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Abstract The concept of poly-Cauchy numbers was recently introduced by the au-
thor. The poly-Cauchy number is a generalization of the Cauchy number just as the
poly-Bernoulli number is a generalization of the classical Bernoulli number. In this
paper we give some more generalizations of poly-Cauchy numbers and show some
arithmetical properties.
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1 Introduction

The Cauchy numbers (of the first kind) ¢, are given by the integral of the falling

factorial:
1 L /y
cnzf x(x—l)-~~(x—n+1)dx=n!f <>dx
0 0 \1

[7, Chap. VII]. The numbers ¢, /n! are sometimes called the Bernoulli numbers of the
second kind (see, e.g., [2, 24]). Such numbers have been studied by several authors
[6, 20, 21, 23, 25] because they are related to various special combinatorial numbers,
including Stirling numbers of both kinds, Bernoulli numbers and harmonic numbers.
Remarkably, the Cauchy numbers of the first kind ¢, and the Bernoulli numbers B,
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354 T. Komatsu

have several symmetric properties. The generating function of the Cauchy numbers
of the first kind ¢, is given by

X X xn
In(1 + x) zr;c"_.

[7, 21], and the generating function of Bernoulli numbers B, is given by

n

B,

X
e —1

WK
:|><

Il
=

n

[7] or

S xM
l—e* Z:: "l

[16]. In this paper we use the latter definition of B,,. In addition, Cauchy numbers of
the first kind ¢, can be written explicitly as

n

= [T

m=0

([7, Chap. VII], [21, p. 1908]), where [r"’l] are the (unsigned) Stirling numbers of the
first kind, arising as coefficients of the rising factorial

x(x+1)~~-(x+n—1)=2n:|::1]xm

m=0

(see, e.g., [9]). Bernoulli numbers B, (in the latter definition) can be also written
explicitly as

where { ";1 } are the Stirling numbers of the second kind, determined by

{"=- Z( 1>f( )(m—n"

(see, e.g., [9]). Recently, Liu, Qi and Ding [20] established some recurrence relations
about Cauchy numbers of the first kind as analogues of results for Bernoulli numbers
by Agoh and Dilcher [1].

In 1997 Kaneko [16] introduced the poly-Bernoulli numbers B,(lk) n=0,k>1)
by the generating function

Liy(1—e™) _ iB(k)ﬂ
1 —e= . "o’
n—=
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where
>, ™"
L@ = Z e

is the kth polylogarithm function. When k = 1, B,(,l) = B, is the classical Bernoulli
number with Bfl) =1/2.

Recently, the author [17] introduced the poly-Cauchy numbers (of the first kind)

( )asa generalization of the Cauchy numbers and an analogue of the poly-Bernoulli

numbers by

1 1
C;(zk)Z/ / (erxg - xp) (epx - xp — 1)
o Jo

k

ce(x1x2-exg—n+ 1) dxydxy - dxg.

In addition, the generating function of poly-Cauchy numbers is given by

Lifi (In(1 + x)) Zc“‘)x
n=0

where

0 m

. Zz
Lik(@) = 2. o i
m=0

is the kth polylogarithm factorial function, which is also introduced by the author
[17, 18]. If k =1, then c,(,l) = ¢, is the classical Cauchy number. One different exten-
sion of Cauchy numbers is on hypergeometric Cauchy numbers [19], as that of hy-
pergeometric Bernoulli numbers is a different extension of Bernoulli numbers (e.g.,
[12, 13]).

The concept of the poly-Bernoulli numbers have been extended by several authors,
including Bayad and Hamahata [3, 4], Hamahata and Masubuchi [10, 11], Sasaki [22]
and Jolany [14]. Some applications of the poly-Bernoulli numbers have been studied
(e.g., [5, 15]).

In this paper, we give a generalization of the poly-Cauchy numbers and show
several combinatorial properties. The poly-Cauchy numbers are special ones with
g = 1 in the poly-Cauchy numbers with g parameter.
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2 Poly-Cauchy numbers with g parameter

Let n and k be integers with n > 0 and k > 1. Let ¢ be a real number with g # 0.
Define the poly-Cauchy numbers with g parameter of the first kind c,(f()] by

1l
C;(1121='/0 /0. (12 xp) (X1 X2 -+ - Xk — )
—_——

k

--~(x1x2~--xk —(n— 1)q)dx1dx2 <o dxy.

