Corollary to Conjecture 3.25 of [13] and to Theorem 2.7
of [6]) Let S be the set containing 2 copies of the even positive integers that are not
multiples of 13, and T be the set containing 2 copies of the odd positive integers
that are not multiples of 13. Let a(N ) be the difference of the number of 2-colored
partitions of N into an even number of distinct non multiples of 13 and the number
of 2-colored partitions of N into an odd number of distinct non multiples of 13. Then
PS(2) = 4 + a(1) and for any N > 1,

PS(2N ) = 2PT (2N − 3) + a(N ). (2.7)
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Proof If β has degree 13 over α, and m is the multiplier connecting α and β, then
from [8, p. 376, Entry 8(iii)], we have

(
β

α

)1/4

+
(
1 − β

1 − α

)1/4

−
(

β(1 − β)

α(1 − α)

)1/4

− 4

(
β(1 − β)

α(1 − α)

)1/6

= m,

which can be transcribed, with the help of the identities in Lemma 1.6, into

ϕ2(−q26)

ϕ2(−q2)
= q3

ψ(q26)

ψ(q2)

{
ϕ(−q13)

ϕ(−q)
− ϕ(q13)

ϕ(q)

}
+ 4q2

f 4(q13)ϕ2(q)

f 4(q)ϕ2(q13)
+ 1.

The above can be further transformed into

(−q2; q2)2∞
(−q26; q26)2∞

= q3
{

(−q; q2)2∞
(−q13; q26)2∞

− (q; q2)2∞
(q13; q26)2∞

}
+ 4q2 + f 2(−q2)

f 2(−q26)
.

Thus,

∞∑

n=0

PS(n)qn = q3
{ ∞∑

n=0

PT (n)qn −
∞∑

n=0

PT (n)(−q)n

}
+ 4q2 + f 2(−q2)

f 2(−q26)
. (2.8)

Now, the generating function of a(n) is given by

∞∑

n=0

a(n)qn = f 2(−q)

f 2(−q13)
.

Therefore, equating the coefficients of q2N from both sides of (2.8), we easily arrive
at the desired identity to complete the proof.

Theorem 2.4 (Analogs to Corollary to Conjecture 3.27 of [13] and to Theorem 2.5
of [6]) Let S be the set containing 4 copies of the even positive integers that are not
multiples of 7, and T the set containing 4 copies of the odd positive integers that are
not multiples of 7. Furthermore, let a(N ) be the difference of the number of 4-colored
partitions of N into an even number of distinct non multiples of 7 and the number of
4-colored partitions of N into an odd number of distinct non multiples of 7. Then

PS(2) = 8 + a(1) and f or N > 1, PS(2N ) = 2PT (2N − 3) + a(N ). (2.9)

Proof First of all, we note that

∞∑

n=0

a(n)qn = f 4(−q)

f 4(−q7)
.
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Next, if β has degree 7 over α, and m is the multiplier connecting α and β, then,
from [8, p. 314, Entry 19(v)]

(
β

α

)1/2

+
(
1 − β

1 − α

)1/2

−
(

β(1 − β)

α(1 − α)

)1/2

− 8

(
β(1 − β)

α(1 − α)

)1/3

= m2,

which can be transcribed, with the help of Lemma 1.6, into

ϕ4(−q14)

ϕ4(−q2)
= 1 + q3

{
ψ4(−q7)

ψ4(−q)
− ψ4(q7)

ψ4(q)

}
+ 8q2

f 4(−q14)

f 4(−q2)
.

Transforming the theta functions into q-products, with the aid of Lemma 1.3, we find
that

(−q2; q2)4∞
(−q14; q14)4∞

= q3
{

(−q; q2)4∞
(−q7; q14)4∞

− (q; q2)4∞
(q7; q14)4∞

}
+ 8q2 + f 4(−q2)

f 4(−q14)
,

which can be written as

∞∑

n=0

PS(n)qn = q3
{ ∞∑

n=0

PT (n)qn −
∞∑

n=0

PT (n)(−q)n

}
+ 8q2 +

∞∑

n=0

a(n)q2n .

Equating the coefficients of q2N from both sides of the above, we easily arrived at
(2.9) to complete the proof. ��

3 Conjectures 3.51 and 3.26 of [13]

Theorem 3.1 (Corollary to Conjecture 3.51 of [13]) Let S be the set containing one
copy of the even positive integers, 2 copies of the odd positive integers, one more copy
of the positive multiples of 14, and 2 more copies of the odd positive multiples of 7;
let T be the set containing 2 copies of the even positive integers, one copy of the odd
positive integers, 2 more copies of the positive multiples of 14, and one more copy of
the odd positive multiples of 7. Then, for any N ≥ 1,

DS(N ) = 2DT (N − 1),

or equivalently,

PS(N ) = 2PT (N − 1).

Proof We recall from Berndt’s book [8, p. 304] that

ϕ(q)ϕ(q7) − ϕ(−q2)ϕ(−q14) = 2qψ(q)ψ(q7). (3.1)
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Transforming this into q-products with the aid of Lemma 1.3 and canceling
(q2; q2)∞(q14; q14)∞ from both sides, we find that

(−q; q2)2∞(−q7; q14)2∞ − (q2; q4)∞(q14; q28)∞ = 2q

(q; q2)∞(q7; q14)∞ .

Multiplying both sides by (−q2; q2)∞(−q14; q14)∞ and then using Euler’s identity
(−q; q)∞ = (q; q2)−1∞ , we obtain

(−q; q2)2∞(−q7; q14)2∞(−q2; q2)∞(−q14; q14)∞ =
2q(−q; q2)∞(−q7; q14)∞(−q2; q2)2∞(−q14; q14)2∞ + 1,

which is equivalent to

∞∑

n=0

DS(n)qn = 2q
∞∑

n=0

DT (n)qn + 1.

Equating the coefficients of qN , we arrive at the desired result. ��

Conjecture 3.2 (Corollary to Conjecture 3.26 of [13]) Let S be the set containing 3
copies of the odd positive integers and 3 more copies of the odd positive multiples of
7, and T the set containing 3 copies of the even positive integers and 3 more copies
of the positive multiples of 14. Then, for any N ≥ 3,

DS(N ) = 4DT (N − 3).

Obviously, the above conjecture is not true when N is even as T contains only even
elements. We prove the following modified version of the conjecture.

Theorem 3.3 Let S and T be as defined in Conjecture 3.2. Then, for any N ≥ 1,

DS(2N + 1) = 4DT (2N − 2), (3.2)

or equivalently,

PS(2N + 1) = 4PT (2N − 2). (3.3)

Proof Cubing (3.1), we find that

ϕ3(q)ϕ3(q7) − ϕ3(−q2)ϕ3(−q14) = 8q3ψ3(q)ψ3(q7) + 6qψ(q)ψ(q7)ϕ(q)ϕ(q7)

×ϕ(−q2)ϕ(−q14),
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which can be transformed, with the aid of Lemma 1.3, into

{(−q; q2)6∞(−q7; q14)6∞ − (q2; q4)3∞(q14; q28)3∞}(q2; q2)3∞(q14; q14)3∞
=8q3

(q2; q2)3∞(q14; q14)3∞
(q; q2)3∞(q7; q14)3∞

+6q(q2; q2)3∞(q14; q14)3∞(−q; q2)3∞(−q7; q14)3∞.

Dividing both sides of the above identity by (q2; q2)3∞(q14; q14)3∞(−q; q2)3∞
(−q7; q14)3∞ and then using the trivial identity (q2; q4)∞ = (q; q2)∞(−q; q2)∞,
we arrive at

(−q; q2)3∞(−q7; q14)3∞ − (q; q2)3∞(q7; q14)3∞ = 8q3
1

(q2; q4)3∞(q14; q28)3∞
+ 6q,

which by Euler’s identity (−q; q)∞ = (q, q2)−1∞ reduces to

(−q; q2)3∞(−q7; q14)3∞−(q; q2)3∞(q7; q14)3∞ =8q3(−q2; q2)3∞(−q14; q14)3∞+6q.

Thus,

∞∑

n=0

DS(n)qn −
∞∑

n=0

DS(n)(−q)n = 8q3
∞∑

n=0

DT (n)qn + 6q

or

∞∑

n=0

PS(n)qn −
∞∑

n=0

PS(n)(−q)n = 8q3
∞∑

n=0

PT (n)qn + 6q.

Comparing the coefficients of q2N+1 fromboth sides of the above identities, we readily
arrive at (3.2) and (3.3) to complete the proof.

Remark 3.4 The above two theorems have also been proved by Berndt and Zhou [7]
by using Ramanujan’s modular equations.

4 Partition identities in conjectures 3.38, 3.28, 3.30, and 3.42 of [13]

Conjecture 4.1 (Corollary to Conjecture 3.38 of [13]) Let S be the set containing 3
copies of the odd positive integers that are not multiples of 3, one copy of the odd
positive multiples of 3 that are not multiples of 9, and 4 copies of the odd positive
multiples of 9; let T be the set containing 3 copies of the even positive integers that
are not multiples of 3, one copy of the positive multiples of 6 that are not multiples of
18, and 4 copies of the positive multiples of 18. Then, for any N ≥ 3,

DS(N ) = 2DT (N − 3).
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Obviously, Conjecture 4.1 is incorrect for even N as T contains only even elements.
We find the following modified result.

Theorem 4.2 If S and T are as defined in Conjecture 4.1, then DS(1) = 3 and for
N > 1,

DS(2N + 1) = 2DT (2N − 2), (4.1)

or equivalently,

PS(2N + 1) = 2PT (2N − 2). (4.2)

Proof First we recall from [8, p. 49, Corollary (ii)] that

ψ(q) = f (q3, q6) + qψ(q9). (4.3)

Now, by Jacobi triple product identity, (1.2), and the definition of ϕ and χ(q), we
have

f (q, q2) = (−q; q3)∞(−q2; q3)∞(q3; q3)∞ = ϕ(−q3)

χ(−q)
. (4.4)

With the help of the above, we rewrite (4.3) as

ψ(q) = ϕ(−q9)

χ(−q3)
+ qψ(q9). (4.5)

Replacing q by −q and then employing the trivial identity χ3(q) = ϕ(q)/ψ(−q), we
have

χ3(q9)

χ(q3)
= q + ψ(−q)

ψ(−q9)
. (4.6)

Again, from [9, p. 202, Entry 50(i)], we recall that

χ3(q)

χ(q3)
= 1 + 3q

ψ(−q9)

ψ(−q)
. (4.7)

Multiplying the previous two identities, we have

χ3(q)χ3(q9)

χ2(q3)
= 4q + 3q2

ψ(−q9)

ψ(−q)
+ ψ(−q)

ψ(−q9)
. (4.8)

Next, by [8, p. 358, Entries 4(i) and (ii)],

ϕ(−q18)

ϕ(−q2)
+ q

(
ψ(q9)

ψ(q)
− ψ(−q9)

ψ(−q)

)
= 1
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and

ϕ(−q2)

ϕ(−q18)
+ 1

q

(
ψ(q)

ψ(q9)
− ψ(−q)

ψ(−q9)

)
= 3.

Replacing q by −q in (4.8) and then subtracting from (4.8) and using the above
two identities, we obtain

χ3(q)χ3(q9)

χ2(q3)
− χ3(−q)χ3(−q9)

χ2(−q3)
= 2q + 3q

ϕ(−q18)

ϕ(−q2)
+ q

ϕ(−q2)

ϕ(−q18)
,

= 2q + q

ϕ(−q2)ϕ(−q18)

×
{
ϕ2(−q2) + 3ϕ2(−q18)

}
. (4.9)

Now, by [8, p. 49, Corollary (i)],

ϕ(q) = ϕ(q9) + 2q f (q3, q15).

