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Abstract Arc spaces have been introduced in algebraic geometry as a tool to study
singularities but they show strong connections with combinatorics as well. Exploiting
these relations, we obtain a new approach to the classical Rogers—Ramanujan Identi-
ties. The linking object is the Hilbert—Poincaré series of the arc space over a point of
the base variety. In the case of the double point, this is precisely the generating series
for the integer partitions without equal or consecutive parts.
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1 Introduction

Arc spaces describe formal power series solutions (in one variable) to polynomial
equations. They first appeared in the work of Nash (published later as [26]), who
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10 C. Bruschek et al.

investigated their relation to some intrinsic data of a resolution of singularities of a
fixed algebraic variety. He asked whether there is a bijection between the irreducible
components of the arc space based at the singular locus and the set of essential divi-
sors. While this so-called ‘Nash problem’ is still actively studied (see, for instance,
the recent papers [15, 16, 22, 29, 30] and the overview [21]), in the last decade arc
spaces have gained much interest from algebraic geometers, through their role in
motivic integration and their utility in birational geometry. Arc spaces show strong
relations with combinatorics as well. In the present text, we indicate how to exploit
this connection both for geometric as well as combinatorial benefit. In particular, we
expose a surprising connection with the well-known Rogers—Ramanujan identities.

Let us emphasize the main algebro-geometric and combinatorial aspects presented
here. First, we suggest to study a new singularity invariant, namely, a natural Hilbert—
Poincaré series attached to arc spaces. In contrast to already existing such series, this
one is sensitive to the non-reduced structure of the arc space. Second, we propose to
derive identities between partitions by looking at suitable ideals in a polynomial ring
in countably many variables endowed with a natural grading. Connecting both ideas
will demand handling Grobner basis in countably many variables, a problem which
has been successfully dealt with in different contexts over the last years (see [12, 20]).
In the present situation—that is, for very specific ideals—salvation from the natural
obstruction of being infinitely generated comes in the shape of a derivation making
the respective ideals differential.

We briefly indicate the connection between arc spaces and partitions. Let f €
kl[x1,...,x,] be a polynomial in n variables x1, ..., x,, with coefficients in a field k.
We denote the formal power series ring in one variable ¢ over the field k by k[[#]]. The
arc space X of the algebraic variety X defined by f is the set of power series so-
lutions x(¢) = (x1(¢), ..., x,(¢)) € k[[£]]" to the equation f(x(¢)) = 0. This set turns
out to be eventually algebraic in the sense that it is given by polynomial equations
(though there are countably many of them). Indeed, expanding f(x(¢)) as a power
series in ¢ gives

f(x(l))ZFo+F1t+F2t2+...’

where the F; are polynomials in the coefficients of ¢ in x (). Therefore, a given vector
of formal power series a(t) € k[[¢]]" is an element of the arc space X if and only
if its coefficients fulfill the equations Fy, Fi, . ... Algebraically the corresponding set
of solutions is described by its coordinate algebra

Joo(X)=k[x{": 1< j <n.i eN]/(Fo. Fy....),

where N = {0, 1, 2, ...}. The variable x® corresponds to the coefficient of #/ in x ().
We will mostly be interested in the case where a(0) is a point on X (without loss of
generality, we may assume that this is the origin). The resulting algebra, obtained
from J(X) by substituting xj(o) =0, is called the focussed arc algebra and denoted

by Jgo (X); we write f; for the image of F; under this substitution:
JLO =k 1< j <ni=1)/(f. fon )
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Arc spaces and the Rogers—Ramanujan identities 11

®
J
geneous of weight £. In the special case of n = 1, we will write y; instead of x

This algebra is naturally graded by the weight function wtx;’ =i since f; is homo-

v
Integer partitions arise naturally when computing weights of monomials in J&(Al).
Recall that a partition of m € N is an r-tuple of positive integers A| < iy < .-+ <A,
with Ay 4+ --- 4+ A, = m. The A; are the parts of the partition and r is its length.
A monomial y?' - ye® has weight o) - 1 + -+ + «, - e. Asking for the number of
monomials (up to coefficients) of some weight m is thus asking for the number of par-
titions of m. This is precisely what we capture when computing the Hilbert—Poincaré
series of Jgo (AD). In general, the Hilbert—Poincaré series of Jgo(X ) is defined as

oo
HP 9 ) (D) = ) dimg (J% (X)) ; -/,
j=0

where (JgO(X )); denotes the jth homogeneous component of JgO(X ). In the sim-
ple case of X = A!, we may use the generating function for partitions to represent
HPJ&(AI)(t) by

1

H::Hl_ﬂ..

i>1

By the general theory of Grobner bases, HP 79.(%) (t) is identical with the Hilbert—
Poincaré series of the algebra

k[x:1<j <n.i=1]/LWD),

where L(I) denotes the leading ideal of I = (fy, f1,...) (with respect to a cho-
sen monomial ordering). The leading ideal is much simpler since it is generated by
monomials. Computing the Hilbert—Poincaré series of the respective algebra corre-
sponds to counting partitions, leaving out those coming from weights of monomials
in L(I). In the simple example of f = y2, these will be all partitions without repeated
or consecutive parts. Such partitions are part of the well-known Rogers—Ramanujan
identity: the number of partitions of n into parts congruent to 1 or 4 modulo 5 is equal
to the number of partitions of n into parts that are neither repeated nor consecutive
(see [4]). This gives:

Theorem 1.1 Let k be field of characteristic 0. For X : y> =0, we compute

1
HPyg 0= [ 1=

i>1
i=1,4mod 5

More generally, we obtain using Gordon’s generalizations of the Rogers—
Ramanujan identities for X : y* =0, n > 2:

@ Springer



12 C. Bruschek et al.

Theorem 1.2
HP ) ) =H- [] (1-¢).

i>1
i=0,n,n+1
mod 2n+1

The computation of L(/) in these rather simple looking cases is nontrivial. It is
carried out in Sect. 5.

Moreover, standard techniques from commutative algebra allow to compute a re-
cursion for the Hilbert—Poincaré series in the case of X : y> = 0:

Proposition 1.3 The generating series HP 79.(%) (¢) is the t-adic limit of the sequence
of formal power series Ay defined by:

Ai=Ay=1, and Ag=Aq_1+1t2A4_2 ford=>3.

The above proposition was first found in an empirical way in [1], and it leads to
the Rogers—Ramanujan identities (see Sect. 5).

Returning to the geometric aspect of the series attached to arc spaces, we com-
pute them in other interesting cases: for smooth points, for rational double points of
surfaces, and for normal crossings singularities. In these cases, the simple geometry
of the jet schemes permits to compute the Hilbert—Poincaré series defined above, and
we find the following (see Propositions 3.4, 3.8, and 3.10).

Proposition 1.4 With the above introduced notation, we have:

(1) If p is a smooth point on a variety X of dimension d, then
1 d
HP 5 x) = <1_[ =7 _ti) ?
i>1
(ii) If X is a surface with a rational double point at p then

1y 1?2
HPJ&(X)(’)=<1__I> (H I _ﬂ-) ;

i>2

(i) If X ={x1---x441 =0} C Af“ , and p is a point in the intersection of precisely
e components, then

e—1 1 d+1 1 d
HP 3 ) (1) = (H 1—ﬂ'> (El—t") ‘

i=1

We expect it to be true that the Hilbert—Poincaré series of the reduced focussed arc
algebra of a plane branch is a topological invariant. Moreover, we expect that these
results are just the tip of an iceberg and that more connections between singularity
theory and partitions via arc spaces will be revealed in the future.
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Arc spaces and the Rogers—Ramanujan identities 13

In the past, several generating series have been associated to the arc space of a
(singular) variety by Denef and Loeser (see [10, 11]), in analogy with the p-adic case.
All those series are defined in the motivic setting and take values in a power series ring
with coefficients in (a localization of) a Grothendieck ring. They are rational. Some
of those series encode more information about the singularities than others. For a
comparison between them, see [9, 27, 28]. While those series are concerned with the
reduced structure of the arc space, our series is sensitive to the non-reduced structure
as well, although it is not rational in general. We discuss more geometric motivation
for introducing the above Hilbert—Poincaré series in Sect. 3 (after Definition 3.1).