Hence, if ¢ =1, then cr(zk)l = c,(,k) are the poly-Cauchy numbers, defined in [17]. We

may define the Cauchy numbers with q parameter of the first kind cﬁ‘g =cCp,q by

1
Cn,q :/(; x(x_CI)"‘(x_(Vl— l)q)dx.

We record the first several Cauchy numbers with ¢ parameter of the first kind:

1
Cl,qzza
11
g =—-——4q,
2,q 3 261
_1 2
C3,q_Z_q+q7
1 3 11
C4q:§—56]+?q2—36]3,
1 35 , 50
S Ve B S Dy
C5q =g =24+ 34" —54q +12
15 225 , 274
Coq =7 54+174" = Z=¢" + —==¢" - 60¢’,
1 175
cr9=5 =3¢+ ?qz — 147¢3 + 406" — 5884 + 3604°.

As a general case of the poly-Cauchy numbers and the Cauchy numbers, the poly-
Cauchy numbers with g parameter c,(,lf,)] can be expressed in terms of the (unsigned)
Stirling numbers of the first kind [ ,:'1 ]

Theorem 1 For a real number q # 0,

)l’l*m

~n(=q

m=0
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Proof By the identity

x(x—1D--(x—n+1)= Z [:l](—l)nfmxm

m=0

(see, e.g., [9, Chap. 6]), we get

X(X X
X(X—q)~-~(X—(n—1)q)=q"~;(——1)---(——114—1)

q q

- £ller(;)
Sl

n

Hence, putting X = x1x3 - - - x¢, we have

1 1
C;%Z/ / (e -+ xp) (X1 X2 - - Xk — q)
o Jo

k

"(X1x2-~~xk—(n—l)q)dxlde...ka
1 1 n n
:.// Z[ ](_Q)n_m(xlxz'"xk)mdxldxz~~dxk
0 0o —Lm
———m=0
k

)nm

_Z[ ](m+1)k O

We also obtain the generating function of the poly-Cauchy numbers with g pa-
rameter by using the polylogarithm factorial function Lify (z) [17, 18] defined by

m

. o ad Z
Lify (z) := Z; TS

We may define the poly-Cauchy numbers with g parameter by the generating func-
tion. If g = 1, the result is reduced to that of poly-Cauchy numbers.

Theorem 2 The generating function of the poly-Cauchy numbers with q parameter

c,(, ,)] is given by

Lifk<M) ,(zkzl oy (g #0).
4 n=0
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Proof Since

3

(I +0)" _ o i "] (—x)"

m! m n!
n=m

by Theorem 1 we have
x ( q)n m l’l
Z o ZZ[ [
o ()" (- qx)"
Zg&m+w§:[]

n=m

Z (ln(1+qx)> :Lifk<ln(1+CIX)>'
:'W+W

q q

O

The generating function of the poly-Cauchy numbers with g parameter in Theo-
rem 2 can be also written in the form of iterated integrals as that of the poly-Cauchy
numbers.

Corollary 1 For k =1, we have

g +gni—1) K X"
fq(x) = In(1 + gx) = X_:C”"I .
For k > 2, we have
q * q " q * fqgx)
dxdx --- dx
In(1+gx) Jo (1+gx)In(l+gx) Jo (I+gx)In(1+¢gx) Jo 1+gx ———
k—1

Proof Since

L@@:%Almqmm k>2)

with Lif; (z) = (e¢* — 1) /z, for kK > 2, we have
. 1 f*1 [* 1 [2ef—1
L]fk(z):— — B — dzdzdz
z2Jo 2 Jo Z Jo Z T

Putting z =In(1 4+ gx)/q, we get the result for k > 2.
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For k =1, we have

Lif <1n(1 +61X)) _q((L+gx)t/1—1)
: q N In(1+gx) O

For g =1, we have
n
2l
m) LT (1R
m=0

[17, Theorem 3]. However, we have not had a simple form of ZZ:O{ r’; }c,(,f,)q for
general g.