Noting by (1.2), that

f (q, q5) = (−q; q6)∞(−q5; q6)∞(q6; q6)∞ = ψ(−q3)χ(q),

we rewrite the previous identity as

ϕ(q) = ϕ(q9) + 2qψ(−q9)χ(q3), (4.10)

i.e.,

ϕ(q) − ϕ(q9) = 2qψ(−q9)χ(q3).

Again, by [2, Eq. (3.37)],

3ϕ(q9) − ϕ(q) = 2ψ(−q)χ(q3).

Multiplying the above two identities and then replacing q by −q2, we find that

ϕ2(−q2) + 3ϕ2(−q18) = 4ϕ(−q2)ϕ(−q18) + 4q2ψ(q2)ψ(q18)χ2(−q6). (4.11)

Employing (4.11) in (4.9), we obtain

χ3(q)χ3(q9)

χ2(q3)
− χ3(−q)χ3(−q9)

χ2(−q3)
= 6q + 4q3

ψ(q2)ψ(q18)

ϕ(−q2)ϕ(−q18)
χ2(−q6),

= 6q + 4q3
χ2(−q6)

χ3(−q2)χ3(−q18)
. (4.12)
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The above identity can be rewritten as

∞∑

n=0

DS(n)qn −
∞∑

n=0

DS(n)(−q)n = 6q + 4q3
∞∑

n=0

DT (n)qn

or

∞∑

n=0

PS(n)qn −
∞∑

n=0

PS(n)(−q)n = 6q + 4q3
∞∑

n=0

PT (n)qn .

Equating the coefficients of q2N+1 from both sides of the above identities, we readily
arrive at (4.1) and (4.2) to finish the proof.

Remark 4.3 The identity (4.1) has also been established by Berndt and Zhou [7] by
using Ramanujan’s modular equations.

Conjecture 4.4 (Corollary to Conjecture 3.28 of [13]) Let S be the set containing
3 copies of the even positive integers that are not multiples of 9, and T be the set
containing 3 copies of the odd positive integers that are not multiples of 9. Then, for
any N ≥ 4,

DS(N ) = DT (N − 3).

Obviously, Conjecture 4.4 is incorrect for odd N as S contains only even elements. For
even N , the conjecture is proved by Berndt and Zhou [7]. Here we find the following
analogous result.

Theorem 4.5 Let S and T be as defined in Conjecture 4.4 and let a(N ) be the dif-
ference of the number of 3-colored partitions of N into an even number of distinct
nonmultiples of 9 and the number of 3-colored partitions of N into an odd number of
distinct nonmultiples of 9. Then, PS(2) = 3 + a(1) and for N > 1, we have

PS(2N ) = 2PT (2N − 3) + a(N ). (4.13)

Proof Note that
∞∑

n=0

a(n)qn = f 3(−q)

f 3(−q9)
.

Multiplying (4.5) by ϕ(q9) and (4.10) by qψ(q9) and then subtracting the second
from the first, we have

ψ(q)ϕ(q9) − qϕ(q)ψ(q9) = ϕ2(−q18) − 2q2ψ(q18)ϕ(−q18)χ(−q6)

χ(−q3)
,

where we have also used the trivial identities χ(q)χ(−q) = χ(−q2), ϕ(q)ϕ(−q) =
ϕ2(−q2), and ψ(q)ψ(−q) = ψ(q2)ϕ(−q2). Replacing q by −q2 in (4.10) and then
using it in the above identity, we obtain
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ψ(q)ϕ(q9) − qϕ(q)ψ(q9) = ϕ(−q2)ϕ(−q18)

χ(−q3)
. (4.14)

Cubing, we have

ψ3(q)ϕ3(q9) − q3ϕ3(q)ψ3(q9) = ϕ3(−q2)ϕ3(−q18)

χ3(−q3)

+3qψ(q)ϕ(q9)ϕ(q)ψ(q9)
ϕ(−q2)ϕ(−q18)

χ(−q3)
.

Dividing both sides of the above by ψ3(q)ψ3(q9) and using
ϕ(q)

ψ(q)
= χ(q)χ(−q2)

and then simplifying further, we find that

χ3(−q18)

χ3(−q2)
= q3

χ3(q)

χ3(q9)
+ χ3(−q)χ6(−q9)

χ3(−q3)
+ 3q

χ3(−q9)

χ(−q3)
. (4.15)

Replacing q by −q in (4.15) and then adding the resulting identity with (4.15), we
have

2
χ3(−q18)

χ3(−q2)
= q3

{
χ3(q)

χ3(q9)
− χ3(−q)

χ3(−q9)

}
+ χ3(−q)χ6(−q9)

χ3(−q3)
+ χ3(q)χ6(q9)

χ3(q3)

+ 3q

{
χ3(−q9)

χ(−q3)
− χ3(q9)

χ(q3)

}
. (4.16)

Now, Ramanujan’s third degree modular equation

(
(1 − β)3

1 − α

)1/8

−
(

β3

α

)1/8

= 1

can be transformed into (see [3], Theorem 4.1)

f 3(−q3)

f (−q)
− f 3(q3)

f (q)
= 2q

f 3(−q12)

f (−q4)
.

Multiplying both sides of the above by
f (−q2)

f 3(−q6)
and noting that f (−q) =

χ(−q) f (−q2), we find that

χ3(−q3)

χ(−q)
− χ3(q3)

χ(q)
= 2q

χ(−q2)

χ3(−q6)
. (4.17)
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Employing the above, with q replaced by q3, in (4.16), we obtain

2
χ3(−q18)

χ3(−q2)
= q3

{
χ3(q)

χ3(q9)
− χ3(−q)

χ3(−q9)

}
+ χ3(−q)χ6(−q9)

χ3(−q3)
+ χ3(q)χ6(q9)

χ3(q3)

+ 6q4
χ(−q6)

χ3(−q18)
,

which can be recast as

2L = q3R + A + 6q4
χ(−q6)

χ3(−q18)
, (4.18)

where

L = χ3(−q18)

χ3(−q2)
=

∞∑

n=0

PS(n)qn,

R =
{

χ3(q)

χ3(q9)
− χ3(−q)

χ3(−q9)

}
=

∞∑

n=0

PT (n)qn −
∞∑

n=0

PT (n)(−q)n,

and

A = χ3(−q)χ6(−q9)

χ3(−q3)
+ χ3(q)χ6(q9)

χ3(q3)
.

From (4.12) and (4.17), we have

χ3(q)χ3(q9)

χ2(q3)
− χ3(−q)χ3(−q9)

χ2(−q3)
= 6q + 4q3

χ2(−q6)

χ3(−q2)χ3(−q18)
(4.19)

and

χ3(q9)

χ(q3)
− χ3(−q9)

χ(−q3)
= −2q3

χ(−q6)

χ3(−q18)
. (4.20)

Multiplying (4.19) and (4.20), we find that

2L = A + 12q4
χ(−q6)

χ3(−q18)
+ 8q6

χ3(−q6)

χ3(−q2)χ6(−q18)
. (4.21)

Multiplying (4.18) by 2 and then subtracting (4.21), we obtain

2L = 2q3R + A − 8q6
χ3(−q6)

χ3(−q2)χ6(−q18)
. (4.22)
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We want a simplified expression for A − 8q6
χ3(−q6)

χ3(−q2)χ6(−q18)
. We do this by

employing some results involving Ramanujan’s cubic continued fraction [8, p. 345],
G(q), defined by

G(q) := q1/3χ(−q)

χ3(−q3)
= q1/3

1
+ q + q2

1
+ q2 + q4

1
+ q3 + q6

1
+ · · · , |q| < 1.

(4.23)

We note from [1, pp. 95–96, Theorem 3.3.1] that

G(q)G(−q) + G(q2) = 0, (4.24)

G(q) + G(−q) + 2G2(−q)G2(q) = 0, (4.25)

and

G2(q) + 2G2(q2)G(q) − G(q2) = 0. (4.26)

Now, by (4.6) and (4.7), we have

ψ(−q)

ψ(−q9)
= −q + χ3(q9)

χ(q3)

and

3q
ψ(−q9)

ψ(−q)
= −1 + χ3(q)

χ(q3)
.

Multiplying the above two identities, we obtain

χ3(q)

χ(q3)
= 1 − 2G(−q3)

1 + G(−q3)
.

Thus,

A−8q6
χ3(−q6)

χ3(−q2)χ6(−q18)
= q2

G2(q3)

(
1−2G(q3)

1+G(q3)

)
+ q2

G2(−q3)

(
1−2G(−q3)

1+G(−q3)

)

− 8q2G2(q6)

(
1 + G(q6)

1 − 2G(q6)

)

= 2q2
(

1

G(q6)
+ 3 + 4G2(q6)

)
, (4.27)

where (4.24)–(4.26) have also been utilized to arrive at the last expression.
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But, by [8, p. 95, Entry 1(iv)],

4G2(q) − 3 + 1

G(q)
= f 3(−q1/3)

q1/3 f 3(−q3)
.

Employing the above, with q replaced by q6, in (4.27), we have

A − 8q6
χ3(−q6)

χ3(−q2)χ6(−q18)
= 12q2 + 2

f 3(−q2)

f 3(−q18)
,

and hence, (4.22) reduces to

L = q3R + 6q2 + f 3(−q2)

f 3(−q18)
.

In terms of PS(n), PT (n), and a(n), the above can be recast as

∞∑

n=0

PS(n)qn = q3
{ ∞∑

n=0

PT (n)qn −
∞∑

n=0

PT (n)(−q)n

}
+ 6q2 +

∞∑

n=0

a(n)q2n .

Equating the coefficient of q2N from both sides of the above, we arrived at the desired
result. ��
Theorem 4.6 (Corollary to Conjecture 3.30 of [13]) Let S be the set containing one
copy of the odd positive integers that are not multiples of 9 and 2 copies of the even
positive integers that are not multiples of 9, and T be the set containing 2 copies of
the odd positive integers that are not multiples of 9 and one copy of the even positive
integers that are not multiples of 9. Then, for any N ≥ 2,

DS(N ) = DT (N − 1).

Berndt and Zhou [7] proved the above theorem. Here we present an analogous
theorem involving PS(n) and PT (n).

Theorem 4.7 If S and T are as defined in Conjecture 4.6, then

PS(3N + 1) = PT (3N ), (4.28)

PS(3N + 2) = PT (3N + 1), (4.29)

PS(3N ) = PT (3N − 1) + a(N ), (4.30)

where ∞∑

n=0

a(n)qn = χ3(−q3)

χ(−q)
= 1

C(q)
,

with C(q) = q−1/3G(q), where G(q) is Ramanujan’s cubic continued fraction as
defined by (4.23).
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Furthermore, a(n) is nonzero except if n = 5 and 8.

Proof Transforming the theta functions in (4.14) into q-products by using Lemma
1.3, we find that

(−q; q2)∞(−q2; q2)2∞
(−q9; q18)∞(−q18; q18)2∞

= q
(−q; q2)2∞(−q2; q2)∞

(−q9; q18)2∞(−q18; q18)∞ + χ3(−q9)

χ(−q3)
.

In terms of PS(n) and PT (n), the above can be written as

∞∑

n=0

PS(n)qn = q
∞∑

n=0

PT (n)qn + χ3(−q9)

χ(−q3)
.

Equating the coefficients of q3N+1, q3N+2, and q3N , from both sides of the above, we
readily arrive at (4.28)–(4.30), respectively.