The structure of the paper is as follows: In Sect. 2, we define jet schemes and
arc spaces and recall some basic facts about them. In Sect. 3, we introduce the arc
Hilbert—Poincaré series, we discuss its properties and we compute it in particular
cases. Section 4 recalls basic facts about partitions and the Rogers—Ramanujan iden-
tities. Section 5 is devoted to the main theorem. For the convenience of the reader, we
recall the facts about Hilbert—Poincaré series and Grobner bases that we use in the
paper in Appendix A.

2 Jet schemes and arc spaces

Let k be a field. Let X = Spec(k[xy,...,x,]/(g1,---,&r)) be an affine scheme of
ﬁnipe type over k. For [ € {1,...,r}, and j € {0, ..., m}, we define the polynomial
Gl(") ek[x?;1 <5 <n,0<i <m]as the coefficient of #/ in the expansion of

g (x{o) + x{l)t +--- —I—xfm)tm, e X0 px D xmm. )]

Then the mth jet scheme X, of X is

H%%1§SSm0§i§m0

X = Spec( 0
(G/;1<1<r,0<j<m)

In particular, we have'that Xo = X. Of course, we do not need to fix m in advance,
and we can define Gl(j) € k[xs(l); 1 <s<n,ieN]forall j € N as above. Here N =
{0, 1, ...}. Then the arc space X of X is

HﬁmISSSmi€M>

Xoo = Spec( 0
(G/;1<l<rjeN)

The functorial definition is also useful. Let X be a scheme of finite type over k and
let m € N. The functor

Fn - k-Schemes — Sets,

which to an affine scheme defined by a k-algebra A associates

Fn(Spec(A)) = Homy (Spec(A[1]/("+")). X)
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14 C. Bruschek et al.

is representable by the k-scheme X, (see, for example, [21, 32]). The arc space X
represents the functor F that associates to a k-algebra A the set

Homy (Spf(A[[TD, X),

where Spf denotes the formal spectrum.

For m, p € N,m > p, the truncation homomorphism A[¢]/(t"+1) — A[t]/(tP+))
induces a canonical projection 7y, p : X, — X,. These morphisms clearly ver-
ify s, p o mgm = my,p for p < m < q. We denote the canonical projection
Tm.0: Xm — Xo by m,. For m € N we also have the truncation morphism A[[¢]] —

[t]/(t’"“). It gives rise to a canonical morphism v, : Xoo = Xpp.

Assume now that k has characteristic zero. In that case we can explicitly determine
the ideals defining the jet schemes and the arc space. Let S = k[x1,...,x,] and S,,, =
k[x(') 1 <s<n,0<i<m].Let D be the k-derivation on S, deﬁned by D(xg l))

V0 <i <m, and D(x;'")) = 0. We embed S in S,, by mapping x; to x(o)

Proposition 2.1 Ler X = Spec(S/(g1,---, &r)) and let J,,(X) be the coordinate ring
of Xyu. Then

Sm
(DJi(g);1<l<r,0<j<m)

Im(X) =

Proof Since k has characteristic zero, we may equally well replace x; by
x(O) x( 1) x(m) o
o Tt

to obtain the equations of the jet space. For g € S we denote then

() (1 (m) (0) (1) (m)
X X X Xn Xp X, m
P _g(FJFT’JF ST T )

Then we have
m

W (6() = (g)

where 1, means truncation at degree m. To see this, it is sufficient to remark that it is
true for g = x;, and that both sides of the equality are additive and multiplicative in g
(after truncating at degree m). The proposition follows. d

Similarly, the coordinate ring Joo(X) of X is given by

k[x(') 1<s<n,ieN]

o= Dl i <l=rj ey

Here D(x§i)) = xy'H) for all i € N. For further understanding of the equations of the
jet schemes and their relation with Bell polynomials, see [6, 7].
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Arc spaces and the Rogers—Ramanujan identities 15

3 The arc Hilbert-Poincaré series

In this section, we introduce and discuss the Hilbert—Poincaré series of the arc algebra
of a (not necessarily reduced or irreducible) algebraic variety X, focussed at a point
p of X. Since this will be a local invariant, we may restrict ourselves to X being a
closed subscheme of affine space. For generalities about Hilbert—Poincaré series of
graded algebras, we refer to Appendix A.

As above, let k be a field of characteristic zero. Although for most of the state-
ments it is not necessary that k is algebraically closed, we will assume it for conve-
nience. Let X be a subscheme of affine n-space over k, defined by some ideal [ in
klx1,...,x,]. We define a grading on the polynomial ring k[x;’); 1<j<n,ieN]

by putting the weight of xﬁ.l) equal to i. We prefer to use the terminology ‘weight’
instead of ‘degree’ here, in order not to confuse with the usual degree. It is easy to
see that the ideal I, of k[x](.’); 1 < j <n,i € N] defining the arc space X, is ho-
mogeneous (with respect to the weight), and hence the arc algebra J.(X) is graded
as well (this follows for instance from Proposition 2.1). Similarly, the jet algebras
Jm (X) are graded. Let p be any point of X and denote by « (p) the residue field at p.
After identifying Jo(X) with the coordinate ring of X, we obtain a natural map from
Jo(X) to k(p).

Definition 3.1 We define the focussed arc algebra of X at p as

Joo(X) ®jyx) k(D)

and we denote it by JE(X). Analogously, we define the focussed jet algebras of X
at p by

JP(X) = I (X) ®sy(x) k(D).

Using the above grading, we write HP B x) () and HP 7200 @ for their respective
Hilbert—Poincaré series as graded « (p)-algebras. We call this the arc Hilbert—Poin-
caré series at p and the mth jet Hilbert—Poincaré series at p, respectively.

In fact, the focussed arc algebra at a point p is the coordinate ring of the scheme
theoretic fiber of the morphism v : Xooc — X over p. Note that the weight zero part
of Jfo (X) or J,ﬁ (X) is always a one-dimensional « (p)-vector space.

In the special case that X is a hypersurface given by a polynomial F €
k[x1,...,x,] with F(0) = 0, this boils down to the following. We define Fj to be
F in the variables xfo),...,x,go). Then we put F1 := DFy, F, := DFy, ..., where
D is the derivation from Sect. 2. The arc algebra J(X) is given as the quotient
of k[x](.’); 1 <j<n,i e N]by (Fo, F1,...) (see Proposition 2.1). And JgO(X) is

the quotient of k[xj(i); 1<j<n,i>1]by (fo, f1,...), where f; is F; evaluated in
xO = —x® g,

Remark Besides that the arc Hilbert—Poincaré series is very natural to look at when
working with arc spaces, its introduction is motivated by the following. If X is, for
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16 C. Bruschek et al.

instance, a hypersurface then the ideal 1,2 = (fo, f1,...) defining the fiber over the
origin of the mth jet space of X is generated by polynomials depending only on a

subset of the variables of the polynomial ring k[x}i); 1 < j <n,i>1]. Heuristically,

for a given m € N, the more X is singular, the less variables appear in I,(,)l. So this
series was meant as a Hironaka type invariant of the singularity (see [5]), that is, a
kind of measure of the number of variables appearing in I,(,)l.

Note also that since the jet spaces are far from being equidimensional in general
(see [23, 25]), the jet algebras have a big homological complexity, what makes it
difficult to compute the series introduced above.

Remark We can define the graded structure on J, (X) more intrinsically as follows,
with X as above. For an extension field K of k, the K -rational points of X, corre-
spond to morphisms of k-algebras

y:I'(X, Ox) — K[[t].

For A € k*, we have an automorphism ¢, of K[[¢]] determined by 7 + Af. By com-
posing ¢, with y, we obtain a natural action of k* on X, and hence on its coordi-
nate ring Joo(X). An element f € Joo(X) is then called homogeneous of weight i if
A-f=Af, forall »ekX.

We consider the truncation operator
,
T<p tk[[t]] — k[f]: Zait’ > Zait’.
i0 i=0

Then we have the following simple observation.
Proposition 3.2 7, HPJ,E(X)(I) =T<m HPJO"O(X) ().

