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Another elementary proof that p(11n + 6) =0 (mod 11)
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Abstract In this paper we give an elementary proof of the partition congruence
p(l1n 4+ 6) =0 (mod 11), using only Euler’s Pentagonal Number Theorem and Ja-
cobi’s Identity for (g; q)go.
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Let n be a positive integer, let p(n), denotes the number of unrestricted representa-
tions of n as a sum of positive integers, where representations with different orders of
the same summands are not regarded as distinct. We call p(n) the partition function.

In 1919, Ramanujan [1], [2, pp. 210-213] announced that he had found three sim-
ple congruences satisfied by p(n), namely,

p(5n+4) =0 (mod 5),
p(Tn+5) =0 (mod 7),
p(lln4+6) =0 (mod 11).

He gave the proofs of the first two of the above congruences in [1] and later in a short
one page note [2, p. 230] and [3] announced that he had also found a proof of the third
identity above. Of the proofs given for the third identity above, the most elementary
proof is due to L. Winquist [4] and uses Winquist’s Identity. Another elementary ap-
proach of proving the third identity has been devised by Berndt, S.H. Chan, Z.-G. Liu,
and H. Yesilyurt [5], who established a new identity for (g; q)cl,g. Hirschhorn [6] has
devised a common approach to proving all three congruences.
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In an unpublished paper, the author proved the third congruence above in 2009. It
was pointed out to us that this proof is similar to a proof by J.M. Rushforth which
Berndt [8] has reproduced in 2007. In this paper, we prove the third congruence above
along the same lines as the elementary proof given in [7, pp. 34—42] for the first two
congruences. This is the first time such a proof has been given. First we review some
g-series, and two corollaries whose proof can be found in [7].

Definition 1 Define

(@)o:=(a;q) =1,
n—1

@ qn:=[](1-aq"). n=1.

k=0
(@)oo = (a; Qoo = [(1 —aq¥), gl <1.
k=0

We call g the base. The generating function for p(n), due to Euler, is given by

"= = : 1.1
,;p(n)q 1!:[1 l—¢* (@9 (D

where, as usual, we define p(0) = 1.

In the proof of the main result, we need Euler’s Pentagonal Number Theorem and
Jacobi’s Identity.

Corollary 1 (Euler’s Pentagonal Number Theorem) We have

o0 o0

S D= S g R = (g g (1)

n=—00 n=—0o0
Corollary 2 (Jacobi’s Identity) We have
o
S (=D @n+ D" = (g: ), (13)
n=0
This is all we need to prove our main theorem.

Theorem 1 We have

p(11ln46) =0 (mod 11).

Proof Using Corollary 1 and some elementary calculations on the exponents, it is
easy to see that

(45 oo

m=a+bq+cq2+eq4+q5+.fq7, (14)
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where a, b, c, e, and f are power series in ¢!! with integer coefficients. Also it is
easy to see using the Pentagonal Number Theorem that the contribution from (g; ¢) o
when n =2 (mod 11) is ¢°(¢"%'; ¢'?") w0, which counts for the term ¢° in (1.4). Let

L= a(q“) +b(q“)q + c(q“)q2 + e(q“)q4 +¢°+ f(q“)q7. (1.5)

Using the fact that, for integers x and y, (x + y)!! = x!! + y!! (mod 11), it is easy
to see that

@5 g™M2 @29 @i

_ 10
@Na 2 G (q121;q121)10=l’ (mod 11), (1.6)

where we have used (1.4) and (1.5).
Using (1.1) we have

Zp( )q B 1 (C]121;q121)11 (qll;qll)l (q121 121)00
(@ Do (q'5¢™12 (g125¢2H12 0 (g5 9) s

Using the latter and (1.6), we have
Zp(n)q =J'(g")L"+114. 1.7)

As in (1.4), but instead using Corollary 2, it is easy to show

(q: 93

g — 3 15 6 10
(qlzl;q121)go—M—A+BCI+Cq —1lg” +Eq’+ Fq™, (1.8)

where A, B, C, E, and F are power series in ¢! with integer coefficients. Using (1.4)
and (1.8) it follows that M = L3. So it follows that L'0 = LM?3. Using the latter in
(1.7) and doing some expansions and equating the coefficients of 11n + 6 powers on
both sides and dividing both sides by ¢. We have

oo
Zp(11n+6)q“”=J/(q“)H(q“)+11J, (1.9)
n=0

where
H = (3EF*c +3CF*+3BF*f)q*
+ (6ACFe+3C*E +3C*Fb+3BE*e +6BCEf + 6BEFa+3AE?
+3B?F + 6AEFb+3CE*c +3A%Ff)q"!
+3A’B+6ABCc+3AB% +3A%Ea +3B*Cb+3AC%a. (1.10)
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Using the fact that L3 = M and using the expressions for L and M, it follows by
equating coefficients,