Now, Hirschhorn and Roselin [11, Theorem 1.5] proved that a6n > 0, a6n+1 > 0,
a6n+2 > 0, a6n+3 < 0, a6n+4 < 0, a6n+5 < 0 except a5 = a8 = 0. Thus, we finish
the proof. ��
Theorem 4.8 (Analog to Corollary to Conjecture 3.42 of [13]) Let S be the set con-
taining 2 copies of the positive integers that are not multiples of 4, and 2 more copies
of the positive multiples of 3 that are not multiples of 4; let T be the set containing 2
copies of the positive integers that are not congruent to 2modulo 4, and 2more copies
of the positive multiples of 3 that are not congruent to 2 modulo 4. Then PS(1) = 2
and for N ≥ 1,

PS(2N + 1) = 4PT (2N − 1).

Proof We recall from [8, p. 232] that

ϕ(q)ϕ(q3) − ϕ(−q)ϕ(−q3) = 4qψ(q2)ψ(q6),

which can be transformed into

(−q; q2)2∞(−q3; q6)2∞ − (q; q2)2∞(q3; q6)2∞ = 4q

(q2; q4)2∞(q6; q12)2∞
. (4.31)

Replacing q by q2 in the above, multiplying both sides of the resulting identity
by (−q; q2)2∞(−q3; q6)2∞ and then using Euler’s identity and the trivial identity
(−q; q2)∞(q; q2)∞ = (q2; q4)∞, we find that

(−q; q)2∞(−q3; q3)2∞
(−q4; q4)2∞(−q12; q12)2∞

− (−q; q2)2∞(−q3; q6)2∞(q2; q4)2∞(q6; q12)2∞

= 4q2(−q; q)2∞(−q3; q3)2∞
(−q2; q4)2∞(−q6; q12)2∞

.
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We rewrite the above as

∞∑

n=0

PS(n)qn − (−q; q2)2∞(−q3; q6)2∞(q2; q4)2∞(q6; q12)2∞ = 4q2
∞∑

n=0

PT (n)qn .

(4.32)

Replacing q by −q in (4.32) and then subtracting the resulting identity from (4.32),
we have

∞∑

n=0

PS(n)qn −
∞∑

n=0

PS(n)(−q)n − (q2; q4)2∞(q6; q12)2∞

×
{
(−q; q2)2∞(−q3; q6)2∞ − (−q; q2)2∞(−q3; q6)2∞

}

= 4q2
{ ∞∑

n=0

PT (n)qn −
∞∑

n=0

PT (n)(−q)n

}
. (4.33)

Employing (4.31) in (4.33), we arrive at

∞∑

n=0

PS(n)qn −
∞∑

n=0

PS(n)(−q)n = 4q + 4q2
{ ∞∑

n=0

PT (n)qn −
∞∑

n=0

PT (n)(−q)n

}
.

Equating the coefficients of q2N+1 from both sides, we complete the proof. ��

5 Conjectures 3.32, 3.33, 3.31, 3.35–3.37 and 3.52 of [13]

Theorem 5.1 (Corollary to Conjecture 3.32 of [13]) Let S be the set containing 2
copies of the positive integers that are either odd or multiples of 8, and 7 copies
of the positive integer that are congruent to 2 modulo 4; let T be the set con-
taining 4 copies of the positive integers that are either odd or multiples of 8, and
2 copies of the positive integers that are congruent to 2 modulo 4. Then, for any
N ≥ 1,

DS(N ) = 2DT (N − 1)

or equivalently,

PS(N ) = 2PT (N − 1).

Proof By Lemma 1.5,
ϕ(q) − ϕ(−q)

ϕ(q) + ϕ(−q)
= 2q

ψ(q8)

φ(q4)
.
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Thus,
ϕ2(q) − ϕ(q)ϕ(−q)

ϕ(q) + ϕ(−q)
= 2q

ϕ(q)ψ(q8)

φ(q4)
.

Adding ϕ(−q) to both sides of the above and then using Lemma 1.5 again, we
have

ϕ2(q2)

ϕ(q4)
= 2q

ϕ(q)ψ(q8)

φ(q4)
+ ϕ(−q).

Dividing both sides by ϕ(−q),

ϕ2(q2)

ϕ(−q)ϕ(q4)
= 2q

ϕ(q)ψ(q8)

ϕ(−q)φ(q4)
+ 1,

which can be transformed into

(−q; q2)2∞(−q8; q8)2∞(−q2; q4)7∞ = 2q(−q; q2)4∞(−q8; q8)4∞(−q2; q4)2∞ + 1,
(5.1)

where we also applied Euler’s identity (−q; q)∞ = (q; q2)−1∞ and the trivial identity
(q; q2)∞(−q; q2)∞ = (q2; q4)∞.

Since the above is equivalent to

∞∑

n=0

DS(n)qn = 2q
∞∑

n=0

DT (n)qn + 1

or equivalently,

∞∑

n=0

PS(n)qn = 2q
∞∑

n=0

PT (n)qn + 1,

equating the coefficients of qN from both sides, we readily arrive at the desired result.
��

Theorem 5.2 (Corollary to Conjecture 3.33 of [13]) Let S be the set containing 4
copies of the positive integers that are either odd or congruent to 4 modulo 8, and
2 copies of the positive integers that are congruent to 2 modulo 4; let T be the set
containing 2 copies of the positive integers that are either odd or multiples of 8, and 7
copies of the positive integers that are congruent to 2modulo 4. Then, for any N ≥ 2,

DS(N ) = DT (N − 1).

The above theorem has been proved by Berndt and Zhou [7]. In the following theorem
we prove an analogous result.
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Theorem 5.3 If S and T are as defined in Theorem 5.2, then PS(1) = 4, PT (0) = 1,
and for N ≥ 1,

PS(2N + 1) = 2PT (2N ) (5.2)

and

PS(2N ) = 2PT (2N − 1) + a(N ), (5.3)

where

∞∑

n=0

a(n)qn = χ8(−q2)

χ4(−q)
. (5.4)

Proof It is easy to see, or by Lemma 1.5,

ϕ(q) = ϕ(q4) + 2qψ(q8). (5.5)

Multiplying both sides by ϕ2(q2) and again using the identities of Lemma 1.5, we
have

ϕ(q)
(
2ϕ2(q4) − ϕ2(−q2)

)
= 2qψ(q8)ϕ2(q2) + ϕ2(q2)

(
ϕ(−q) + 2qψ(q8)

)
,

i.e.,

ϕ(q)ϕ2(q4) = 2qψ(q8)ϕ2(q2) + 1

2
ϕ(−q)ϕ2(q2) + 1

2
ϕ(−q)ϕ2(q)

= 2qψ(q8)ϕ2(q2) + 1

2
ϕ(−q)ϕ2(q2) + 1

2
ϕ(−q)

{
ϕ2(q2) + 4qψ2(q4)

}

= 2qψ(q8)ϕ2(q2) + ϕ(−q)ϕ2(q2) + 2qϕ(−q)ψ2(q4).

Dividing both sides by ϕ(−q)ψ2(q4) and simplifying by using ϕ(q)ψ(q2) = ψ2(q),
we find that

ϕ(q)ϕ(q4)

ϕ(−q)ψ(q8)
= 2q

ϕ2(q2)

ϕ(−q)ϕ(q4)
+ 2q + ϕ2(q2)

ψ2(q4)
.

Expressing the above in q-products, we have

(−q; q2)4∞(−q4 : q8)4∞(−q2; q4)2∞ = 2q(−q; q2)2∞(−q8 : q8)2∞(−q2; q4)7∞
+2q + χ8(−q4)

χ4(−q2)
, (5.6)

which is equivalent to

∞∑

n=0

PS(n)qn = 2q
∞∑

n=0

PT (n)qn + 2q + χ8(−q4)

χ4(−q2)
.
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Equating the coefficients of q2N+1 and q2N on both sides, we easily arrive at (5.2)
and (5.3), respectively. ��
Theorem 5.4 (Corollary to Conjecture 3.31 of [13]) Let S be the set containing 4
copies of the positive integers that are either odd or congruent to 4 modulo 8, and
2 copies of the positive integers that are congruent to 2 modulo 4; let T be the set
containing 4 copies of the positive integers that are either odd or multiples of 8, and 2
copies of the positive integers that are congruent to 2modulo 4. Then, for any N ≥ 2,

DS(N ) = 2DT (N − 2).

A proof of the above theorem can be found in Berndt and Zhou [7]. We find the
following result.

Theorem 5.5 If S and T are as defined in Theorem 5.4, then PS(1) = 4 and for
N ≥ 1,

PS(2N + 1) = 4PT (2N − 1), (5.7)

PS(2N ) = 4PT (2N − 2) + a(N ), (5.8)

where a(n) is as defined in (5.4).

Proof From (5.1) and (5.6), we have

(−q; q2)2∞(−q8; q8)2∞(−q2; q4)7∞ = 2q(−q; q2)4∞(−q8; q8)4∞(−q2; q4)2∞+1

and

(−q; q2)4∞(−q4; q8)4∞(−q2; q4)2∞ = 2q(−q; q2)2∞(−q8; q8)2∞(−q2; q4)7∞
+ 2q + χ8(−q4)

χ4(−q2)
.

Thus,

(−q; q2)4∞(−q4; q8)4∞(−q2; q4)2∞ = 4q2(−q; q2)4∞(−q4; q8)4∞(−q2; q4)2∞
+ 4q + χ8(−q4)

χ4(−q2)
,

which is equivalent to

∞∑

n=0

PS(n)qn = 4q2
∞∑

n=0

PT (n)qn + 4q + χ8(−q4)

χ4(−q2)
.

Equating the coefficient of q2N+1 and q2N from both sides, we readily deduce (5.7)
and (5.8). ��
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Theorem 5.6 (Corollary to Conjecture 3.35 of [13]) Let S be the set containing 2
copies of the odd positive integers, 3 copies of the positive integers that are congruent
to 2 modulo 4, 6 copies of the positive integers that are congruent to 4 modulo 8, and
4 copies of the positive multiples of 8; let T be the set containing 2 copies of the odd
positive integers, 3 copies of the positive integers that are congruent to 2 modulo 4, 4
copies of the positive integers that are congruent to 4 modulo 8, and 6 copies of the
positive multiples of 8. Then, for any N ≥ 1,

DS(N ) = 2DT (N − 1)

or equivalently,

PS(N ) = 2PT (N − 1).

Proof Replacing q by −q in (5.5) and then dividing both side by ϕ(−q), we have

ϕ(q4)

ϕ(−q)
= 2q

ψ(q8)

ϕ(−q)
+ 1,

which can be transformed into

(−q; q2)2∞(−q2; q4)3∞(−q4; q8)6∞(−q8; q8)4∞
= 2q(−q; q2)2∞(−q2; q4)3∞(−q4; q8)4∞(−q8; q8)6∞ + 1.

Thus,
∞∑

n=0

DS(n)qn = 2q
∞∑

n=0

DT (n)qn + 1

or equivalently,
∞∑

n=0

PS(n)qn = 2q
∞∑

n=0

PT (n)qn + 1.

Equating the coefficients of qN from both sides, we arrive at the desired result. ��
Theorem 5.7 (Corollary to Conjecture 3.36 of [13]) Let S be the set containing 2
copies of the positive integers and 2 more copies of the odd positive integers; let T be
the set containing 2 copies of the odd positive integers, 3 copies of the positive integers
that are congruent to 2 modulo 4, 4 copies of the positive integers that are congruent
to 4 modulo 8, and 6 copies of the positive multiples of 8. Then, for any N ≥ 1,

DS(N ) = 4DT (N − 1)

or equivalently,

PS(N ) = 4PT (N − 1).
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Proof From Lemma 1.5,

ϕ(q) = 4qψ(q8) + ϕ(−q).