Now let X and Y be closed subschemes of A} and A", respectively. Recall that

one calls p € X and q € Y analytically isomorphic if (’Q\X’ p and (/Q\Y,q are isomorphic
k-algebras.

Proposition 3.3 Ifp € X and q € Y are analytically isomorphic then
HP p ) (1) =HP g () (1).

Proof The fiber of my : Xoo — X over p is a scheme over «(p) whose K -rational
points, for an extension field K of «(p), correspond to the set of morphisms of
k-algebras

y (X, Ox) = K[[t]]
such that y ~1((r)) = p. Since K[[¢]] is complete, y factors uniquely through @) X,p-
We conclude that the fiber of wx : Xoo — X over p is determined by Oy p.
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Arc spaces and the Rogers—Ramanujan identities 17

To see that the graded structure of the fibers of wx and my above respectively p
and q agree, we can use the intrinsic description of the graded structure from the
previous remark. g

Next we compute the arc Hilbert—Poincaré series at a smooth point. We use the
notation

1

H::Hl_ﬂ..

i>1

Proposition 3.4 Let X be an irreducible closed subscheme of A} of dimension d and
let p € X be a smooth point. Then

HPJ&(X)(t)sz.

Proof By definition, Oy , is a regular local ring, and hence an integral domain.
Therefore, a neighbourhood of p in X is reduced, and thus we may, without loss
of generality, assume that X is an integral scheme. Denote by e the transcendence
degree of k (p) over k. From dimension theory (e.g., Theorem A and Corollary 13.4
on p. 290 in [13]), it follows that the dimension of Oy, equals d — e. The com-
plete local ring Oy is regular as well and hence isomorphic to « (p)[[x1, ..., xq—]l
(Prop. 10.16 in [13]). By the theorem of the primitive element, k (p) is isomorphic
to k(y1,...,Ye)[x1/(f), where we may assume f € k[y1, ..., Yo, x]. Hence k(p) is
isomorphic to the residue field of the point (f, z1, ..., Z4—e—1) in the affine space

SpeCk[yls ] y€1 xa Zlv .. aZd—e—l]'

From Proposition 3.3, it follows that it suffices to compute the arc Hilbert—Poincaré
series at a point q of ¥ := AZ~ This is an easy task, since J,,(Y) is the polynomial
ring

k[x):1<j<d,0<i<m],
and J,}(Y) equals
k@i 1<j<d 1<i<m].

The variables form a regular sequence in this ring, and hence it follows easily from
Lemma A.1 that

HP oy, (1) = (H 1 _ti) :
i=1
Now we use Proposition 3.2 to finish the proof. g

In Sect. 4, we discuss the connection of this result with partitions. We leave the
proof of the following proposition to the reader.
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18 C. Bruschek et al.

Proposition 3.5 Let X and Y be closed subschemes of A} and AJ", respectively. Let
peXandqeY.Then

HP 160 (e (0 = HP g 50y (0 - HP 13,01y ().

The multiplicity of a singular point on a hypersurface can be easily read from the
arc Hilbert—Poincaré series, as the reader may convince himself of:

Proposition 3.6 Let X be a hypersurface in A} defined by a polynomial F €
klx1,...,x,] with F(0) = 0. Then X has multiplicity r at the origin if and only if
r is the maximal number such that

T<r—1 HPJQO(X)(I) = ‘L'Srlen.
Moreover, t<, HPJ&(X) () =t1<H"—1¢".

Next we derive a formula for the arc Hilbert—Poincaré series of the focussed arc
algebra at a canonical hypersurface singularity of maximal multiplicity. First, we
recall the definition of a canonical singularity. Let X be a normal variety. Assume
that X is Q-Gorenstein (i.e., r Kx is Cartier for some r > 1). Let f : Y — X be a log
resolution. This means that f is a proper birational morphism from a smooth variety
Y such that the exceptional locus is a simple normal crossings divisor with irreducible
components E;,i € I. We have a linear equivalence

Ky =f*Kx + ) aiE;
i

for uniquely determined a; € Q (these are called discrepancy coefficients). Then X
has canonical singularities if a; > 0 for all i. We say that X has a canonical singu-
larity at a point p € X if there exists a neighborhood U of p in X with canonical
singularities. Note that if X is a hypersurface in A, then X is Gorenstein (i.e., Ky is
Cartier) and all @; are then integers. In that case, if X has a canonical singularity at
a closed point p, the multiplicity of p is at most the dimension of X. This follows by
computing the discrepancy coefficient of the exceptional divisor of the blowing-up
in p.

Proposition 3.7 Let X be a normal hypersurface in A} with a canonical singularity
of multiplicity n — 1 at the origin. Then

n—2 1 n 1 n—1
HPJ&(X)(”:<H 1_,i) (H 1_,i> :

i=1 i>n—1

Proof Let X be defined by the polynomial F. We use the notations F; and f; as be-
fore. Then f; =0 for 0 <i <n — 2. To deduce the result, it suffices to show that for
every m > n — | the polynomials f,_1, fu,..., fin form a regular sequence in the
polynomial ring k[xj.l); 1<j<n,1<i<m] in view of Lemma A.l and Proposi-
tion 3.2.
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Arc spaces and the Rogers—Ramanujan identities 19

Since the question is local, we may assume that all singularities of X are canonical.
We will use a theorem by Ein and Mustata that characterizes canonical singularities
by the fact that their jet spaces are irreducible (see Theorem 1.3 in [14]). It is well
known that the natural maps m;, : X;, — X are locally trivial fibrations above the
smooth part of X, with fiber isomorphic to A,(("_l)m
precisely (n —1)(m +1). Since X, is irreducible, it follows that the fiber 7, 1(0) has
dimension at most (n — 1)(m + 1) — 1. From dimension theory (e.g., Corollary 13.4
in [13]), we deduce that the codimension of the ideal 12 = (fuzts fnr-+s fm) In
A :=k[x;i);1 <j<nl<i<mlisatleastnm —((n—Dm+1)—1)=m —
n + 2. From the principal ideal theorem (Theorem 10.2 of [13]), we get then that
the codimension of 1,91 is precisely m — n + 2. Since a polynomial ring over a field
is Cohen—Macaulay, we may apply the unmixedness theorem (Corollary 18.14 of
[13]) to deduce that every associated prime of 12 is minimal. But the codimension of
12+1 in A4 is at least m — n 4 3, so this means that f,+1 is not contained in any
minimal prime ideal containing 1,91, considered as ideal of A,,+1. Hence f,,+1 does
not belong to an associated prime ideal of 19, and thus it is a nonzerodivisor modulo
10 (see Theorem 3.1(b) of [13]). O

. Hence the dimension of X, is

It follows that the arc Hilbert—Poincaré series is in this case completely determined
by the multiplicity. As a corollary, we get the following nice example. This result was
obtained by explicit computation in [24].

Corollary 3.8 If X is a surface with a rational double point at p then

1’ 1\
HPJ&(X)(’)Z(l_,> (Hl_ﬂ) :

i>2

Question 3.9 Does this characterize rational double points? More precisely, given an
analytically irreducible surface singularity p € X with

1\’ 1 \?
HP’&(X)([)Z(I—t) (Hl—t"> ’
i>2

is p then analytically isomorphic to a rational double point?

We have seen in the proof of Proposition 3.7 that the jet schemes of a rational
double point are complete intersections. This is a very special situation. However,
it might well happen that non complete intersections give rise to the same Hilbert—
Poincaré series, as pointed out in [31].

A similar result as Proposition 3.7 is true for normal crossings singularities.
A scheme X of finite type over k of dimension d is said to have normal crossings
at a point p if p € X is analytically isomorphic to a point q € Y, where Y is the hy-
persurface in AZ“ defined by y; - - y44+1 = 0. For points on Y, the situation is as
follows.
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20 C. Bruschek et al.