3 Poly-Cauchy numbers with ¢ parameter of the second kind

The Cauchy numbers of the second kind ¢,, are defined by
1
Cn =/ (—x)(=x = 1) (—x —n+ Ddx
0
[7, Chap. VII]. Poly-Cauchy numbers of the second kind é,ﬁk) are defined by

1 1
51(1k)=/() /0 (=xpxp- - x) (=xpxg - xp — 1)
———

k
e (—=x1xp o xg —n+ Ddxydxy -+ dxy

[17]. Now, we define the poly-Cauchy numbers with ¢ parameter of the second kind
(k)
Cn,q by

1 1
5;(1]2, =/ / (=x1x2 - xp)(=x1X2 -+ Xk — q)
0 0
———

k

o~'(—x1x2~~~xk —(n— l)q)dxldxz <o dxg.

Therefore, if ¢ = 1, then 6,(,k)1 = éflk) are the poly-Cauchy numbers of the second kind.

If g =k =1, then E,(ll)l = ¢, are the Cauchy numbers of the second kind. In addition,

we shall call 6,(11()1 = Cy,¢ as the Cauchy numbers with ¢ parameter of the second kind.
We record the first several Cauchy numbers with g parameter of the second kind:

. 1
Cl,q:‘i»

. 1 1
“2a=31 34
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. 1
€349 = 2 —q —‘22’
¢ LI LI S
C. A )
g =354+ 59 +3¢
1 35 50
Cs.q= 5~ 2q — Zqz - ?qg 124",
1 5 225 274
A _ 17 3 4 60 ,
Co,q = 7 + Zq + + — 4 + — 3 + 60g
1 175
b1 = =534~ ?qz 147¢° — 4064* — 5884° — 36045.

Similarly to the Poly-Cauchy numbers with g parameter of the first kind, the poly-
Cauchy numbers with g parameter of the second kind can be expressed in terms of
the Stirling numbers of the first kind. This is a general case of the results by Merlini
etal. [21] for k = ¢ = | and by the author [17] for ¢ = 1. The proof is similar to that
of Theorem 1 and omitted.

Theorem 3 For a real number q # 0,

n—m

The generating function of the poly-Cauchy numbers with g parameter of the sec-

ond kind E,(,]f; can be also expressed by using the polylogarithm factorial function

Lify(z). If ¢ = 1, then this generating function is reduced to that of poly-Cauchy

numbers of the second kind ¢ A(k) = é,ﬂk;

Theorem 4 The generating function of the poly-Cauchy numbers with q parameter
of the second kind ¢ c g 1S given by

. In(1 + ¢x) e
Llfk(—%){cﬁfz,; (@ £0.
n=0 :

The generating function of the poly-Cauchy numbers of the second kind can be
also written in the form of iterated integrals by putting z = —In(1 + gx)/q in

. 121 2 1 [2et—1
Llfk(z):— - DI — dzdzdz
zZJo 2Jo Z Jo Z T

Corollary 2 For k =1, we have

ql=(A+g0)~ V) I "

8 ) = T T g
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For k > 2, we have

9 * 9 * 9 ! gq(X)
In(1+¢gx) Jo (14+¢gx)In(l+gx) Jo (I+gx)In(1+gx) Jo 1+gx)
k—1

dxdx ---dx
—

-t
- I‘lq n'

n=0

For g =1, we have
Z { } A(k) (="
T+ 1)"

[17, Theorem 6]. However, we have not had a simple form of ZZ: { }cm )q for
general g.

4 Poly-Cauchy polynomials with ¢ parameter

Define the poly-Cauchy polynomials with g parameter of the first kind c,(qlf; (z) and of
the second kind é,(lk(){ (z) by

1 1
(k)(z) /---/(x1x2~~-xk—z)(x1X2~~-xk—q—z)
H T

k

(WX — (1= 1)g — 2)dxid xz -+ dxg

and

1 1
(k)(Z)—/ / (=x1x2 - X, +2)(=x1X2 -+ Xk — q +2)
\_,_0.1
Kk

--(—x1x2~--xk —(n—1)g —I—z)d)quz - dxy,

respectively. If ¢ = 1, then c(k) () =cy, )(z) and ¢ A(k) 1) = Ch )(z) are poly-Cauchy
polynomials of the first kind and of the second kmd respectlvely [18]. Note that we
also have a different definition where z and —z are interchanged [18]. If z = 0, then
c,(lk; 0) = c(k) and E,gk; 0) = é,(j‘; are poly-Cauchy numbers with g parameter of the
first kind and of the second kind, respectively.

