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Abstract In this paper, we are able to sharpen Hua’s result by proving that almost
all integers satisfying some necessary congruence conditions can be represented as

N = p3
1 + · · · + p3

s with

∣
∣
∣
∣
pj − 3

√

N

s

∣
∣
∣
∣
� U,j = 1, . . . , s,

where pj are primes and U = N
1
3 −δs+ε with δs = s−4

6s+72 , where s = 5,6,7,8.
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1 Introduction

It is conjectured that all sufficiently large integers satisfying some necessary congru-
ence conditions are sums of four cubes of primes. Such a result seems out of reach at
present. The best record in this direction is due to Hua [2] who proved in 1938 that:

• All sufficiently large odd integers are sums of nine cubes of primes.
• Almost all integers satisfying some necessary congruence conditions are sums of

s cubes of primes, where s = 5,6,7,8.
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More precisely, define the subsets Ns of N by

N5 = {

n ∈ N : n ≡ 1(mod 2), n �≡ 0,±2(mod 9), n �≡ 0(mod 7)
}

,

N6 = {

n ∈ N : n ≡ 0(mod 2), n �≡ ±1(mod 9)
}

,

N7 = {

n ∈ N : n ≡ 1(mod 2), n �≡ 0(mod 9)
}

,

Ns = {

n ∈ N : n ≡ 0(mod 2)
}

(s � 8).

Let Es(N) denote the number of integers n ∈ Ns , not exceeding N that cannot be
written as sums of s cubes of primes. Then Hua’s second result actually states that
Es(N) � NL−A for some positive A, where L = logN , s = 5,6,7,8.

In this paper, we shall consider the above problem in short intervals,
{

n = p3
1 + · · · + p3

s ,

|pj − 3
√

N
s
| � U, j = 1, . . . , s,

(1.1)

where s = 5,6,7,8 and pj are primes. Let Es(N,U) denote the number of integers

n ∈ Ns , N � n � N + N
2
3 U , which cannot be represented as (1.1). Our results are

the following.

Theorem 1 For U = N
1
3 −δs+ε with δs = s−4

6s+72 , we have Es(N,U) � N
2
3 U1−ε ,

s = 5,6,7,8.

We will prove Theorem 1 by circle method and others. Similar approach was used
in [9] to prove that almost all large integers can be represented as sums of four al-
most equal squares of primes. The proof depends on the iterative method in Liu [6],
the new estimates for Dirichlet polynomials in Choi and Kumchev [1], and the new
exponential sums estimates in Liu, Lü and Zhan [7].

Theorem 2 For U = N
1
3 −δ′

7+ε with δ′
7 = 1

150 , we have E7(N,U) � N
1
3 U1−ε . Fur-

thermore, for U = N
1
3 −δ′

8+ε with δ′
8 = 1

198 , we have E8(N,U) � U1−ε .

For the absence of short intervals, the exceptional sets for sums of seven and eight
cubes of primes are much smaller than those for five and six such cubes. Obviously
in Theorem 1, we pay our main attention to the size of U , namely to finding how
small U that we can take on the premise that almost all such integers can be written
as (1.1). While in Theorem 2, we are not only interested in the size of U , but also
concerned with the cardinality of Es(N,U).

2 Outline of the method and proof of Theorem 1

Let N be a sufficiently large integer and n ∈ Ns satisfying N � n � N + N
2
3 U . Let

R(n,U) =
∑

n=p3
1+···+p3

s

|pj − 3
√

N
s |�U

(logp1) · · · (logps),
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where U = N
s+28
6s+72 +ε and pj are primes. For

N1 = 3

√

N

s
− U, N2 = 3

√

N

s
+ U,

we define

S(α) =
∑

N1<p�N2

(logp)e
(

p3α
)

, e(z) = e2πiz, α ∈ [0,1].

Then we have

R(n,U) =
∫ 1

0
Ss(α)e(−nα)dα. (2.1)

In order to apply the circle method, we set

P0 = (

N
1
3 U−1)

16
s−4 N11ε, Q0 = U5−11εN− 2

3
(

N
1
3 U−1)− 16

s−4 .

By Dirichlet’s Lemma on rational approximations for each α ∈ [ 1
Q0

,1 + 1
Q0

] there
are coprime integers a, q satisfying 1 � a � q � Q0 and

α = a

q
+ λ, |λ| � 1

qQ0
. (2.2)

We denote by m(a, q) the set of all α satisfying (2.2), and define the minor arcs m as
follows:

m =
⋃

P0�q�Q0

q
⋃

a=1
(a,q)=1

m(a, q).