Proposition 3.10 Let Y be as above, and assume that q lies precisely on the irre-
ducible components given by y1 =0, ...,y,=0. Then

e—1 1 d+1 | d
HP 0 () = (Hl_ﬂ) (Hl_,i) :

i=1 i>e

Proof Locally at q, the variety Y looks like a product of the hypersurface Z given

by z1---z, =0 in A} and the affine space Az“*e. By Propositions 3.5 and 3.4, it
suffices now to show that

e—1 1 €
HP j0,2) () = (H 1— ﬂ')

i=1

1 e—1
(H 1— tl') ’ )

i>e

According to Theorem 2.2 of [19], the mth jet scheme Z,, is equidimensional of
dimension (e — 1)(m + 1), and for m + 1 > e there are actually irreducible com-
ponents of that dimension in the fiber of Z,, above the origin in Z. We can use a
reasoning as in the proof of Proposition 3.7 to conclude that the m — e + 1 equations
fes fe+1s--., fm form a regular sequence in k[zy); 1 <j<e,1<i<m]and then
we use Lemma A.1 once more to deduce formula (2). O

4 Partitions and the Rogers—Ramanujan identities

A partition (of length r) of a positive integer n is a non-decreasing sequence A =
(A1, ..., Ar) of positive integers A;, 1 <i <r, such that

M+ +A =n.

The integers A; are called the parts of the partition A. We will denote the number of
partitions of n by p(n), with p(0) := 1. In the following, we collect a few facts about
integer partitions which will be used in the subsequent sections. For an introduction
to this topic, we refer, for example, to [33]; an extensive treatment can be found in [4].

Proposition 4.1 The generating series of the partition function p has the following
infinite product representation:

o0 , 1
;p(n)t ==

i>1

Note, that this is precisely the series H which we have obtained as the Hilbert—
Poincaré series of the graded algebra k[yq, y2,...] where the grading is given by
wty; =i. More generally, the arc Hilbert—Poincaré series of an d-dimensional variety
at a smooth point was given by H¢. This leads us to expect a connection between the
Hilbert—Poincaré series of arc algebras and partitions.

The following result is known in the literature as the (first) Rogers—Ramanujan
identity. For a classical proof and an account of its history, see Chap. 7 of [4].
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Arc spaces and the Rogers—Ramanujan identities 21

Theorem 4.2 (Rogers—Ramanujan identity) The number of partitions of n into parts
congruent to 1 or 4 modulo 5 is equal to the number of partitions of n into parts that
are neither repeated nor consecutive.

Many proofs of this identity can be found in the literature; see, for instance, [3] for
an overview of some of them. The Rogers—Ramanujan identity was generalized by
Gordon. The statement that we need is the following; see Theorem 7.5 from [4].

Theorem 4.3 Let k > 2. Let Bi(n) denote the number of partitions of n of the form
Aty oooyAp), where hj —Ajy—1 =2 forall je{l,...,r —k+1}. Let Ax(n) denote
the number of partitions of n into parts which are not congruent to 0,k, or k + 1
modulo 2k + 1. Then Ar(n) = Br(n) for all n.

The analytic counterpart of Theorem 4.2 can be formulated as (see Corollary 7.9
in [4]):

Corollary 4.4 (Rogers—Ramanujan identity, analytic form) Theorem 4.2 is equiva-
lent to the identity

t I I 1
1+ + + += ] —,
-t -0 -13)  (d=0d—12)1-1) La=a
i=1,4mod 5

The analytic analogue of Theorem 4.3 is somewhat more involved, and we will
not formulate it here. The interested reader can find it in Andrews’ book.

5 The arc Hilbert—Poincaré series of y” = 0 and the Rogers—Ramanujan
identities

We are now going to compute the Hilbert—Poincaré series of the focussed arc algebra
(at the origin) of the closed subscheme X of A}( given by y" =0, i.e., X is the n-fold
point, where n > 2. We fix n and as before we denote by F; and f;, i € N, the gener-
ators of the defining ideals of Jo(X) in k[yo, y1, ...] and of JgO(X) in k[y1, y2,...],
respectively. Here we take Fj := y(')' and F; := D(F;_1) for i > 1, where D is the
k-derivation that sends y; to y; 1 (see Proposition 2.1). Then f; = Fj|y,=o. To de-
scribe them explicitly, we need to introduce Bell polynomials.

Leti > 1,1 < j <i. The Bell polynomial B; j € Z[y1, ..., yi—j+1] is defined by
the formula

ki _k ki—j
b= . i
e (DB @Y% (= j+ DY+t ) kitkol ki
where we sum over all tuples (ki, k2, ..., k;—j11) of nonnegative integers such that

ki+ky+--+ki_jyr=j and ki +2kp+--+ @ —j+Dki_jy1=i.
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ki—j+1
i—j+1
tion a set with i elements into k; singletons, k, subsets with two elements, and so on.
We put B; j :=0if j > i. From the main result of [7] we deduce:

Actually, the coefficient of yi” ceey equals the number of possibilities to parti-

Proposition 5.1 We have Fy =y and fori > 1,

n—1
n! i
j
Fr=Y)" ﬁBi,nijO'
=0
It follows that f; =0ifi <n,and fori >n,
fi=n!Bin.
We endow k[yo, y1, .. .] with the following monomial ordering: for &, € NV we
have y* > y# if and only if wtar > wt 8 or, in case of equality, the last nonzero entry
of o« — B is negative (i.e., a weighted reverse lexicographic ordering). The leading

term of F; with respect to this ordering is determined by Proposition 5.1:

Lemma 5.2 Leti > 0 and writei = gn +r with 0 <r < n. The leading term of F; is

n i! n—r._r
= <r> @ (g + Dy e Yerr

For i > n, this is also the leading term of f;.

It will turn out that these leading terms generate the leading ideal of the ideal
I =(f;;i=n)of kly1, y2,...], i.e, the ideal generated by the leading monomials of
all polynomials in /. Theorem A.3 from the appendix tells us that we can deduce the
arc Hilbert—Poincaré series from this leading ideal. For this, we need to compute a
Grobner basis. All results about Grobner basis theory that we need are collected in
Appendix A as well.

Remark The results in the appendix are stated for polynomial rings in finitely many
variables. In the proof of the next crucial proposition, we will use them for countably
many variables. We may do this, since we can ‘approximate’ the arc Hilbert—Poincaré
series according to Proposition 3.2. We will explain this more precisely after the proof
of the proposition.

Proposition 5.3 The leading ideal of 1 = (fi;i > n) is given by L(I) = (Im(f;);
i>n).

Before giving the proof of this proposition, we will give some concrete computa-
tions for n = 4 to explain the ideas of the proof. By Grobner basis theory, it suffices
to show that all S-polynomials on the f; reduce to zero modulo { f;; i > n}, since the
S;,j form a basis of the syzygies on the leading terms of the f; (see Proposition A.5
and Theorem A.6). From Lemma 5.2, we deduce that

S(ﬁ’ fj):S(Eer)|y0=03
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and so we can equally well show that the S(F;, F;) reduce to zero modulo {F;; i > 0}.
Moreover, we may restrict to those pairs F;, F; for which the leading monomials
have a nontrivial common factor by Proposition A.4 (this is Step 2.1 in the proof of
the proposition). Let us write the first ; down for n = 4:

Fo=yg.

Fi=4y3y1,

Fy =12y5y7 + 4y3y2,

F3=24y0y; +36y5y1y2 + 4y 3.

Fy =24y} + 144y0y7y2 +36y3y3 + 48y3y1y3 + 433 s,

Fs =240y} y> +360y0y1y7 + 240y0y7v3 + 1202 y2v3 + 60y2 y1ya + 4y3ys,

Fo = 1080y7y3 + 360y0y3 + 480y y3 + 1440y0y1y2y3 + 1203 ¥3 4 360y0y7y4
+ 180y2 y2ya + 72y¢ y1ys + 4¥3 ve,

F7 = 2520y, y3 4 50402 y2.y3 + 2520y0y3 y3 + 1680y0y1y3 + 840y y4
+2520y0y1 24 + 42053 y3y4 + 504y0y7 ys + 2523 y2ys

+ 84y5y1 6 + 4y3 y7-

We may further reduce the set of S-polynomials that have to be checked by invoking
Proposition A.7. For instance, we may forget about S(Fp, F3) if we have checked
that S(Fy, F>) and S(F>, F3) reduce to zero, since Im(F3) divides the least common
multiple of Im(Fp) and Im(F3). Similarly, using F;, we may forget about S(Fp, F>).
If we do this in a precise way, then we see that we only need to check the following
S-polynomials between the above F;:

S(F;, Fiy1) for0<i<6,
S(Fy, F7), S(F2, Fg), S(F3, Fs).