Poly-Cauchy polynomials with g parameter of the first kind c,gk; (z) and of the
second kind é,yf,)] (z) are expressed by using the (unsigned) Stirling numbers of the
first kind [ " ].
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Theorem 5 For integers n and k with n > 0 and k > 1 and a real number q # 0, we
have

n n—m < m (_Z)l
o=3[1]co ;()W

m=0
A n_n—m < (— )i
&) (2) = 2}[:1] (—D)g Z(; (T)ﬁ

Proof Similarly to the proof of Theorem 1, putting X = xx3 - - - x; — z, we have

o ()= / / Z ( Q)" "M (x1x2 o xx —2)"dxydxy - dxg

:/0 /0 mz_o[m](_q)
k
XZ( )(x1x2 x)" (=) dxydxy - -+ dxg

¢ (=2)'
_ I‘l m
=[] (e
m=0
The second identity is proven similarly and omitted. g
Theorem 6 Let n and k be integers with n > 0 and k > 1, and q be a real number

with q # 0. Then the generating functions of the poly-Cauchy polynomials with q
parameter of the first kind c,ﬁ’f; (z) and of the second kind é,(,k; (z) are given by

a +qx)_z/qLifk(—ln(l ;qx)> S X

n=0
and
. In(1+¢gx s R x"
(g (-2EEED) -3 o
q vt n!
respectively.

Proof Similarly to the proof of Theorem 2, by the first identity of Theorem 5 we have
n

n—m (-2 «x
Zc(k)(Z)—. ZZ[ ]( q) Z( )mn'

n=0m=0
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m

d e (m\  (=2) (qX)"
=2 o Z( )(m—z+1)k2[ =

m=0 i=0
Zg( i)i i: —z)v(m—, + l)k<ln(1;|]—qx))m
_sz( zln(1+61x)> gv!(vi—l)kcn(l;_qm

In(1
=+ qx)z/qLifk<M>.
q

The second identity is proven similarly and omitted.

Therefore, by Corollaries 1 and 2 with Theorem 6 we obtain the generating func-

tion of poly-Cauchy polynomials with g parameter in the form of iterated integrals.

Let f,(x) and g, (x) be as in Corollaries 1 and 2, respectively.

Corollary 3 For k =1, we have

S n
_ X
(1 +g0) 7 fy(0) = 3 eng (@,
n=0
S n

(14075, (In(1 + ) = Y g ().
n=0 ’

For k > 2, we have

X

_ q q q
1+ gx)~/4 /
(1+4x) In(14+gx) Jo (14+gx)In(1+qgx) Jo (I+gx)In(1+gx)
k—1
fa®) dxdx ---dx
Ty ="
o0
=2 G
n=0
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X X

(1+gx0)¥1 —1 a a
In(14+4gx) Jo (14+gx)In(1+4+4gx) Jo (I4+¢gx)In(1 +gx)
k—1
840 v dx
1+qx)—,—/

Z (k) (Z) -

5 Some properties of poly-Cauchy numbers and polynomials with ¢ parameter

It is known that poly-Bernoulli numbers satisfy the duality theorem B( k) B( ")
for n, k > 0 [16, Theorem 2] because of the symmetric formula

oo 00 B(—k)xn yk Xty
ZZ n I k! ex Y _ px+y’
0o n! k! et +e e

n= =l

However, poly-Cauchy numbers with ¢ parameter do not satisfy the duality theorem
for any g # 0, by the following results.