Dividing both sides by ϕ(−q) and then transforming into q-products, we find that

(−q; q2)2∞(−q; q)2∞ = 4q(−q; q2)2∞(−q2; q4)3∞(−q4; q8)4∞(−q8; q8)6∞ + 1.

Since the above is equivalent to

∞∑

n=0

DS(n)qn = 4q
∑∞

n=0 DT (n)qn + 1

or, equivalent to

∞∑

n=0

PS(n)qn = 4q
∞∑

n=0

PT (n)qn + 1,

we complete the proof by comparing the coefficients of qN from both sides. ��
Theorem 5.8 (Corollary to Conjecture 3.37 of [13]) Let S be the set containing 2
copies of the odd positive integers, 3 copies of the positive integers that are congruent
to 2modulo 4, 6 copies of the positive integers that are congruent to 4modulo 8, and 4
copies of the positive multiples of 8; let T be the set containing 2 copies of the positive
integers and 2 more copies of the odd positive integers. Then, for any N ≥ 1,

DS(N ) = 1

2
DT (N )

or equivalently,

PS(N ) = 1

2
PT (N ).

Proof It is easy to see, or by Lemma 1.5,

ϕ(q) + ϕ(−q) = 2ϕ(q4),

which can be transformed into

(−q; q2)2∞ + (q; q2)2∞ = 2
(−q4; q8)2∞(q8; q8)∞

(q2; q2)∞
= 2

(−q4; q8)2∞
(q2; q4)∞(q4; q8)∞ .
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Dividing both sides by 2(q; q2)2∞, and then employing Euler’s theorem (q; q2)∞ =
(−q; q)−1∞ , we find that

1

2
(−q; q)2∞(−q; q2)2∞ + 1

2
= (−q4; q8)2∞

(q; q2)2∞(q2; q4)∞(q4; q8)∞
= (−q; q2)2∞(−q4; q8)2∞

(q2; q4)3∞(q4; q8)∞
= (−q; q2)2∞(−q2; q4)3∞(−q4; q8)2∞

(q4; q8)4∞
= (−q; q2)2∞(−q2; q4)3∞(−q4; q8)6∞

(q8; q16)4∞
= (−q4; q8)6∞(−q; q2)2∞(−q2; q4)3∞(−q8; q8)4∞,

which can be rewritten in either of the forms

1

2

∞∑

n=0

DT (n)qn + 1

2
=

∞∑

n=0

DS(n)qn

and

1

2

∞∑

n=0

PT (n)qn + 1

2
=

∞∑

n=0

PS(n)qn .

Comparing the coefficients of qN from both sides, we finish the proof. ��
Theorem 5.9 (Corollary to Conjecture 3.52 of [13]) Let S be the set containing 2
copies of the odd positive integers, one copy of the even positive integers that are not
multiples of 16, and one more copy of the positive odd multiples of 8; let T be the set
containing 2 copies of the odd positive integers, one copy of the even positive integers
that are not odd multiples of 8, and one more copy of the positive multiples of 16.
Then, for any N ≥ 2,

DS(N ) = DT (N − 2).

Theorem 5.9 has been proved by Berndt and Zhou [7]. We present the following result
involving PS(n) and PT (n).

Theorem 5.10 If S and T are as defined in Theorem 5.9, then PS(1) = 2, and for
N ≥ 1,

PS(4N + 1) = 2PT (4N − 1), (5.9)

PS(4N + 2) = 2PT (4N ), (5.10)

PS(4N + 3) = 2PT (4N + 1), (5.11)

PS(4N ) = 2PT (4N − 2) + a(N ), (5.12)
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where

∞∑

n=0

a(n)qn = χ4(−q2)

χ2(−q)
.

Proof With repeated applications of the identities in Lemma 1.5, we have

ϕ(q)
(
ϕ2(q8) − 2q2ψ2(q8)

)
= ϕ(q)

((
ϕ(q2) + ϕ(−q2)

2

)2

−2q2
(

ϕ2(q2) − ϕ2(−q2)

8

))

= 1

2
ϕ(q)

(
ϕ2(−q2) + ϕ2(−q4)

)

= 1

2
ϕ(q)ϕ(−q2)

(
ϕ(−q2) + ϕ(q2)

)

= ϕ(q)ϕ(−q2)ϕ(q8)

= ϕ(−q2)ϕ(q8)
(
2qψ(q8) + ϕ(q4)

)

= 2qϕ(−q2)ϕ(q8)ψ(q8) + ϕ(−q2)ϕ(q8)ϕ(q4).

Hence,

ϕ(q)ϕ2(q8) = 2q2ϕ(q)ψ2(q8) + 2qϕ(−q2)ϕ(q8)ψ(q8) + ϕ(−q2)ϕ(q8)ϕ(q4).

Dividing both sides by ϕ(−q2)ϕ(q8)ψ(q8), we have

ϕ(q)ϕ(q8)

ϕ(−q2)ψ(q8)
= 2q2

ϕ(q)ψ(q8)

ϕ(−q2)ϕ(q8)
+ 2q + ϕ(q4)

ψ(q8)
,

which can be transformed into

(−q; q2)2∞(−q2; q2)∞(−q8; q16)∞
(−q16; q16)∞ = 2q2

(−q; q2)2∞(−q2; q2)∞(−q16; q16)∞
(−q8; q16)∞

+ 2q + χ4(−q8)

χ2(−q4)
.

Thus,

∞∑

n=0

PS(n)qn = 2q2
∞∑

n=0

PT (n)qn + 2q + χ4(−q8)

χ2(−q4)
.

Equating the coefficients of q4N+1, q4N+2, q4N+3, and q4N from both sides of the
above, we finish the proof. ��
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6 Conjectures 3.39 and 3.40 of [13]

Theorem 6.1 (Corollary to Conjecture 3.39 of [13]) Let S be the set containing 2
copies of the positive integers that are not multiples of 10, one more copy of the odd
positive integers, and one more copy of the odd positive multiples of 5; let T be the set
containing 2 copies of the positive integers that are not odd multiples of 5, one more
copy of the even positive integers, and one more copy of the positive multiples of 10.
Then, for any N ≥ 2,

DS(N ) = 2DT (N − 2).

Berndt and Zhou [7] have proved Theorem 6.1. Here we give an analogous result.

Theorem 6.2 If S and T are as defined in Theorem 6.1, then PS(1) = 2 + b(1) and
for N > 1

PS(N ) = 4PT (N − 2) + b(N ),

where

∞∑

n=0

b(n)qn = (q5; q10)5∞
(q; q2)∞ = χ5(−q5)

χ(−q)
.

Proof Recall from [3, p. 1039, Eq. (7.16)] that

(−q; q2)∞(−q5; q10)3∞ − (q; q2)∞(q5; q10)3∞ = 4q2(−q2; q2)∞(−q10; q10)3∞
+ 2q

(q; q2)2∞
(q5; q10)2∞

.

Employing Euler’s identity (−q; q)∞ = (q; q2)−1∞ , the above can be written as

(−q; q)2∞
(−q10; q10)2∞

(−q5; q10)∞(−q; q2)∞ − (q5; q10)5∞
(q; q2)∞

= 4q2
(−q; q)2∞

(−q5; q10)2∞
(−q2; q2)∞(−q10; q10)∞ + 2q.

Thus,
∞∑

n=0

PS(n)qn = 4q2
∞∑

n=0

PT (n)qn + 2q + (q5; q10)5∞
(q; q2)∞ .

Equating the coefficients of qN from both sides, we finish the proof. ��
Theorem 6.3 (Corollary to Conjecture 3.40 of [13]) Let S be the set containing 3
copies of the even positive integers, one copy of the odd positive integers, 3 more
copies of the odd positive multiples of 5, and one more copy of the positive multiples
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of 10; let T be the set containing 3 copies of the odd positive integers, one copy of the
even positive integers, one more copy of the odd positive multiples of 5, and 3 more
copies of the positive multiples of 10. Then, for any N ≥ 1,

DS(N ) = DT (N − 1)

or equivalently,

PS(N ) = PT (N − 1).

Proof From [1, p. 28, Entries 1.7.1 (i), (iv)], we have

ϕ(q) + ϕ(q5) = 2q4/5 f (q, q9)R−1(q4)

and

ψ(q2) − qψ(q10) = q−1/5 f (q4, q6)R(q),

where R(q) is the Rogers–Ramanujan continued fraction as defined in (2.6). Multi-
plying the above identities and simplifying by using the trivial identity ϕ(q)ψ(q2) =
ψ2(q), we find that

ϕ(q5)ψ(q2)−qϕ(q)ψ(q10) + ψ2(q) − qψ2(q5) = 2q3/5 f (q, q9) f (q4, q6)
R(q)

R(q4)
.

(6.1)

Since, by [8, p. 262, Entry 10(v)],

ψ2(q) − qψ2(q5) = f (q, q4) f (q2, q2),

identity (6.1) reduces to

ϕ(q5)ψ(q2)−qϕ(q)ψ(q10) + f (q, q4) f (q2, q3) = 2q3/5 f (q, q9) f (q4, q6)
R(q)

R(q4)
.

(6.2)

Now, setting a = q, b = q4, c = q2, and d = q3 in (1.3), we have

f (q, q4) f (q2, q3) + f (−q,−q4) f (−q2,−q3) = 2 f (q3, q7) f (q4, q6). (6.3)

But, by Jacobi’s triple product identity, (1.2),

f (−q,−q4) f (−q2,−q3) = (q; q5)∞(q2; q5)∞(q3; q5)∞(q4; q5)∞(q5; q5)2∞
= (q; q)∞(q5; q5)∞,

123



Colored partition identities conjectured by Sandon and Zanello 509

and hence, from (6.3), we have

f (q, q4) f (q2, q3) = 2 f (q3, q7) f (q4, q6) − (q; q)∞(q5; q5)∞. (6.4)

Employing (6.4) in (6.2), we find that

ϕ(q5)ψ(q2) − qϕ(q)ψ(q10) =
{
2q3/5 f (q, q9) f (q4, q6)

R(q)

R(q4)

− 2 f (q3, q7) f (q4, q6)

}

+ (q; q)∞(q5; q5)∞. (6.5)

Now, R(q) has the product representation

R(q) = q1/5
(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞ ,

and therefore,

R(q)

R(q4)
= q−3/5 (q, q6, q9, q11, q14, q19; q20)∞

(q2, q3, q7, q13, q17, q18; q20)∞ . (6.6)

On the other hand, by employing Jacobi’s triple product identity, (1.2), and changing
the base to q20, we have

f (q3, q7)

f (q, q9)
= (q, q6, q9, q11, q14, q19; q20)∞

(q2, q3, q7, q13, q17, q18; q20)∞ . (6.7)

From (6.6) and (6.7),

q3/5
R(q)

R(q4)
f (q, q9) f (q4, q6) − f (q3, q7) f (q4, q6) = 0,

and hence, from (6.5),

ϕ(q5)ψ(q2) − qϕ(q)ψ(q10) = (q; q)∞(q5; q5)∞.

The above is equivalent to

(−q5; q10)2∞(q10; q10)∞ (q4; q4)∞
(q2; q4)∞ − q(−q; q2)2∞(q2; q2)∞ (q20; q20)∞

(q10; q20)∞
= (q; q)∞(q5; q5)∞.

Dividing both sides by (q; q)∞(q5; q5)∞ and then employing (q; q)∞ = (q; q2)∞
(q2; q2)∞ and Euler’s identity, we find that
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(−q2; q2)3∞(−q; q2)∞(−q5; q10)3∞(−q10; q10)∞
= q(−q; q2)3∞(−q2; q2)∞(−q5; q10)∞(−q10; q10)3∞ + 1.