This reduction is explained in Step 1 of the proof.
To see that S(F;, Fj41) reduces to zero, we note the following. We start from

R:4y1Fo—yoF1=0
and we derive this relation. This gives
4y2Fo+3y1F1 — yoF2 =0, 3)

or equivalently,

12S8(F1, F2) = =4y Fo.
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This shows that S(F7, F2) reduces to zero modulo {F;;i € N}. Deriving (3) once
more gives

4y Fo+Ty2F1 +2y1 F2 — yoF3 =0,
or
248(F, F3) = —4y3Fo — Ty  F1.

Hence, S(F2, F3) reduces to zero. Similarly, by deriving the right number of times,
we can prove that all S(F;, Fi4+1) reduce to zero. That is essentially Step 2.2 in the
below proof.

Finally, we have to argue why S(F1, F7), S(F», Fg), and S(F3, Fs) reduce to zero.
That amounts to Step 2.3 in the proof of the proposition. First, we derive relation R
four times to find

4ys Fy + 15y4F1 + 20y3 F> + 10y, F3 — yo F5 = 0.

Note that F4 does not appear here. This equation can be written as

2408 (F3, F5) = —4ysFo — 15y4F1 — 20y3 F>, “)
and this shows that S(F3, Fs) reduces to zero. Next we look at S(F;, Fg) = %Fz —
%F@ We note that the terms of 1080S(F3, Fg) appear in

10y2D*R + yoDR.
From this we deduce that
10808 (F2, Fo) = —40y2y4Fo — 110y2y3 F1 — 10y1y2F3 — 4yoys Fo — 19y0ys Fi
—35y0y4F2 —30y0y3F3 + yoy1 Fs.

Again F4 does not appear, but this does not yet show that S(F>, Fg) reduces to zero,
since

Im(S(F2, Fo)) = y3¥3¥3 < yoy1y2 = Im(yoy1 Fs),

for instance. But we do recognize 240y;S(F3, F5) and hence we can replace this
using (4). We find

1080S (F», Fp)
= (—40y2y4 +4y1ys5s — 4yoye) Fo + (—=110y2y3 + 15y1y4 — 19y0y5) F1
+ (20y1y3 — 35y0y4) F2 — 30y y3 F3.

This shows that S(F>, Fg) reduces to zero. We proceed analogously for S(Fy, F7) =

y3 3
4 F1 — 5355 F7. First, we look at
90y3 D*R + y; D°R.
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Here we recognize 25208 (Fy, F7), 2160y0y2S(F3, F5),and 2160y, S(F>, Fg). We re-
place the latter two, and we find the following after some computations:

25208 (Fy, F7)
= (—360y3 y3 + 80y1y2y4 — 8y{y5 — 36y0y2ys + 8yoy1 Y6 — 4y5y7) Fo
+ (220y1y2y3 — 30y{ya — 135y0y24 + 38y0y1y5 — 23¥5y6) Fi
+ (—40y7y3 — 180y0y2y3 + 70y0y1y4 — 543 ys5) Fa
+ (60y0y1y3 — 65y v4) F3 — 40y5y3 Fy.
Unfortunately, this does not show yet that S(F7, F7) reduces to zero. We have
Im(S(F1, F7)) = y3yiy2y3 < Y5 yiys =Im(ydys F4) =Im(yoy1y3 F3) =Im(yf y3 F2).

This implies that (—4Oy12y3, 60y0y1y3, —4Oy§y3) forms a homogeneous syzygy on
the leading terms of (F3, F3, F1). We already know that a basis for these syzygies is
given by S 3 and §3 4. Indeed, we may compute that

—40yTy3 Fy + 60y0y1y3 F3 — 40y3 y3 Fy = —480y1y3S(Fa, F3) +960y0y3S(F3, Fy).

Moreover, we explained that S(F>, F3) and S(F3, F4) reduce to zero modulo
{Fi;i > 0}. Replacing their expressions in terms of the F;, we conclude that
S(Fy, F7) reduces to zero as well.

From this example, we see that it will be useful for the proof of Proposition 5.3 to
keep track of the leading monomials of the relevant S-polynomials.

Proposition 5.4 Letqg>1,0<r <n—1.Then

Yoy TR ifa =2 r#n—1,

lm(S(fqn+r, fqn+r+l)) = yqzy;l;fyq+z ifg>=2,r=n—1,
WYy ifg=1.r#0.
We remark that S(fy,, fu+1) =0.

Proof In all three cases, we have written the second biggest monomial with degree
n + 1 and weight g(n + 1) + r + 1 in the variables yj, y2,.... We only have to
show that the monomial occurs with nonzero coefficient in S( fyn+r, fgnir+1). Using
Lemma 5.2, we see that this S-polynomial is a multiple of

(n—r)(@Hgn+r+ 1)yq+1fqn+r —(r+ 1)((61 + l)!)yqfqn-i-r-i-l-

Assume, for instance, that ¢ > 2 and r % n — 1. A computation using Proposition 5.1
gives then

(n+r+2)n)((gn+r+1DY
((g = DH@H "3 (g + DY +2D((n —r = 2)Y

as the coefficient of yq_lyg’r’zy;ﬁ in the above expression. The other cases are

treated similarly. O

£0
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Proposition 5.5 Letg>1,1<r <n—1.Then

L 1 n— .
Yo-1yg Ry vy ifa=2r#n—1,

-2 .
Ya—1Yy 11 Ye 42 ifg=2,r=n—1,
lm(S(fan"r’ f(q+l)"+”_’)) = n—r _r+l_n—r—2 .
Y1 Y2 )3 ya ifg=1,r#n—1,

iy v ifg=1r=n—1.

Proof Now S(fyn+r, f(g+1)n+n—r) is a multiple of

g+ Dn+n—-r) ,_,.

g+ ,_
(gn +r)! yq+2fqn+r— - 77

(ghr—r Yq rf(q-i—l)n.:,_n_r_ 5)

In the first case, we have written the second biggest monomial with degree 2n — r,
weight (g + 1)(2n — r), and subject to the additional condition that y, or y,2 has
degree at least n — r. It only occurs in the first term of (5) due to the factor yg_’_2.
In the second case, a small computation using Proposition 5.1 shows that the second
biggest monomial ygy;’jygﬂ does not occur in S(fyn+r, fig+ntn—r) Gf 0 > 3).
We have written the third biggest, which appears with nonzero coefficient in (5).

If ¢ = 1, then we can compute that no terms containing only y1, y2, ¥3 occur in (5).
We have written the biggest monomial containing y4 of degree 2n —r, weight 2(2n —
r), and subject to the additional condition that y; or y3 has degree at least n — r. It
appears in (5) with nonzero coefficient. U

Proof of Proposition 5.3 We will show that the f; form a Grobner basis of /. Using
the notation of the appendix, we will first show that the S; ; withn <i < j and

j=i+1 or
i=gn+r, j=(@+n+n—r forg>1, 1<r<n-—1 or
fi and f; have relatively prime leading monomials

form a homogeneous basis for the syzygies on the leading terms of the f;. In the
second step, we will show that all elements of this basis reduce to zero modulo
{ fi; i = n}. From Theorem A.6, we conclude then that the f; are indeed a Grobner
basis.

Step 1. The set of S; j described above forms a basis of the syzygies.

From Proposition A.5, we know already that the set of all S; ; forms a homoge-
neous basis for the syzygies on the f;. If Im(f;) and Im(f;) are not coprime then by
Lemma 5.2 the syzygy S; ; is of the type Syu gu+r forg > 1,0 <r <nor Sgnir,gnts,
whereg > 1,0<r <n,r <s <2n.

For r descending from n — 1 down to 2, we use Proposition A.7 with g; =
Jqn, &j = fyn+r and gx = fynyr—1. Indeed, the least common multiple of Im( fy,)

and Im( fgn+,) equals y, y;H and this is of course divisible by Im(gx) = yg’r“y;;{ .
So we remove the syzygies Syu gnin—1, - - - » Sqn,qn+2 and we are still left with a basis.
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Next we choose r € {1,...,n — 2}, and we let s descend from n down to r + 2.
We use again Proposition A.7, now with g; = fyuir, 8§ = fyn+s and gk = fynts—1.