Proposition 1 For nonnegative integers n and k and a real number q # 0, we have

o0 o0 y
)
YN ST = g0,
n=0 k=0
St o
na ev/q’
== n! k! (1+qx)

Proof We shall prove the first identity. The second identity is proven similarly. By

Theorem 2 we have
00 00 n .k 00
(— X Y- o X"
DI o

M

n=0 k=0 k=0 \n=0
_ii(m—l—l)k(ln(l—i-qx))m w
_k:Om:0 4 k!
1 In(14gx) \" o= ((m 4+ Dy)*
Zr;)%( q > kgg k!
=ii<ln(1+qx)> Sty
m! q

m=0
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o0
1 /e¥In(l +qgx)\"
_ Y Il e S
=€ va(

m=0 q

=e’(14gx)¢ /1. O

Poly-Bernoulli polynomials B,gk)(z) are defined as

le(l — e )C xz ZB(k)(Z)_

S l—er
n=0

[3]. Note that B,(,k)(z) are defined in [8] by replacing ¢** by e~ **. Concerning the
poly-Bernoulli polynomials, for an integer k and a positive integer n, we have

d k
B @=n8" @
[3, Theorem 1.4]. However, poly-Cauchy polynomials with g parameter are not such

sequences for any g # 0. By differentiating c (z) or c(k) (z), we have the following:

Proposition 2 For nonnegative integers n and k and a real number q # 0, we have

n—Il—1
ﬁk,)l(z)—— 'Z( 0 BT (k)(z)

)nll

A(k)
BT 7 (2)-

ety S

Proof Differentiating both sides of the first identity in Theorem 6 with respect to z,
we have

In(1 In(1 > d n
—M(l + qx)z/qLifk(M> — Z 2 (Z)x_'
q q =0 ' n

Then,

LHS = (Z %> (Z e (z)—)

m=1

n )n l n -1 (k)(Z)

; (n — D!

( Q" —I-1 (k)(Z) n

')Z n—DI' n!

i
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and
N d
— (k)
RHS = Zd—z (D=
n=1
The second identity is proven similarly and omitted. O
Lastly, we show a recurrence formula for the poly-Cauchy polynomials c,(lk) (2) =
(z) in terms of the poly-Cauchy numbers c( ) = c( )1 and the Cauchy polynomials
n(0) = e @)
Theorem 7 For integers n and k withn > 0 and k > 1, we have
(k—1) n—
® () = (—1)"n! Z (- 1)'" N (=Da)
P (n—I1+ DI
1)”““‘ VSN (D'ae
(k) _ 1 n | (
@ =1 Z Z(n—l+1)1z
m=0 =0
N 1
(- 1>m n NS D a)
D)"n!
+(=1)"n Z =Dl
1=0
Proof
d . .
e (zLify (2)) = Lifg—1(2),
SO
1 z
Lify (z) = —/ Lifi_1(z)dt. 1)
zJo

If we put z =In(1 4+ x) and r =log(1 + s) in the identity, then

Lify (In(1 +x)) /x Lify_1(n(1 +5)
(14 x)z (1+x)21n(1+x) 1+s

By the generating function in Theorem (6),
0 ' X" 00 xn—l opx [ -
Yo=Y a0t [ X Zc< ) d
=0 n: =0 n! 0 =0
S l 1 1 ( 1)n—m .
>ae ) [ 35 EVT e gy

=0 n=0m=0

+1
- (Zcz(z)—>22( s Cn 1),:4_1

n=0m=0
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0 00 00 1
c Z ( l)n m 1) xn+
=2l o T
=0 n=0m=0
_ i LG e @ ()
o ! —n)!
= m! w—n) n+1
= Cvfn Z -
! Y !
N\ m n+1 (v—n)! v!
k—1
3 (O ey E @) 2
' m! n+1@—=n)/v
v=0 m=0 n=m
) (T S 1) b
' v—n+1 n' Jv’
v=0 m=0 n=0
The second recurrence relation is obtained similarly. d

6 Some more extensions

We shall consider integrals of the definition of poly-Cauchy numbers with g param-
eter in the range [0, 1], where [ is a real number with / # O instead of the range [0, 1].

Define c (11 by,...,

AN RN S

l), where I, 1, ...,

lx are nonzero real numbers, by

L b I
=/ / s (X xp)(Xpx2 - Xg — )
o Jo 0

.(_xl_xz

Then ¢y (1,12, ...
numbers of the first kind [ ].
Theorem 8 For a real number g # 0,

n

X110, ..

“xp—(n— l)q)dxldxz

(=" " (lils--

dxy.