Since the above can put either of the forms

∞∑

n=0

DS(n)qn = q
∞∑

n=0

DT (n)qn + 1

and

∞∑

n=0

PS(n)qn = q
∞∑

n=0

PT (n)qn + 1,

we complete the proof by equating the coefficients of qN from both sides of the above
two identities. ��

7 Conjectures 3.34, 3.29, 3.41, 3.43–3.50 of [13]

Theorem 7.1 (Corollary to Conjecture 3.34 of [13]) Let S be the set containing one
copy of the positive integers congruent to±1modulo 6, 5 copies of the positive integers
congruent to ±2 modulo 6, and 6 copies of the positive multiples of 3; let T be the set
containing 5 copies of the positive integers congruent to ±1 modulo 6, one copy of
the positive integers congruent to ±2 modulo 6, and 6 copies of the positive multiples
of 3. Then, for any N ≥ 1,

DS(N ) = DT (N − 1)

or equivalently,

PS(N ) = PT (N − 1).

Proof Adding (1.3) and (1.4), we find that

f (a, b) f (c, d) = a f (b/c, ac2d) f (b/d, acd2) + f (ac, bd) f (ad, bc). (7.1)

Setting a = q, b = q5, c = q3, and d = q3 in the above,

f (q, q5)ϕ(q3) = q f 2(q2, q10) + f 2(q4, q8). (7.2)

Replacing q by −q, we have

f (−q,−q5)ϕ(−q3) = −q f 2(q2, q10) + f 2(q4, q8). (7.3)
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Multiplying the previous two identities, we find that

f 4(q4, q8) − q2 f 4(q2, q10) = f (q, q5) f (−q,−q5)ϕ(q3)ϕ(−q3)

= f (q, q5) f (−q,−q5)ϕ2(−q6). (7.4)

Now, setting a = q, b = q5, c = −q, and d = −q5 in (7.1) and noting that
f (−1, u) = 0, we have

f (q, q5) f (−q,−q5) = ϕ(−q6) f (−q2,−q10). (7.5)

Using the above in (7.4), we obtain

f 4(q4, q8) = q2 f 4(q2, q10) + ϕ3(−q6) f (−q2,−q10). (7.6)

Replacing q2 by q in (7.6) and then noting, by (1.2), that

f (−q,−q5) = (q; q6)∞(q5; q6)∞(q6; q6)∞ = ψ(q3)χ(−q),

we have

f 4(q2, q4) = q f 4(q, q5) + ϕ3(−q3)ψ(q3)χ(−q).

Dividing both sides by the last expression, employing (1.2), and then simplifying, we
deduce that

(−q±1; q6)∞(−q±2; q6)5∞(−q3; q3)6∞
= q(−q±1; q6)5∞(−q±2; q6)∞(−q3; q3)6∞ + 1, (7.7)

where, here and in the sequel,

(−q±r ; qs)∞ := (−qr ; qs)∞(qs−r ; qs)∞.

Since (7.7) can be written

∞∑

n=0

DS(n)qn = q
∞∑

n=0

DT (n)qn + 1

or equivalently,

∞∑

n=0

PS(n)qn = q
∞∑

n=0

PT (n)qn + 1,

we complete the proof by equating the coefficients of qN from both sides. ��
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Theorem 7.2 (Analog to Corollary to Conjecture 3.29 of [13]) Let S be the set con-
taining 4 copies of the positive integers that are either congruent to ±1 modulo 6 or
to ±4 modulo 12, and T be the set containing 4 copies of the positive integers that
are either congruent to ±1 modulo 6 or to ±2 modulo 12. Then, PS(1) = 4 and for
N ≥ 1,

PS(2N + 1) = PT (2N − 1). (7.8)

Furthermore, let U be the set containing one copy of the even positive integers and
one more copy of the even positive multiples of 3, V be the set containing two copies
of the odd positive integers and two more copies of the odd positive multiples of 3, W
be the set containing two copies of the even positive integers and two more copies of
the even positive multiples of 3. If S′ = S ∪U and T ′ = T ∪U, then

PS′(2N ) = PT ′(2N − 2) + PV (N ) + 4PW (N − 1). (7.9)

Proof Dividing both sides of (7.6) by f 4(−q12) and then transforming into
q-products, we find that

(−q±4; q12)4∞ = q2(−q±2; q12)4∞ + (q2; q4)∞(q6; q12)5∞.

Multiplying both sides of the above by (−q±1; q6)4∞ and then simplifying by using
Euler’s identity, we have

(−q±1; q6)4∞(−q±4; q12)4∞ = q2(−q±1; q6)4∞(−q±2; q12)4∞
+ (−q; q2)4∞(q2; q4)∞(q3; q6)4∞(q6; q12)∞,

which can be put in the form

∞∑

n=0

PS(n)qn = q2
∞∑

n=0

PT (n)qn + (q2; q4)∞(q6; q12)∞(−q; q2)4∞(q3; q6)4∞.

(7.10)

Replacing q by −q in (7.10) and then subtracting the identity from (7.10), we have

∞∑

n=0

PS(n)qn −
∞∑

n=0

PS(n)(−q)n = q2
{ ∞∑

n=0

PT (n)qn −
∞∑

n=0

PT (n)(−q)n

}

+ (q2; q4)∞(q6; q12)∞
×

{
(−q; q2)4∞(q3; q6)4∞−(q; q2)4∞(−q3; q6)4∞

}
.

(7.11)

Now, we note from [14, p. 84, Corollary 3.3] that

ϕ(q)ϕ(−q3) = ϕ(−q4)ϕ(−q12) + 2qψ(−q2)ψ(−q6).
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Squaring, we have

ϕ2(q)ϕ2(−q3) = ϕ2(−q4)ϕ2(−q12) + 4q2ψ2(−q2)ψ2(−q6)

+ 4qϕ(−q4)ϕ(−q12)ψ(−q2)ψ(−q6). (7.12)

Replacing q by −q in (7.12) and then subtracting the resulting identity from (7.12),
we find that

ϕ2(q)ϕ2(−q3) − ϕ2(−q)ϕ2(q3) = 8qψ(−q2)ϕ(−q4)ψ(−q6)ϕ(−q12),

which can be transformed into

(−q; q2)4∞(q3; q6)4∞ − (q; q2)4∞(−q3; q6)4∞ = 8q

(q2; q4)∞(q6; q12)∞ . (7.13)

Employing (7.13) in (7.11),

∞∑

n=0

PS(n)qn −
∞∑

n=0

PS(n)(−q)n = q2
{ ∞∑

n=0

PT (n)qn −
∞∑

n=0

PT (n)(−q)n

}
+ 8q,

from which, by equating the coefficients of q2N+1 from both sides, we arrive at (7.8).
Now we prove (7.9).
Replacing q by −q in (7.10) and then adding the resulting identity with (7.10), we

find that

∞∑

n=0

PS(n)qn +
∞∑

n=0

PS(n)(−q)n

= q2
{ ∞∑

n=0

PT (n)qn +
∞∑

n=0

PT (n)(−q)n

}
+ (q2; q4)∞(q6; q12)∞

×
{
(−q; q2)4∞(q3; q6)4∞ + (q; q2)4∞(−q3; q6)4∞

}
,

= q2
{ ∞∑

n=0

PT (n)qn +
∞∑

n=0

PT (n)(−q)n

}

+ (−q; q2)4∞(q3; q6)4∞ + (q; q2)4∞(−q3; q6)4∞
(−q2; q2)∞(−q6; q6)∞ ,

i.e.,

∞∑

n=0

PS′(n)qn +
∞∑

n=0

PS′(n)(−q)n = q2
{ ∞∑

n=0

PT ′(n)qn +
∞∑

n=0

PT ′(n)(−q)n

}

+ (−q; q2)4∞(q3; q6)4∞ + (q; q2)4∞(−q3; q6)4∞.

(7.14)
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Again, replacing q by −q in (7.12) and then adding the resulting identity with
(7.12), we have

ϕ2(q)ϕ2(−q3) + ϕ2(−q)ϕ2(q3) = 2ϕ2(−q4)ϕ2(−q12) + 8q2ψ2(−q2)ψ2(−q6),

which is equivalent to

(−q; q2)4∞(q3; q6)4∞ + (q; q2)4∞(−q3; q6)4∞ = 2(−q2; q4)2∞(−q6; q12)2∞
+ 8q2(−q4; q4)2∞(−q12; q12)2∞.

Employing the above identity in (7.14), we have

∞∑

n=0

PS′(n)qn +
∞∑

n=0

PS′(n)(−q)n = q2
{ ∞∑

n=0

PT ′(n)qn +
∞∑

n=0

PT ′(n)(−q)n

}

+ 2(−q2; q4)2∞(−q6; q12)2∞
+ 8q2(−q4; q4)2∞(−q12; q12)2∞.

Equating the coefficients of q2N from both sides of the above and noting that

∞∑

n=0

PV (n)qn = (−q; q2)2∞(−q3; q6)2∞

and

∞∑

n=0

PW (n)qn = (−q2; q2)2∞(−q6; q6)2∞,

we readily arrive at (7.9) to finish the proof.

Corollary 7.3 If S′ and T ′ are defined in Theorem 7.2, then

PS′(4N + 2) = PT ′(4N ) + 3PV (2N + 1)

and

PS′(4N ) = PT ′(4N − 2) + PV (2N ).

Proof It is known from Berndt’s paper [10, Theorem 3.1] that PV (2N + 1) =
2PW (2N ). Therefore, from (7.9),

PS′(4N + 2) = PT ′(4N ) + PV (2N + 1) + 4PW (2N ) = PT ′(4N ) + 3PV (2N + 1)
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and

PS′(4N ) = PT ′(4N − 2) + PV (2N ) + 4PW (2N − 1) = PT ′(4N − 2)

+ PV (2N + 1),

since PW (2N − 1) = 0 as W contains only even elements. ��

Theorem 7.4 (Corollary to Conjecture 3.41 of [13]) Let S be the set containing 2
copies of the even positive integers, 2 more copies of the positive integers congruent
to ±2 modulo 12, and 4 copies of the odd multiples of 3; let T be the set containing 2
copies of the even positive integers, 4 more copies of the positive multiples of 12, one
copy of the odd positive integers, and one more copy of the odd multiples of 3. Then,
for any N ≥ 2,

DS(N ) = 4DT (N − 2)

or equivalently,

PS(N ) = 4PT (N − 2).

Proof Setting a = q, b = q5, c = −q3, and d = −q3 in (1.4), we have

− f (−q,−q5)ϕ(q3) = − f (q, q5)ϕ(−q3) + 2q f 2(−q2,−q10). (7.15)

Multiplying both sides of (7.15) by ϕ(−q3) and then adding ϕ2(q3) f (q, q5) to both
sides, we find that

ϕ(q3)
{
ϕ(q3) f (q, q5) − ϕ(−q3) f (−q,−q5)

}
= f (q, q5)

{
ϕ2(q3) − ϕ2(−q3)

}

+ 2qϕ(−q3) f 2(−q2,−q10).
(7.16)

Again applying (7.15) and the third identity of Lemma 1.5, with q replaced by q3, in
(7.16), we find that

ϕ(q3) f 2(q2, q10) = 4q2 f (q, q5)ψ2(q12) + ϕ(−q3) f 2(−q2,−q10).