The least common multiple of Im( f;,4,) and Im(f;,+5) equals y;"’y;+1 and this

is divisible by Im(gy) = yg_s“y;:_i. For these values of r and s, we remove the
syzygies Sgnyr,gn+s and we still have a basis.
Next we let » go up from 1 to n — 2 and we choose s e {n +1,n+2,...,2n —

r —1}. We take g; = fyn+r, & = fqn+s and gk = fyun+r+1. The least common mul-

tiple of Im(fgn+r) and Im(fynts) equals then y; =" ys'j__l‘v y;:_g. This is divisible by
Im(gg) = yg*”l y;ﬂ. For these values of  and s, we can again remove the syzygies

Sqn-+r,gn+s and we keep a basis.

Finally, we choose r € {2, ...,n — 1}, and we let s descend from 2n — 1 down to
2n —r + 1. We take g; = fyntr, & = fyn+s and gk = fynis—1. The least common
multiple of Im(fgnt,) and Im(fgn+s) equals then yg="y; y;jr’g This is divisible
by Im(gg) = y;’_:”l y;:L;_l. For these values of r and s, we remove once more the
syzygies Synr,qn+s and we find the basis that we were looking for.

Step 2. All the elements of this basis reduce to zero modulo { f;; i > n}.

Step 2.1. First, we note that S(f;, f;) reduces to zero modulo {f;; i > n} if Im(f;)
and Im( f;) are relatively prime by Proposition A.4.

Step 2.2. For the other two cases, we will exploit the differential structure of the
ideal Fy, Fy, .... We have F; = D'(F), where D is the k-derivation determined by
D(yj) = yj+1 for j > 0. Since Fyp = y; and F| = D(yp) = ny(')’_lyl we have the
simple relation

R:ny1Fo— yoF1 =0. (©)

Letg>1and r €{0,...,n — 1}. Applying DI+ D+" o the relation R (using the
generalized Leibniz rule) and evaluating in yp = 0 yields

n+1)+r
0= _(q >yq(n+1)+rn+1fn

n—1
q(n+1)+r—1
gn+1)+r
+ Z ( o [nyq(n+1)+r—a+lfa - yq(n+l)+r—ozfot+l]
a=n
+ny1 fgn+1)+r
gn+1)+r gn+1)+r
=n< Yq+1fqn+r +n yqfqn+r+l
q q—1
gn+1)+r gn+1)+r
- |:< )’q+1fqn+r + quqz1+r+1 + E
q+1
@+ D) +n)ln—r) f @+ D+NIr+D 7 T E
@+ Dign+n)! Yq+1Jgn+r qntr+ 1) Yq Jgn+r+1 s

where we denote by E the remaining terms in the expression of the derivative. The
polynomial E is a Z-linear combination of Yy (14 1)4r—n+1Sn» - - -+ Vg2 fgn+r—1 and
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Yg—1 fantr+2s - - s Y1 fgn41)+r- Note that DIV R hag weight g(n + 1) + 7 + 1
and is homogeneous of degree n 4+ 1 with respect to the standard grading. The
monomial M = y;~" y;fr} is maximal among those monomials which are of weight
qg(n+ 1) +r + 1 and degree n + 1. It cannot appear in E and it is the least common

multiple of the leading monomials of fy,+, and f;,1,41. Hence we conclude that

Gn+D+nin—r) P — G+ 1D+l +1)
@+ Dlign+r e T T G+ )1

yqfqn+r+l

is a multiple of the S-polynomial S(fyn+r, fyntr+1) (this can also easily be deduced
from Lemma 5.2).

Moreover, we have seen in the proof of Proposition 5.4 that the second biggest
monomial of weight g(n + 1) +r 4+ 1 and degree n + 1 in y1, y2, ... does occur in
S(fgn+r» fgnir+1). Thus the equation

(Gn+1D+r'n—r) 7 B @n+D+nr+1
@+ Dign+rl T T T G+ + )

quqn+r+1 =-F

shows that S(fyn+r, fgni+r+1) reduces to zero modulo { fi; i > n}.

Step 2.3. Now let g > 1,1 <r <n — 1. We are left with showing that

S(fqn—i—r» f(q+1)n+n—r)

reduces to zero modulo { f;; i > n}. We use descending induction on r, starting with
the initial cases r =n — 1 and r =n — 2. For r =n — 1, we consider the relation
R from (6). Analogously to Step 2.2, we derive it (n + 1)(¢ + 1) — 1 times and put
yo = 0 to find that

n+D@g+1)—1
0= —( )y(n+l)(¢]+1)—nfn

n—1
1 1)-2
+(”+ )§’ ((n+ Dg+1) - 1)
o=n o

X [nY@m+1)@g+D)—afo = Yo+ g+ —1-a fat1]
+ny1 fanr g+ —1
g+ Dn+D—-Din+1)
G+l gn+n—1)!
@+ D+ DH=Dlin+1
ql(gn+n+1)!

Yg+2 fqn+n—1

Yq fqnin+1 + E,
where E is a Z-linear combination of

y(n+l)(q+1)—nfna cee .Vq+3fqn+n72v yq+1fqn+nv yqflfqn+n+2, RN f(n+1)(q+1)—1'
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However, the coefficient of y; 11 fyn+n in E equals

n((n—i—l)(q—i—l)—l)_((n+l)(q+l)—1>_0
gn—+n gn+n—1 -

It follows that
((g+Dm+1)—Dlin+1)
(g +2)!(gn—+n—1)!

. g+ Dn+D—-Din+1)
ql(gn+n+1)!

Yg+2 fqn+n—1

Vg fqntn+1

is a multiple of S(fyn+n—1, fgn+n+1) since the monomial y, yZ;{qu, which is the
least common multiple of the leading monomials of f,,4,—1 and fg,4n41, can-
not occur in E. Moreover, from Lemma 5.2 and Proposition 5.5, we conclude that
S(fgn+n—1, fqn+n+1) reduces to zero modulo {f;;i > n}.

Next consider » =n — 2 (and n > 3). We look at the two relations

(@) (q +2)! D
: pltbe+h=2p,
U@+ e+ -2 lyo=0

and

A q'((q +2)1)?
(g + D+ 1)?

We expand the left hand side of .4; as a Q-linear combination of

D(q+l)("+l)'R|y0=0 =0.

Ygr2YgmD Sns  ooon Yagr2 V1 fgbDan—1s
and the left hand side of A5 as a Q-linear combination of
VgYan+D+2Sns ooy Yg¥1 flg+D@n+1)-

A computation shows that the coefficient of yg 9 Sqn4n—2 in Aj equals

(n+2)(g")?
(gn+n—2)!

and that the coefficient of y; fyn+n+2 in Az is

_(m+2) (g +2))°
(gn+n+2)!

It follows from Lemma 5.2 that a multiple of S(fyn4n—2, fgntn+2) occurs in the left
hand side of 4| 4+ A;. By a similar computation we see that the term of .4, contain-
ing yg+1Yg+2 fqn+n—1 and the term of A, containing y,41Yq fgn+n+1 form a multiple
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of Y4418 (fgntn—1, fgntn+1) in Ay + A;. From the above we already know that we
may express this as a linear combination of

Vg+1Yq+ Dt D—ntns s Yg+1Yq+3 fantn—2,
Yg+1Yg—1fgn4n+2, oo Yg+1V1 fg+D(n+1)—1-

Putting everything together, we conclude that we can write S(fyntn—2, fgntnt2) as
a linear combination of

Yg+2Yqm+D Sns  --os  Yg+2Yq+3 fan+n-3
Yg+2Yq fantns  --os  Yg+2Y1Sqm+1)+n—1,
YgYg+D)+2Sns o5 YgYq+2Sqn+n,
YaYa—1fqnin+3s  --os YgV1fqrD)(nt1)s

Y1 Y@+ mtD—ntns  -oos  Yg+1Yg+3 fqnin—2,
Yg+1Yg—1Jgn+n+2s  ---»  Ygr1V1f(g+D @+ —1-

We want to apply Proposition 5.5 and Lemma 5.2 to conclude that S(fyn4n—2,
Sqn+n+2) reduces to zero modulo {f;;i > n}. The only problem is the appearance
of y4¥q+2 fqn+n (twice) in the above list. However, we can compute that its coeffi-
cient in A; + A, equals zero!