A = (3b+6ce +3c* f + 6aef)g" +a’, (1.11)
B = (¢3 + 6bef +3c +6af)q'! +3ab, (1.12)
C = (3af? +6¢f +3e)q'! + 6abe + b, (1.13)
E =3fq' 4 6ab + 3b*e + ¢ + 6ace, (1.14)

and
F = f3¢"" +3ce® 4+ 6bcf + 6be + 3a. (1.15)

Also we have the identities

(6cef +3e* +6bf)g'! +3a*c + 3ab* =0, (1.16)
(124 3bf% + 3¢ f)g' 4 3a%e + 3b°c + 3ac* = 0, (1.17)
Qef +cfg" + be* + 2abe + a® =0, (1.18)
ef?q" + (b* +2ac +a* f + 2bce) = 0, (1.19)
2ae + b% f +2acf + c* +be* =0, (1.20)

and
2q" + (2abf + 2bc + c*e + ae?) = 0. (1.21)

Using Maple we substitute (1.11)—(1.15) in (1.10), and simplify to obtain an expres-
sion too big to display here. Then again using Maple and (1.16)—(1.21) in the latter
expression to simplify, the following expression is obtained for H:

1197042 1197042
H— (_ M2 f33>q”°

13 13
1197042,y 9576336 o 5 3591126
+< A TR EREA
2394084 55 s 1197042 5 7\ oo
EREA e
35950530 ,, 5985210 4 oo 11970420 ,, ,
+< ER ER TR
9576336 s ¢ 31162362 5 5 1197042 1o .7\ ss
3 et Ty e 3¢ )
263384560 1y 3 96293274 iy ATBBIGS y oy | 4TSS g
13 13 13 13
26374194 59139696 1197042
+ 3 f20€7 + 3 f19€5 _ 3 e11f22>q77
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161418180 294848862 441732522
( 68 15+ f1282+ f13e4

13 13 13
255013374 1y ¢ 29174376 1o .6 53420136 11\
R A I A A
38837568 346896396 243154758
+ ellfll_l_ e3f7+6468f7c+ €9f10
13 13 13
718??5746 6+47161636888 0,7 57721832398 geS)qss

+ (7177170e* £ + 52815840 £5 + 1428042¢” f

+ 13870164¢° £ + 924 + 12825582 f*¢¥) ¢ *

+ (—725802¢"3 f — 1025640 f2 — 7854¢° f2 — 152922¢" f*

— 6458767 3 — 193116¢'") ¢ + 3696¢%*c® f — 462c gL (1.22)

It is easy using (1.22) to conclude that
H=11J"(q"). (1.23)
The result now follows from (1.9) and (1.23). Il

It is also easy to use this method and give proofs of other congruences mod 5
and 7. It remains to be seen whether H can be simplified further.

Acknowledgements I wish to thank Professor Brendt for his guidance. Without his help through corre-
spondence and the inspriation of his book [7] the proof presented here would not be possible.

References

1. Ramanujan, S.: Some properties of p(n), the number of partitions of n. Proc. Camb. Philos. Soc. 19,
210-213 (1919)

2. Ramanujan, S.: Collected Papers. Cambridge University Press, Cambridge (1927). Reprinted by,
Chelsea, New York (1962); Reprinted by the American Mathematical Society, Providence (2000)

3. Ramanujan, S.: Congruence properties of partitions. In: Proc. London Math. Soc., vol. 18 (1920).
Records for 13 March 1919, xix

4. Winquist, L.: An elementary proof of p(11m + 6) =0 (mod 11). J. Comb. Theory 6, 56-59 (1969)

5. Berndt, B.C., Chan, S.H., Liu, Z.-G., Yesilyurt, H.: A new identity for (q; q)£ with an application to
Ramanujan’s partition congruence modulo 11. Q. J. Math. (Oxford) 55, 13-30 (2004)

6. Hirschhorn, M.D.: Ramanujan’s partition congruences. Discrete Math. 131, 351-355 (1994)

7. Berndt, B.C.: Number Theory in the Spirit of Ramanujan. American Mathematical Society, Providence
(2006)

8. Berndt, B.C.: Ramanujan’s congruences for the partition function modulo 5, 7, and 11. Int. J. Number
Theory 3, 349-354 (2007)

@ Springer



	Another elementary proof that p(11n+6)0 (mod 11)
	Abstract
	Acknowledgements
	References