Dividing both sides of the above by ϕ(−q3) f 2(−q2,−q10) and then transforming to
q-products, we obtain

(−q2; q2)2∞(−q±2; q12)2∞(−q3; q6)4∞
= 4q2(−q2; q2)2∞(−q12; q12)4∞(−q; q2)∞(−q3; q6)∞ + 1,
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which is clearly

∞∑

n=0

DS(n)qn = 4q2
∞∑

n=0

DT (n)qn + 1

or equivalently,

∞∑

n=0

PS(n)qn = 4q2
∞∑

n=0

PT (n)qn + 1.

Equating the coefficients of qN from both sides of the above, we find the desired result.
��

Theorem 7.5 (Corollary to Conjecture 3.44 of [13]) Let S be the set containing one
copy of the positive integers that are not odd multiples of 6, one more copy of the
positive multiples of 3 that are not odd multiples of 6, 2 more copies of the positive
integers that are congruent to±2modulo 12, and 3more copies of the positive integers
that are congruent to±4modulo 12; let T be the set containing 2 copies of the positive
integers that are not congruent to 6 or±4modulo 12, one copy of the positive integers
that are congruent to ±4 modulo 12, and one more copy of the positive integers that
are congruent to ±1 modulo 6. Then, for any N ≥ 1,

DS(N ) = DT (N − 1)

or equivalently,

PS(N ) = PT (N − 1).

Proof Setting, in turn, a = c = q, b = d = q5 and a = c = q, b = d = q2, in
Lemma 1.4, we have

f 2(q, q5) + f 2(−q,−q5) = 2 f (q2, q10)ϕ(q6), (7.17)

f 2(q, q5) − f 2(−q,−q5) = 4q f (q4, q8)ψ(q12), (7.18)

f 2(q, q2) + f 2(−q,−q2) = 2 f (q2, q4)ϕ(q3), (7.19)

and

f 2(q, q2) − f 2(−q,−q2) = 4q f (q, q5)ψ(q6). (7.20)

Multiplying (7.18) by q f (q2, q10) and then using (7.20) with q replaced by q2, we
find that

q f 2(q, q5) f (q2, q10) = 4q2 f (q4, q8) f 2(q2, q10)ψ(q12)

+ q f (q2, q10) f 2(−q,−q5)
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= f (q4, q8)
(
f 2(q2, q4) − f 2(−q2,−q4)

)

+ q f (q2, q10) f 2(−q,−q5)

= f 2(q2, q4) f (q4, q8) −
(
f 2(−q2,−q4) f (q4, q8)

−q f (q2, q10) f 2(−q,−q5)
)

. (7.21)

Again, by (7.17)–(7.20),

f 2(−q2,−q4) f (q4, q8) − q f (q2, q10) f 2(−q,−q5)

= f 2(q4, q8)ϕ(q6) − 2q2 f (q2, q10) f (q4, q8)ψ(q12) − q f 2(q2, q10)ϕ(q6)

+ 2q2 f (q2, q10) f (q4, q8)ψ(q12)

= ϕ(q6)
(
f 2(q4, q8) − q f 2(q2, q10)

)
,

= ϕ(q6)ϕ(−q3) f (−q,−q5), (7.22)

where (7.3) is used to get the last equality.
Employing (7.22) in (7.21), we obtain

f 2(q2, q4) f (q4, q8) = q f 2(q, q5) f (q2, q10) + ϕ(−q3)ϕ(q6) f (−q,−q5).

Multiplying the equation by f (q4, q8) and then transforming the terms into q-
products, and then simplifying further, we find that

(−q; q)∞
(−q6; q12)∞

(−q3; q3)∞
(−q6; q12)∞ (−q±2; q12)2∞(−q±4; q12)3∞

= (−q; q)2∞
(−q6; q12)2∞(−q±4; q12)2∞

(−q±4; q12)∞(−q±1; q6)∞ + 1. (7.23)

Thus,

∞∑

n=0

DS(n)qn = q
∞∑

n=0

DT (n)qn + 1

or equivalently,

∞∑

n=0

PS(n)qn = q
∞∑

n=0

PT (n)qn + 1.

Equating the coefficients of qN from both sides, we complete the proof. ��
Theorem 7.6 (Analog to Corollary to Conjecture 3.45 of [13]) Let S be the set con-
taining 2 copies of the positive integers that are not congruent to 0 or ±2 modulo
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12, one copy of the positive integers that are congruent to ±2 modulo 12, and one
more copy of the positive integers that are congruent to ±1 modulo 6; let T be the set
containing one copy of the positive integers that are not odd multiples of 6, one more
copy of the positive multiples of 3 that are not odd multiples of 6, 2 more copies of
the positive integers that are congruent to ±2 modulo 12, and 3 more copies of the
positive integers that are congruent to ±4 modulo 12. Then, for any N ≥ 1,

PS(2N ) = 2PT (2N − 1) + a(2N ) (7.24)

and

PS(2N + 1) = 2PT (2N ), (7.25)

where

∞∑

n=0

a(n)qn = χ3(−q3)χ3(−q6)

χ(−q)χ(−q2)
. (7.26)

Proof From (7.17)–(7.20) and Lemma 1.5, we have

ϕ(q6) f 2(q, q5) − 2qψ(q12) f 2(q2, q4)

=
(
f (q2, q10)ϕ2(q6) + 2q f (q4, q6)ϕ(q6)ψ(q12)

)

− 2q
(
f (q4, q6)ϕ(q6)ψ(q12) + 2q2 f (q2, q10)ψ2(q12)

)

= f (q2, q10)
(
ϕ2(q6) − 4q3ψ2(q12)

)
= f (q2, q10)ϕ2(−q3).

Transforming the above into q-products, multiplying both sides by (−q; q)∞(−q±4;
q12)∞/(−q6; q12)2∞ and then simplifying further, we deduce that

(−q; q)2∞(−q±2; q12)∞(−q±1; q6)∞
(−q12; q12)2∞(−q±2; q12)2∞

= 2q
(−q; q)∞(−q3; q3)∞(−q±2; q12)2∞(−q±4; q12)3∞

(−q6; q12)2∞
+ χ3(−q3)χ3(−q6)

χ(−q)χ(−q2)
, (7.27)

which also states that

∞∑

n=0

PS(n)qn = 2q
∞∑

n=0

PT (n)qn +
∞∑

n=0

a(n)qn, (7.28)

where a(n) is as defined in (7.26). Equating the coefficients of q2N and q2N+1 from
both sides of (7.28), we deduce (7.24) and
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PS(2N + 1) = 2PT (2N ) + a(2N + 1), (7.29)

respectively.
But, by (4.17), we have

∞∑

n=0

a(n)qn −
∞∑

n=0

a(n)(−q)n = 2q.

Equating the coefficients of q2N+1 from both sides of the above, we have a(1) = 1
and for n ≥ 1, a(2n + 1) = 0, and therefore, (7.29) reduces to (7.25). ��
Theorem 7.7 (Analog to Corollary to Conjecture 3.43 of [13]) Let S be the set con-
taining 2 copies of the positive integers that are not congruent to 0 or ±2 modulo
12, one copy of the positive integers that are congruent to ±2 modulo 12, and one
more copy of the positive integers that are congruent to ±1 modulo 6; let T be the set
containing 2 copies of the positive integers that are not congruent to 6 or ±4 modulo
12, one copy of the positive integers that are congruent to ±4 modulo 12, and one
more copy of the positive integers that are congruent to ±1 modulo 6. Then, for any
N ≥ 1,

PS(2N ) = 2PT (2N − 2) + a(2N ) (7.30)

and

PS(2N + 1) = 2PT (2N − 1), (7.31)

where a(n) is as defined in (7.26).

Proof Define

A : = (−q; q)∞
(−q6; q12)∞

(−q3; q3)∞
(−q6; q12)∞ (−q±2; q12)2∞(−q±4; q12)3∞,

B : = (−q; q)2∞
(−q6; q12)2∞(−q±4; q12)2∞

(−q±4; q12)∞(−q±1; q6)∞,

C : = (−q; q)2∞(−q±2; q12)∞(−q±1; q6)∞
(−q12; q12)2∞(−q±2; q12)2∞

.

From (7.23) and (7.27), we have

A = qB + 1

and

C = 2q A +
∞∑

n=0

a(n)qn,
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where a(n) is defined by (7.26). It is easily seen from the above that

C = 2q2B + 2q +
∞∑

n=0

a(n)qn,

which is equivalent to

∞∑

n=0

PS(n)qn = 2q2
∞∑

n=0

PT (n)qn +
∞∑

n=0

a(n)qn + 2q,

where S and T are as given in the statement of the theorem. Equating the coefficients
of q2N and q2N+1, respectively, from both sides of the above, and also noting that
a(2N + 1) = 0, we readily arrive at (7.30) and (7.31) to complete the proof. ��

Theorem 7.8 (Corollary to Conjecture 3.46 of [13]) Let S be the set containing 2
copies of the positive integers that are not odd multiples of 3, one more copy of the
positive integers that are congruent to±2modulo 12, and 2more copies of the positive
odd multiples of 6; let T be the set containing 2 copies of the positive integers that
are not odd multiples of 3, one more copy of the positive integers that are congruent
to ±4 modulo 12, and 2 more copies of the positive multiples of 12. Then, for any
N ≥ 1,

DS(N ) = 2DT (N − 1)

or equivalently,

PS(N ) = 2PT (N − 1).

Proof Replacing q by q2 in (7.2), we have

f (q2, q10)ϕ(q6) = q2 f 2(q4, q20) + f 2(q8, q16),

=
(
f (q8, q16) − q f (q4, q20)

)2 + 2q f (q4, q20) f (q8, q16).

(7.32)

But, from [8, p. 46, Entries 30(ii) and 30(iii)],

f (−q,−q5) = f (q8, q16) − q f (q4, q20). (7.33)

Employing (7.33) in (7.32), we obtain

f (q2, q10)ϕ(q6) = 2q f (q4, q20) f (q8, q16) + f 2(−q,−q5).
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Transforming into q-products and then simplifying, we find that

(−q; q)2∞
(−q3; q6)2∞

(−q±2; q12)∞(−q6; q12)2∞

= 2q
(−q; q)2∞

(−q3; q6)2∞
(−q±4; q12)∞(−q12; q12)2∞ + 1,

i.e.,

∞∑

n=0

DS(n)qn = 2q
∞∑

n=0

DT (n)qn + 1

or equivalently,

∞∑

n=0

PS(n)qn = 2q
∞∑

n=0

PT (n)qn + 1.

The proffered partition identity of the theorem follows immediately. ��
Theorem 7.9 (Analog to Corollary to Conjecture 3.47 of [13]) Let S be the set con-
taining 2 copies of the positive integers that are not congruent to 2 modulo 4, one
more copy of the positive integers that are congruent to ±1 modulo 6, and one more
copy of the positive integers that are congruent to ±4 modulo 12; let T be the set
containing 2 copies of the positive integers that are not multiples of 4, one more copy
of the positive integers that are congruent to ±1 modulo 6, and one more copy of the
positive integers that are congruent to ±2 modulo 12. Then, for any N > 2

PT (N ) = PS(N ) + 3U (N − 2), (7.34)

where U (N ) is defined by

∞∑

n=0

U (n)qn := (−q; q2)2∞(−q±1; q6)∞(−q4; q4)∞(−q12; q12)∞
(q8; q24)2∞(q16; q24)2∞

. (7.35)

Proof Baruah and Nath [5, Eq. 3.17] proved that

ϕ(q) f (q, q5) = ψ(q2) f (q2, q4) + 3q
f 3(−q12)

f (−q4)
.