Finally, let » <n — 3 (and n > 4). We look at the relations

1: (ghH" " (g +2)! 1T =1 pal D1
(qn+1)+r+ D1t

R|y0:0 =0

and
. q'((g +2)H"" nr—1
2 Gt Dt2n—r—nr’a

We expand the left hand side of .4, as a Q-linear combination of

Dq(n+l)+2nfrflR|y0=0 =0.

—r—1 —r—1
y;.;.; J’q(n+l)+r+27nfn» NN }’;4_5 YIfq(n+l)+r+l,
and the left hand side of A, as a Q-linear combination of

n n—r—

yq_r_lyq(n+1)+n7rfn, e Vg 1ylfq(n+l)+2nfr71~
As before, we may check that a multiple of

S(fqn+r7 f(q+1)n+n7r)

occurs in the left hand side of A; + A;. Similarly, multiples of

yq+lS(fqn+r+1,f(q+1)n+n7r71) and yq)’q+25(fqn+r+2af(q+1)n+n7r72)

occur there. By induction, we know that the latter two S-polynomials reduce to zero
modulo { f;; i > n} and we replace them by their expression in terms of the f;. More
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precisely, S(fyn+r, f(g+1)n+n—r) can be expressed as a linear combination of terms
of the form M f,, where M is a monomial of degree n — r and where wtM +a = (g +
1)(2n — r). The maximum of Im(M f,) can be attained at several places. A careful
analysis learns that

Im(Mf,) < yq—ly;’*’%y;ﬁy;;g‘l =:N,

where the latter monomial can occur as

lm(yq—lygzg_lfqn+r+3)a lm(yq+ls(fqn+r+l’ f(q+1)n+n—r—l))s or as
]m()’qu+2S(fqn+r+21 f(l]+1)ll+n—r—2))v

by Lemma 5.2 and Proposition 5.5. Here (and from now on) we assume that g > 2.
The case ¢ = 1 can be treated in a similar way. Only the following expressions of the
form M f, have N as leading monomial:

n—r—1 n—r—3_2
Yg+2 Yg—1fgntri3 Yq—1Yq yq+2f(q+1)n+n—r—37

n—r—

—r—3 3.2
yqf]y; " yq+1yq+2f(q+1)n+n7r72’ yqflyq yq+1f(q+l)n+n7r71-

Since Im(S(fyntr» fg+Dntn—r)) < N, we cannot yet conclude that this S-polynomi-
al reduces to zero, but we see that the four expressions above must give rise to a
homogeneous syzygy on the leading terms of

fqn+r+3v f(q+1)n+n7rf3v f(q+1)n+n7r727 f(q+1)n+n7r71~

From Step 1, we know that a basis for these syzygies is given by

Sqn+r+3,(q+1)n+n—r—3v S(q+l))1+n—r—3,(q+l)n+n—r—2, and
S(q+1)n+n7r72,(q+1)n+n7r71 .

By induction and by Step 2.2, we know that the corresponding S-polynomials reduce
to zero modulo { f;; i > n}. Using this, we conclude that S(fgn+r, fig+Dntn—r) can
be expressed as a linear combination of terms M f, as above, and with Im(M f,) < N.
But we may repeat a similar argument to get rid of all monomials between

L 1 n—
lm(S(fanrr, f(q+1)n+n7r)) = )’qflys d 2)’;10’;.&

and N. We just have to remark that at no stage of this process the monomial

n—r._r n—r

Yo Yg+1Yg42
appears as leading monomial of a term (since in all terms there are factors y, 1,
Yg—2+ -+ O Y443, Yg+4, - - - involved). This ends the proof of the proposition. g

Remark We could have avoided to use polynomial rings in countably many vari-
ables. In fact, the following holds: The leading monomials of (f;;, fu+1,--- futm)
of weight less than or equal to n +m are generated by Im( f;), n <i <n+m. In other
words, there exists a Grobner basis of (f;, ..., fu+m) such that all added elements
will be of weight larger than or equal to n +m + 1.
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5.1 Computation of the arc Hilbert—Poincaré series of the n-fold point

Using Gordon’s generalization of the Rogers—Ramanujan identity (Theorem 4.2), we
immediately obtain an explicit description of the arc Hilbert—Poincaré series of the
n-fold point by a combinatorial interpretation of the leading ideal L([/) as it was
computed in Proposition 5.3.

Theorem 5.6 The Hilbert—Poincaré series of the focussed arc algebra JgO(X ) of the
n-fold point X = {y" =0} C A}c over the origin equals

HP ) O =H- [] (1-¢).
i>1
i=0,n,n+1
mod 2n+-1

Equivalently,

1
BP0 =[] =

i>1
i#0,n,n+1
mod 2n+1

Proof 1Tt is a general fact from the theory of Hilbert—Poincaré series that the Hilbert—
Poincaré series of a homogeneous ideal is precisely the Hilbert—Poincaré series of the
leading ideal (see Theorem A.3), i.e.,

HPJ&(X) (1) =HPy(y; =11/ (1),

where [ is as in Proposition 5.3. By that proposition and Lemma 5.2, the leading
ideal L(I) is generated by monomials of the form y;‘” y; 41 forg>1land0<r <
n — 1. Recall that the weight of a monomial y* = y;'! --- y;* is precisely aj - i1 +
-+ + o - I,. Thus factoring out L(I) and computing the Hilbert—Poincaré series of
the corresponding graded algebra is equivalent to counting partitions (Ag, ..., As) of
natural numbers such that A j — A, 1 > 2 forall j. This is precisely what is counted
in Theorem 4.3. Hence, we obtain

1
HPjo vy =[] —i

i>1
i#£0,n,n+1
mod 2n+1

The fact that the right hand side of this equation equals the generating series of the
number of partitions of n into parts which are not congruent to 0, n, or n + 1 modulo
2n 4 1 is standard in the theory of generating series. g

Remark We have recently learned from Edward Frenkel that this result can be ob-

tained in a completely different way, namely by studying representations of the Vira-
soro algebra [17].
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5.2 An alternative approach to Rogers—Ramanujan

In the previous section, we used a combinatorial interpretation of the leading ideal
of I = (fu, fu+1,.-.) to compute the Hilbert—Poincaré series of the corresponding
graded algebra. There are commutative algebra methods to do this as well which
yield an alternative approach to the (first) Rogers—Ramanujan identity. Of course, we
consider the case where n = 2 here, i.e., the case of the double point. We will obtain
a recursion formula for the generating functions appearing in the Rogers—Ramanujan
identity which has already been considered by Andrews and Baxter in [1], though the
present approach gives a natural way to obtain it.

Consider the graded algebra S = k[y;;i > 1]/L(I). It is immediate (see the proof
of Theorem 5.6) that its Hilbert—Poincaré series equals the generating series of the
number of partitions of an integer n without repeated or consecutive parts. Differ-
ently, we compute the Hilbert—Poincaré series of S by recursively defining a sequence
of formal power series (generating functions) in ¢ which converges in the (¢)-adic
topology to the desired Hilbert—Poincaré series. We will simply write k[>d] for the
polynomial ring k[y;; i > d]. It will be endowed with the grading wty; = i. The ideal

generated by yiz, viyiy1 for i > d in k[>d] will be denoted by 1;. We will still write
I for the “same” ideal in k[>d'] if d’ < d. As usual, if E is an ideal in a ring R and
f € R then we denote the ideal quotient, i.e.,

{aeR;a- f €L}

by (E: f).
Corollary A.2 implies that

HPx(=a1/1, (1) = HPx(=a1/ (14,50 (1) + 17 - HPx[=a1/(14230) (1)
Moreover, a quick computation shows the following.
Proposition 5.7 With the notation introduced above we have:

Ua, ya) = (ya, Lla+1),
g :ya) = Yd, Ya+1, Las2).