,Ix) can be also expressed in terms of the (unsigned) Stirling

.lk)m+1

w=%[)

m=0

The numbers /1, I, ...

nt DF n=0k=>1).

, I and g are not necessarily positive integers. For example,

fork=2,n=4,1; =+/2and I, = —1/3, we have

‘”(fz ——) / / (x1x2) (¥1X2 — @) (x1.x2 — 2q) (x1x2 — 3¢) dx1 dxa
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—Z[ ]( Q" (V2(=1/3))m !
o m

2
~ m+1)
ol 22V2, 1 42
e 243 1 75497 6075

If k =g =1 in Theorem 8, then

( l)n—mlm-i-l

=[]

m=0

which is the relation in [21, Corollary 3.3].
The generating function of c,(,lf()l (l1, 12, ..., 1) is also given by using the polyloga-
rithm factorial function Lif (z).

Theorem 9 For a real number q # 0,
n

Lils ... L In(1
lllz...lk.Lifk<12 K In( +qx)) Zc<k)(l1,lz,..,,lk)x— =0 k=>1).
q n!

If k =g =1 in Theorem 9, then

e ¢]

Z (€)) (l)_ =1 - Lif} (lln(l +x))
n=0

_(to'-1

T In(1+x)

which is the relation in [21, Theorem 3.2].
The generating function of c,(f; (I1, 1o, ...,Iy) in Theorem 9 can be also written in
the form of iterated integrals.

Corollary 4 For k =1, we have

q((1 4 gx)h-lla — 1) M x”
..., [ x) = = I, D, ..., [k)—.
fqh ks X) In(l £ %) ZC (. k)n!
For k > 2, we have
/ q q
In(1+¢gx) Jo (I1+gx)In(144gx) Jo (I+¢gx)In(1 +gx)
k-1

fq(h,...,lk;x)

dxdx ---dx
14¢gx —_—

k—1
0 n

X
:Z <">(11,12,...,lk);.
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In similar manners, if we define ¢ c (11 s, ... k) by

(NS5

L ph I
/ / (—X1x2~-~xk)(—x1x2~-

( X1x2---xx — (n — l)q) dxidxy -
then we have the following series of results.

Theorem 10 For a real number q # 0,

Xk —q)

. dxk’

. n—im m+1
n (Ll 1)
(k)(ll L, ..., k) ==1D" § [m]q 1l A

(m + Dk

m=0

Theorem 11 The generating function ofé,(jfzi (L1, 1, ..., lk) (g #0) is given by

In(1 4 gx)

Il - - Iy -Lify (—1112~ el
q

n=0

Corollary 5 For k =1, we have

o]

I, ..., x) =
81 k) In(1 + gx)

For k > 2, we have

X

(1= (1 gy hilley 2
1 1 =3l b,

q

n=0,k>1).

In(l + qx)

q q
In(1 +¢gx) Jo (1+61X)1H(1+61x)/0 (1+gx)
k—1
I, ... e
dedxmdx
14+¢gx “—f—"k .
0 n

R X
=Y k.. LT

Polynomials c,(,]f()](z; i, b,...,It) and 6,(2(5 Ih,b,...,

n
ZA("U ! I
(1,2,--~,k)m (n>0,k>1).

Ix) are similarly defined,

and their explicit formulae and generating functions are obtained by replacing the

range of the integral [0, 1] by [0, [].
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7 Future work

There is the following relation between poly-Cauchy numbers and poly-Bernoulli
numbers [17, Theorem 8]:

S 3l I T EERCE

=1 m=1

However, any corresponding generalized poly-Bernoulli numbers to poly-Cauchy
numbers with g parameter have not yet been studied, though one candidate may be

L ny (=) "m!
54 =>{"| D

m=0

On the other hand, though several generalized poly-Bernoulli numbers have been
studied (see, e.g., [3, 4, 10, 11, 14, 22, 23]), the corresponding generalized poly-
Cauchy numbers have not yet been studied, either. One of the reasons is that the
method to generalize the poly-Cauchy numbers in this paper is based upon the defi-
nition of integrals and the methods to generalize the poly-Bernoulli numbers in other
works are based upon the definition of generating functions.
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