Replacing q by q2 and then multiplying both sides by f (q, q5), we find that

ϕ(q2) f (q2, q10) f (q, q5) = f (q, q5)ψ(q4) f (q4, q8) + 3q2 f (q, q5)
f 3(−q24)

f (−q8)
.
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Transforming into q-products and simplifying, we have

(−q±1; q6)∞(−q±2; q12)∞(−q2; q4)2∞
= (−q±1; q6)∞(−q±4; q12)∞ (q8; q8)∞

(q4; q8)∞(q4; q4)∞
+ 3q2

(q24; q24)3∞(q±1; q6)∞
(q4; q4)∞(q12; q12)∞(q8; q8)∞ .

Multiplying both sides of the above by (−q; q2)2∞ and simplifying by using Euler’s
identity, we find that

(−q±1; q6)∞(−q±2; q12)∞ (−q; q)2∞
(−q4; q4)2∞

= (−q±1; q6)∞(−q±4; q12)∞ (−q; q)2∞
(−q2; q4)2∞

+ 3q2
(−q; q2)2∞(q24; q24)3∞(q±1; q6)∞
(q4; q4)∞(q12; q12)∞(q8; q8)∞

= (−q±1; q6)∞(−q±4; q12)∞ (−q; q)2∞
(−q2; q4)2∞

+ 3q2
(−q; q2)2∞(−q±1; q6)∞(−q4; q4)∞(−q12; q12)∞

(q8; q24)2∞(q16; q24)2∞
,

which is equivalent to

∞∑

n=0

PT (n)qn + 3q2
∞∑

n=0

U (n)qn =
∞∑

n=0

PS(n)qn . (7.36)

Equating the coefficients of qN from both sides, we easily arrive at the desired identity.
��

Theorem 7.10 (Corollary to Conjecture 3.49 of [13]) Let S be the set containing 2
copies of the positive multiples of 6, 2 copies of the positive integers that are congruent
to ±1 modulo 6, one copy of the positive integers that are congruent to ±2 modulo 6,
and 4 copies of the odd positive multiples of 3; let T be the set containing 4 copies
of the positive multiples of 6, one copy of the positive integers that are congruent to
±1 modulo 6, one copy of the positive integers that are congruent to ±2 modulo 6, 2
more copies of the positive integers that are congruent to ±2 modulo 12, and 2 copies
of the odd positive multiples of 3. Then, for any N ≥ 1,

DS(N ) = 2DT (N − 1)

or equivalently,

PS(N ) = 2PT (N − 1).
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Proof Setting a = q, b = q5, c = q3, and d = q3 in (1.4), we have

f (q, q5)ϕ(q3) = 2q f 2(q2, q10) + f (−q,−q5)ϕ(−q3),

which can be rewritten, with the aid of the Jacobi triple product identity, (1.2), as

(−q±1; q6)∞(−q3; q6)2∞ = 2q(−q6; q6)2∞(−q±2; q12)2∞ + (q±1; q6)∞(q3; q6)2∞
= 2q(−q6; q6)2∞(−q±2; q12)2∞ + (q; q2)∞(q3; q6)∞
=2q(−q6; q6)2∞(−q±2; q12)2∞+ 1

(−q; q)∞(−q3; q3)∞ ,

where Euler’s identity is used in the last equality. The above can be put in the form

(−q6; q6)2∞(−q±1; q6)2∞(−q±2; q6)∞(−q3; q6)4∞
= 2q(−q6; q6)4∞(−q±1; q6)∞(−q±2; q6)∞(−q±2; q12)2∞(−q3; q6)2∞ + 1,

(7.37)

which is

∞∑

n=0

DS(N )qn = 2q
∞∑

n=0

DT (N )qn + 1,

or equivalently,

∞∑

n=0

PS(N )qn = 2q
∞∑

n=0

PT (N )qn + 1.

Equating the coefficients ofqN fromboth sides of the above two identities,we complete
the proof. ��
Theorem 7.11 (Corollary to Conjecture 3.50 of [13]) Let S be the set containing 4
copies of the positivemultiples of 6, one copy of the positive integers that are congruent
to±1modulo 6, one copy of the positive integers that are congruent to±2modulo 6, 2
more copies of the positive integers that are congruent to ±4 modulo 12, and 2 copies
of the odd positive multiples of 3; let T be the set containing 2 copies of the positive
multiples of 6, 2 copies of the positive integers that are congruent to ±1 modulo 6,
one copy of the positive integers that are congruent to ±2 modulo 6, and 4 copies of
the odd positive multiples of 3. Then, for any N ≥ 1,

DS(N ) = 1

2
DT (N )

or equivalently,

PS(N ) = 1

2
PT (N ).
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Proof Setting a = q, b = q5, c = q3, and d = q3 in (1.3), we have

2 f 2(q4, q8) = f (q, q5)ϕ(q3) + f (−q,−q5)ϕ(−q3), (7.38)

which can be rewritten, with the help of the Jacobi triple product identity and Euler’s
identity, as

2(−q6; q6)2∞(−q±4; q12)2∞ = (−q±1; q6)∞(−q3; q6)2∞ + 1

(−q; q)∞(−q3; q3)∞ .

After simplification, the above gives,

(−q6; q6)4∞(−q±1; q6)∞(−q±2; q6)∞(−q±4; q12)2∞(−q3; q6)2∞
= 1

2
(−q±1; q6)2∞(−q3; q6)4∞(−q±2; q6)∞(−q6; q6)2∞ + 1

2
, (7.39)

which is equivalent to

∞∑

n=0

DS(n)qn = 1

2

∞∑

n=0

DT (n)qn + 1

2

or equivalently,

∞∑

n=0

PS(n)qn = 1

2

∞∑

n=0

PT (n)qn + 1

2
.

We complete the proof by equating the coefficients of qN from both sides of the above
two identities. ��
Theorem 7.12 (Corollary to Conjecture 3.48 of [13]) Let S be the set containing 4
copies of the positivemultiples of 6, one copy of the positive integers that are congruent
to±1modulo 6, one copy of the positive integers that are congruent to±2modulo 6, 2
more copies of the positive integers that are congruent to ±4 modulo 12, and 2 copies
of the odd positive multiples of 3; let T be the set containing 4 copies of the positive
multiples of 6, one copy of the positive integers that are congruent to ±1 modulo 6,
one copy of the positive integers that are congruent to ±4 modulo 12, 2 copies of the
odd positive multiples of 3, and 3 copies of the positive integers that are congruent to
±2 modulo 12. Then, for any N ≥ 1,

DS(N ) = DT (N − 1)

or equivalently,

PS(N ) = PT (N − 1).
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Proof From (7.39) and (7.37), we find that

(−q6; q6)4∞(−q±1; q6)∞(−q±2; q6)∞(−q±4; q12)2∞(−q3; q6)2∞
= q(−q6; q6)4∞(−q±1; q6)∞(−q±2; q6)∞(−q±2; q12)2∞(−q3; q6)2∞ + 1.

With the help of the trivial identity (−q±2; q6)∞ = (−q±4; q12)∞(−q±2; q12)∞, the
above reduces to

(−q6; q6)4∞(−q±1; q6)∞(−q±2; q6)∞(−q±4; q12)2∞(−q3; q6)2∞
= q(−q6; q6)4∞(−q±1; q6)∞(−q±4; q12)∞(−q±2; q12)3∞(−q3; q6)2∞ + 1,

which can be rewritten as

∞∑

n=0

DS(n)qn = q
∞∑

n=0

DT (n)qn + 1

or equivalently,

∞∑

n=0

PS(n)qn = q
∞∑

n=0

PT (n)qn + 1.

Equating the coefficients of qN , we complete the proof. ��
To conclude this section, for completeness, we state the following theoremwhich is

Corollary to Conjecture 3.53 of [13], and an analytic proof of this theorem has already
been given by Baruah and Berndt [3, Theorem 8.1].

Theorem 7.13 (Corollary to Conjecture 3.53 of [13]) Let S be the set containing one
copy of the odd positive integers, one more copy of the odd positive multiples of 3, one
more of the odd positive multiples of 5, and one more of the odd positive multiples of
15; let T be the set containing one copy of the even positive integers, one more copy
of the positive multiples of 6, one more of the positive multiples of 10, and one more
of the positive multiples of 30. Then, for any N ≥ 3,

DS(N ) = 2DT (N − 3)

or equivalently,

PS(N ) = 2PT (N − 3).

8 Some more colored partition identities

In this section, we present some more colored partition identities which are analogous
to the partition identities discussed in the previous sections.
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Theorem 8.1 Let S be the set containing 2 copies of the even positive integers, 4
more copies of the odd positive multiples of 3, and 2 copies of the positive multiples
of 4 that are not multiples of 12; let T be the set containing one copy of the odd
positive integers, one more copy of the odd positive multiples of 3, two copies of the
even positive integers, and 4 more copies of the odd multiples of 6. Then, for any
N ≥ 1,

PS(N ) = PT (N ).

Proof Multiplying (7.15) by ϕ(q3) and then adding ϕ2(q3) f (q, q5) to both sides, we
have

ϕ(q3)
{
ϕ(q3) f (q, q5) + ϕ(−q3) f (−q,−q5)

}
= f (q, q5)

{
ϕ2(q3) + ϕ2(−q3)

}

− 2qϕ(−q3) f 2(−q2,−q10),

which can be rewritten, with the aid of (7.38) and Lemma 1.5, as

ϕ(q3) f 2(q4, q8) = ϕ2(q6) f (q, q5) − qϕ(−q3) f 2(−q2,−q10).

Transforming the above into q-products and then simplifying, we obtain

(−q2; q2)2∞(−q3; q6)4∞
(−q4; q4)2∞

(−q12; q12)2∞
= (−q; q2)∞(−q3; q6)∞(−q2; q2)2∞(−q6; q12)4∞ − q,

which is equivalent to

∞∑

n=0

PS(n)qn =
∞∑

n=0

PT (n)qn − q.

We complete the proof by equating the coefficients of qN from both sides of the above.
��

Theorem 8.2 Let S be the set containing 4 copies of the positive integers that are
congruent to ±1 modulo 6 and 2 copies of the even positive integers that are not
multiples of 6; let T be the set containing 2 copies of the even positive integers, 2
copies of the positive multiples of 12, two more copies of the positive integers that
are congruent to ±1 modulo 6 and one more copy of the positive integers that are
congruent to ±4 modulo 12. Then, for any N ≥ 1,

PS(N ) = 4PT (N − 1).

Proof With the help of (7.5), we can rewrite (7.18) as

f 4(q, q5) = 4q f (q4, q8) f 2(q, q5)ψ(q12) + ϕ2(−q6) f 2(−q2,−q10).

123



Colored partition identities conjectured by Sandon and Zanello 527

Transcribing the above into q-products, we find that

(−q±1; q6)4∞
(−q2; q2)2∞
(−q6; q6)2∞

= 4q(−q2; q2)2∞(−q12; q12)2∞(−q±1; q6)2∞
(−q±4; q12)∞ + 1,

which is equivalent to

∞∑

n=0

PS(n)qn = 4q
∞∑

n=0

PT (n)qn + 1.

Now the proffered partition identity is apparent. ��
The next two theorems easily follow from (7.38) and (7.15), respectively. We omit

the proofs.

Theorem 8.3 Let S be the set containing one copy of the odd positive integers, one
copy of the positive odd multiples of 3, one copy each of the positive integers, and the
positive multiples of 3; let T be the set containing one copy of the positive integers, 2
copies of positive integers that are oddmultiples of 6, one copy of the positive multiples
of 3, and 2 more copies of the positive multiples of 4. Then, for any N ≥ 1,

PS(N ) = 2PT (N ).