This immediately implies
HPy(>a1/1, (1) = HPy(>a+11/1,,, (1) + 1. HPy(>a421/1,., (D).
For simplicity of notation let () stand for HPy >4/, (). Then
h(d)=h(d+1)+1" h(d+2) (N
and
Proposition 5.8 For the Hilbert—Poincaré series HP 79.X) (t) = h(1), we obtain

h(1) = Agq-h(d) + Bgt1 - h(d+1)
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ford > 1 with A;, B; € kl[t]l fulfilling the following recursion

Ag=A4-1+ Ba,

d—1
Biy1=A4-1-1t

with initial conditions Ay = A =1 and B =0, B3 =t.

Proof By the discussion above, h(1) equals £(2) 4+ ¢ - h(3); hence, Ay = A =1 and
B, =0, B3 =t. Assume now that

h(l)=Ag-h(d) + Bg+1 - h(d+ 1)
holds for some d > 2. By (7), substituting for h(d) yields
h(1) = Ay - (h(d+1) +1* - h(d +2)) + Bgs1 - h(d + 1)
= (Ag+ Bap1) -h(d+ 1)+ (Ag - t7) - h(d +2),
from which the assertion follows. 0

If (s4)aqen is a sequence of formal power series s € k[[¢]] we will denote by lim s,
its limit—if it exists—in the (#)-adic topology. Since ord By > d — 2, it is immediate
that both lim A; and lim By exist; in fact, lim B; = 0 and

h(1) =limA,.
The recursion from Proposition 5.8 can easily be simplified. We obtain

Corollary 5.9 With the above introduced notation, HP 79.(X) (t) =lim Ay where Ay

Sfulfills
Ag=Ag1+1972 Agy
with initial conditions A| = Ay = 1.

The recursion appearing in this corollary is well-known since Andrews and Bax-
ter [1]. Its limit is precisely the infinite product

1
1_[ 1 —¢i’

i>1
i=1,4mod 5

i.e., the generating series of the number of partitions with parts equal to 1 or 4
modulo 5. Note, that our construction gives the generating series G; defined in
the paper by Andrews and Baxter an interpretation as Hilbert—Poincaré series of
the quotients k[>i]/I;. This immediately implies that the series G; are of the form
Gi=1+> j=i G; jtj (this observation was called an ‘empirical hypothesis’ by An-
drews and Baxter).
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Appendix A: Hilbert-Poincaré series and Grobner bases

In this section, we collect some of the basics about the theory of Hilbert—Poincaré
series. For a detailed introduction, especially proofs, we refer to [18]. We also recall
some results on Grobner basis theory from [8].

Let A be a (Z-)graded k-algebra and let M = @p; ., M; be a graded A-module with
ith graded pieces A; and M; of finite k-dimension. The Hilbert function Hyy : Z— 7
of M is defined by Hy, (i) = dimy M;, and its corresponding generating series

HPy (1) =Y Hy (i)t € Z((1))
i€Z

is called the Hilbert—Poincaré series of M. It is well-known (see, for instance, The-
orem 11.1 in [2]) that if A is a Noetherian k-algebra generated by homogeneous

elements xi,...,x, of degrees dj,...,d, and M is a finitely generated A-module
then
Om ()
HPy(t) = ————=
[Tm (=)

for some Qs (t) € Z[t] which is called the (weighted) first Hilbert series of M.
If A (resp., M) is non-Noetherian then the Hilbert—Poincaré series of M need not
be rational anymore. For the rest of this section, we assume that the polynomial ring
k[x1,...,x,] is graded (not necessarily standard graded). The notions of homoge-
neous ideal and degree are to be understood relative to this grading. If M is graded
then for any integer d we write M (d) for the dth twist of M, i.e., the graded A-module
with M (d); = Mitq4.
The following lemma follows immediately from additivity of dimension:

Lemma A.1 (Lemma 5.1.2 in [18]) Let A and M be as above. Let d be a non-

negative integer, f € Ag and ¢: M(—d)— M be defined by o(m) = f - m; then

ker(¢p) and coker(g) are graded A/( f)-modules with the induced gradings and
HPy (1) = 14 - HP (1) + HPeoker(p) (1) — 1 - HPyer(p) (1).

As an immediate consequence we obtain the useful

Corollary A.2 (Lemma 5.2.2in [18]) Let I C k[xy, ..., x,] be a homogeneous ideal,
and let f € k[x1, ..., x,] be a homogeneous polynomial of degree d then

HPy (/1 (1) = HPiay 1, ) (1) + 9 HPypy 1) (1),
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For homogeneous ideals, the leading ideal already determines the Hilbert—
Poincaré series. After fixing a monomial order, the leading ideal L(I) of an ideal
I in k[x1, ..., x,] is defined as the (monomial) ideal generated by the leading mono-
mials of all elements in /. Then one has:

Theorem A.3 (Theorem 5.2.6 in [18]) Let > be any monomial ordering on
klx1,...,x,], let I C k[x] be a homogeneous ideal and denote by L(I) its leading
ideal with respect to >. Then

HPy(x1/1 (t) = HPypxp/L) (0)-

To compute the leading ideal one can use Grobner bases. Let I be an ideal in the
polynomial ring k[x1, ..., x,] with a fixed monomial order <. Then {g;,..., g} C 1
is called a Grobner basis of I if L(I) is generated by {lm(g;); 1 <i <[}, where
we write Im for ‘leading monomial’. For f € k[x1,...,x,] and a subset H =
{h1,..., hs} of k[x1, ..., x,], one says that f reduces to zero modulo H if

f=aithi+-- +aghg

for a; € k[x1,...,x,] so that Im(f) > Im(a;h;) whenever a;h; # 0. One writes
f —H 0.

Finally, we need the definition of a syzygy. Let F = (f1, ..., f5) € (k[x1, ..., x,])°.
A syzygy on the leading terms of the f; is an s-tuple (hy, ..., hy) € (k[x1,...,x,])°
such that

i:h,-lt(f,-) =0,
i=1

where 1t stands for ‘leading term’. The set of syzygies S(F) on the leading terms of F
form a k[x1, ..., x,]-submodule of (k[xy,...,x,])*. A generating set of this module
is called a basis. With F = {fi,..., fi}, we will say that a syzygy (hy,...,hs) €
S(F) reduces to zero modulo F if

N
> hifi—>Fo.

i=1

If each h; consists of a single term ¢;x% and x% Im(f;) is a fixed monomial x“ if
¢; # 0, then the syzygy (hi, ..., hy) is called homogeneous of multidegree «. For
i < j,let x¥ be the least common multiple of the leading monomials of f; and f;.
One calls

Y xY

= fi— ——
()" 1)
the S-polynomial of f; and f;. It gives rise to the homogeneous syzygy

S(fin fi) fi

x7 xV

S T G
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where e; and e; denote standard basis vectors of (k[x1, ..., x,])*. Then we have the
following results:

Proposition A.4 (Proposition 4, p. 103 in [8]) Let G C k[x1, ..., x,] be a finite set.
Assume that f, g € G have relatively prime leading monomials. Then S(f, g) —¢ 0.

Proposition A.5 (Proposition 8, p. 105 in [8]) For an s-tuple of polynomials
(ft,..., fs) € (klx1, ..., x,])* we have that the set of all S; ; form a homogeneous
basis of the syzygies on the leading terms of the f;.

Theorem A.6 (Theorem 9, p. 106 in [8]) Let G = (g1, - .., &s) be an s-tuple of poly-
nomials and let I be the ideal of k[x1, ..., x,] generated by G = {g1, ..., g}. Then
G is a Grobner basis for 1 if and only if every element of a homogeneous basis for
the syzygies S(G) reduces to zero modulo G.

Proposition A.7 (Proposition 10, p. 107 in [8]) Let G = (g1, ..., &) be an s-tuple
of polynomials. Suppose that we have a subset S C {S; j;1 <i < j <s} thatis a
basis of S(G). Moreover, suppose that we have distinct elements g;, g;, gk such that
Im(gy) divides the least common multiple of Im(g;) and lm(g;). If S x, Sjx € S, then
S\{Si,j} is also a basis of S(G). Here we put S; j :=S;; ifi > j.
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