Theorem 8.4 Let S be the set containing one copy of the odd positive integers, one
more copy of the positive odd multiples of 3, one copy each of the positive integers,
and the positive multiples of 3; let T be the set containing one copy of the positive
integers, 2 copies of the positive integers that are odd multiples of 2, one copy of the
positive multiples of 3, and 2more copies of the positive multiples of 12. Then, for any
N ≥ 1,

PS(N ) = 2PT (N − 1).

Theorem 8.5 Let S be the set containing 3 copies each of the positive integers, the
odd positive integers, the positive multiples of 3, and the odd positive multiples of 3;
let T be the set containing 6 copies each of the odd positive multiples of 2 and the
positive multiples of 12 and 3 copies each of the positive integers and the positive
multiples of 3, and let U be the set containing 2 copies each of the positive integers,
the positive multiples of 3, the odd positive multiples of 2, and the positive multiples
of 12, one copy each of the odd positive integers, and the odd positive multiples of 3.
Then, for any N ≥ 1,

PS(N ) = 8PT (N − 3) + 6PU (N − 1).
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Proof We recall from [9, p. 198, Entry 45] that

ψ(q)ψ(q3) − ψ(−q)ψ(−q3) = 2qϕ(q2)ψ(q12).

Cubing and then dividing both sides by ψ3(−q)ψ3(−q3), we have

ψ3(q)ψ3(q3)

ψ3(−q)ψ3(−q3)
− 1 = 8q3

ϕ3(q2)ψ3(q12)

ψ3(−q)ψ3(−q3)
+ 6q

ϕ(q2)ψ(q12)ψ(q)ψ(q3)

ψ2(−q)ψ2(−q3)
,

which can be easily transformed, with the aid of Euler’s identity, into

(−q; q2)3∞(−q; q)3∞(−q3; q6)3∞(−q3; q3)3∞
= 8q3(−q2; q4)6∞(−q12; q12)6∞(−q; q)3∞(−q3; q3)3∞

+ 6q(−q2; q4)2∞(−q; q)2∞(−q3; q3)2∞(−q12; q12)2∞(−q; q2)∞(−q3; q6)∞ + 1.

Since the above is equivalent to

∞∑

n=0

PS(n)qn = 8q3
∞∑

n=0

PT (n)qn + 6q
∞∑

n=0

PU (n)qn + 1,

we complete the proof by equating the coefficients of qN from both sides. ��
Theorem 8.6 Let S be the set containing 6 copies of the odd positive integers that are
not multiple of 5 and one copy of the even positive integers; T be the set containing 4
copies of the even positive integers and 9 copies of the positive multiples of 10, and let
U be the set containing 5 copies of the positive multiples of 10. Then, for any N ≥ 1,

PS(2N + 1) = 32PT (2N − 2) + 6PU (2N ).

Proof From [8, p. 278], we recall that

ϕ(q)ϕ(−q5) − ϕ(−q)ϕ(q5) = 4q f (−q4) f (−q20).

Cubing the above, we obtain

ϕ3(q)ϕ3(−q5) − ϕ3(−q)ϕ3(q5) = 64q3 f 3(−q4) f 3(−q20)

+ 12qϕ2(−q2)ϕ2(−q10) f (−q4) f (−q20).

Transforming into q-products, we have

(−q; q2)6∞(q5; q10)6∞
(q2; q4)∞(q10; q20)∞ − (q; q2)6∞(−q5; q10)6∞

(q2; q4)∞(q10; q20)∞
= 64q3(−q2; q2)4∞(−q10; q10)4∞ + 12q,
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which can further be reduced to

(−q; q2)6∞(−q2; q2)∞
(−q5; q10)6∞

− (q; q2)6∞(−q2; q2)∞
(q5; q10)6∞

= 64q3(−q2; q2)4∞(−q10; q10)9∞
+ 12q(−q10; q10)5∞.

Thus,

∞∑

n=0

PS(n)qn −
∞∑

n=0

PS(n)(−q)n = 64q3
∞∑

n=0

PT (n)qn + 12q
∞∑

n=0

PU (n)qn .

Equating the coefficients of q2N+1 from both sides, we easily arrive at the desired
partition identity. ��
Theorem 8.7 Let S be the set containing one copy of the positive integers that are
congruent to ±1 modulo 6 and 2 copies of the positive integers that are odd multiples
of 3; T be the set containing 2 copies of the positive integers that are multiples of 6
and 2 more copies of the positive integers that are congruent to ±2 modulo 12, and
let U be the set containing 2 copies of the positive multiples of 4 and 2 more copies of
the odd multiple of 6. Then, for any N ≥ 1,

PS(N ) = PT (N − 1) + PU (N ).

Proof We can easily transform (7.2) into

(−q±1; q6)∞(−q3; q6)2∞ =q(−q6; q6)2∞(−q±2; q12)2∞+(−q6; q12)2∞(−q4; q4)2∞,

which also states that

∞∑

n=0

PS(n)qn = q
∞∑

n=0

PT (n)qn +
∞∑

n=0

PU (n)qn .

Equating the coefficient of qN from both sides, we complete the proof. ��
Theorem 8.8 Let S be the set containing one copy of the odd positive integers that
are not multiples of 9 and 2 copies of the even positive integers that are not multiples
of 18; let T be the set containing 2 copies of the even integers and one more copy of
the even positive integers that are not multiples of 6. Then, for any N ≥ 1,

PS(2N + 1) = PT (2N ).

Proof We recall from [4, Eq. (8.12)] that

ψ(q)ψ(−q9) − ψ(−q)ψ(q9) = 2qψ(q18)ψ(q2)χ(−q6).
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Dividing both sides by ϕ(−q2)ψ(q18), transforming into q-products, and then sim-
plifying by using Euler’s identity, we deduce that

(−q; q2)∞(−q2; q2)2∞
(−q9; q18)∞(−q18; q18)2∞

− (q; q2)∞(−q2; q2)2∞
(q9; q18)∞(−q18; q18)2∞

= 2q
(−q2; q2)∞
(−q6; q6)∞ (−q2; q2)2∞.

Thus,

∞∑

n=0

PS(n)qn −
∞∑

n=0

PS(n)(−q)n = 2q
∞∑

n=0

PT (n)qn .

Equating the coefficients of q2N+1 from both sides, we finish the proof. ��
Theorem 8.9 Let S be the set containing one copy of the odd positive integers that
are not multiples of 9, and let T be the set containing one copy of the even positive
integers that are not multiple of 6 and 2 more copies of the positive integers that are
multiples of 18. Then, for any N ≥ 1,

PS(2N + 1) = PT (2N ). (8.1)

Proof From [8, p. 358, Entry 4(i)], we have

ϕ(−q18)

ϕ(−q2)
+ q

(
ψ(q9)

ψ(q)
− ψ(−q9)

ψ(−q)

)
= 1. (8.2)

Now, replacing q by −q2 in (4.10), we have

ϕ(−q2) = ϕ(−q18) − 2q2ψ(q18)χ(−q6).

Employing the above in (8.2), we find that

ψ(−q9)

ψ(−q)
− ψ(q9)

ψ(q)
= 2q

ψ(q18)χ(−q6)

ϕ(−q2)
,

which can be transformed into

(−q; q2)∞
(−q9; q18)∞ − (q; q2)∞

(q9; q18)∞ = 2q
(−q2; q2)∞
(−q6; q6)∞ (−q18; q18)2∞.

Since the above is equivalent to

∞∑

n=0

PS(n)qn −
∞∑

n=0

PS(n)(−q)n = 2q
∞∑

n=0

PT (n)qn,
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we complete the proof by equating the coefficients of q2N+1 from both sides. ��
Theorem 8.10 Let S be the set containing 2 copies of the odd positive integers that
are not multiples of 5, and let T be the set containing one copy of the even positive
integers and 3 more copies of the positive integers that are multiples of 10. Then, for
any N ≥ 1,

PS(2N + 1) = 2PT (2N ).

Proof We recall from [8, p. 276] that

ϕ2(−q10)

ϕ2(−q2)
+ q

(
ψ2(q5)

ψ2(q)
− ψ2(−q5)

ψ2(−q)

)
= 1. (8.3)

But, from Entries 9(vii) and 10(iv) of [8, p. 258 and p. 262],

ϕ2(q) − ϕ2(q5) = 4q f (q, q9) f (q3, q7) = 4qχ(q) f (−q5) f (−q20).

Replacing q by q2 in the above and employing it in (8.3), we find that

ψ2(−q5)

ψ2(−q)
− ψ2(q5)

ψ2(q)
= 4q

χ(−q2) f (q10) f (−q40)

ϕ2(−q2)
,

which can be transformed into

(−q; q2)2∞
(−q5; q10)2∞

− (q; q2)2∞
(q5; q10)2∞

= 4q(−q2; q2)∞(−q10; q10)3∞.

The above is equivalent to

∞∑

n=0

PS(n)qn −
∞∑

n=0

PS(n)(−q)n = 4q
∞∑

n=0

PT (n)qn,

and equating the coefficients of q2N+1 from both sides, we finish the proof. ��
Theorem 8.11 Let S be the set containing one copy of the positive integers that are not
multiples of 3, one more copy of the odd positive integers that are not multiples of 3, 2
more copies of the positive integers, and 2more copies of the odd positive integers; let
T be the set containing one copy of the positive integers that are not multiples of 3, one
more copy of the even positive integers that are not multiples of 6, 2more copies of the
positive integers, and 2more copies of the even positive integers. Then, for any N ≥ 1,

PS(N ) = 2PT (N ).
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Proof From [8, p. 359], we have

ϕ(−q)ψ(q3)

ψ(q)
+ ϕ(q)ψ(−q3)

ψ(−q)
= 2

ψ(q2)ϕ(−q6)

ϕ(−q2)
.

Dividing both sides by
ϕ(−q)ψ(q3)

ψ(q)
and then transforming into q-products, we find

that

(−q; q)∞(−q; q2)∞
(−q3; q3)∞(−q3; q6)∞ (−q; q2)2∞(−q; q)2∞

= 2
(−q; q)∞(−q2; q2)∞

(−q3; q3)∞(−q6; q6)∞ (−q; q)2∞(−q2; q2)2∞ − 1,

which is clearly

∞∑

n=0

PS(n)qn = 2
∞∑

n=0

PT (n)qn − 1.

Equating the coefficients ofqN fromboth sides,we readily arrive at the desired identity.
��

Theorem 8.12 Let S be the set containing two copies each of the positive integers,
the odd positive integers, the positive multiples of 3, and the odd positive multiples of
3, and let T be the set containing two copies each of the positive integers, the even
positive integers, the positive multiples of 3, and the positive multiples of 6. Then, for
any N ≥ 1,

PS(N ) = 4PT (N − 1).

Proof We note from [9, p. 198, Entry 45] that

ψ(q)ψ(q3) − ψ(−q)ψ(−q3) = 2qϕ(q2)ψ(q12)

and

ψ(q)ψ(q3) + ψ(−q)ψ(−q3) = 2ϕ(q6)ψ(q4).

Multiplying together, we have

ψ2(q)ψ2(q3) − ψ2(−q)ψ2(−q3) = 4qϕ(q2)ψ(q12)ϕ(q6)ψ(q4).

Dividing both sides byψ2(−q)ψ2(−q3) and simplifying byEuler’s identity,we obtain

(−q; q2)2∞(−q; q)2∞(−q3; q3)2∞(−q3; q6)2∞
= 4q(−q; q)2∞(−q2; q2)2∞(−q3; q3)2∞(−q6; q6)2∞ + 1,
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which is

∞∑

n=0

PS(n)qn = 4q
∞∑

n=0

PT (n)qn + 1.

Equating the coefficients of qN from both sides, we finish the proof. ��
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