To define the major arcs, we set

P = (

N
1
3 U−1)

2
s−4 Nε, Q = N

31
36 +2ε. (2.3)

Then the major arcs M are defined as the union of all intervals [ a
q

− 1
qQ

, a
q

+ 1
qQ

]
with 1 � a � q � P . Let the intermediate arcs l be the complement of M and m in
[ 1
Q0

,1 + 1
Q0

], so that [ 1
Q0

,1 + 1
Q0

] = M ∪ l ∪ m, and consequently (2.1) becomes

R(n,U) =
{∫

M

+
∫

m∪l

}

Ss(α)e(−nα)dα. (2.4)

We shall establish the following asymptotic formula on the major arcs M in the
next section.

Lemma 2.1 Let n ∈ Ns satisfying N � n � N + N
2
3 U . Let Q ≥ N

31
36 +ε and PQ ≤

UN
2
3 L−A, and the major arcs M be defined as above. Then for any A > 0,

∫

M

Ss(α)e(−nα)dα = 1

3s
G(n)J(n) + O

(

Us−1N− 2
3 L−A

)

,
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where

J(n) :=
∑

m1+···+ms=n

N3
1 <mj �N3

2

(m1 · · · ms)
− 2

3 � Us−1N− 2
3 ,

and G(n) is the singular series defined in (3.3) which converges and satisfies G(n) �
1 for n ∈ Ns .

Next we first estimate S(α) on m ∪ l. By Lemma 2.1 in [8] we know that

sup
α∈m

∣
∣S(α)

∣
∣ � U1+ε

(

P
− 1

16
0 + N

1
96

U
1
16

+ N
1
15

U
1
4

+ Q
1
16
0 N

1
24

U
5
16

)

� U1−ε
(

UN− 1
3
) 1

s−4 .

(2.5)

To estimate S(α) on the intermediate arcs l, we quote the following results in [7].

Lemma 2.2 Let k � 1, 2 � y � x and α = a/q +λ subject to 1 � a � q, (a, q) = 1.
We have

∑

x<p�x+y

(logp)e
(

pkα
) � (qx)ε

{
q

1
2 yΞ

1
2

x
1
2

+ q
1
2 x

1
2 Ξ

1
6 + y

1
2 x

3
10 + x

4
5

Ξ
1
6

+ x

q
1
2 Ξ

1
2

}

,

where Ξ = |λ|xk + x2y−2.

To bound S(α) on l, we further write l = l1 ∪ l2, where

l1 =
{

α : 1 � q � P,
1

qQ
< |λ| � 1

qQ0

}

,

l2 ⊂
{

α : P < q � P0, |λ| � 1

qQ0

}

.

For α ∈ l1, by Lemma 2.2, we have

sup
α∈l1

∣
∣S(α)

∣
∣ � Nε

{
U

√
q|λ|N
N

1
6

+ N
1
6 q

1
2 (|λ|N)

1
6 + N

1
10 U

1
2

+ N
4
15

(|λ|N)
1
6

+ N
1
3√

q|λ|N
}

+ N
1
6

� U1−ε
(

UN− 1
3
) 1

s−4 .

For α ∈ l2, we have

Ξ � |λ|N + N
2
3 U−2 � N

2
3 U−2, qΞ � Q−1

0 N + P0N
2
3 U−2 � Q−1

0 N.

Thus by Lemma 2.2,

sup
α∈l2

∣
∣S(α)

∣
∣ � Nε

{
U(qΞ)

1
2

N
1
6

+ N
1
6 q

1
3 (qΞ)

1
6 + N

1
10 U

1
2 + N

4
15

Ξ
1
6

+ N
1
3

(PΞ)
1
2

}

+ N
1
6

� U1−ε
(

UN− 1
3
) 1

s−4 .
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These estimates combined with (2.5) give us

sup
α∈m∪l

∣
∣S(α)

∣
∣ � U1−ε

(

UN− 1
3
) 1

s−4 . (2.6)

Now we can establish Theorem 1.

Proof of Theorem 1 By Bessel’s inequality, we have

∑

N�n�N+N
2
3 U

∣
∣
∣
∣

∫

m∪l

Ss(α)e(−nα)dα

∣
∣
∣
∣

2

�
∫

m∪l

∣
∣S(α)

∣
∣2s dα

�
(

sup
α∈m∪l

∣
∣S(α)

∣
∣

)2s−8
∫ 1

0

∣
∣S(α)

∣
∣
8 dα

� (

U1−ε
(

UN− 1
3
) 1

s−4
)2s−8

U5+ ε
2

� U2s−1− 3ε
2 N− 2

3 ,

where we have used (2.6) and
∫ 1

0

∣
∣S(α)

∣
∣8 dα � U5+ ε

2 .

This can be established by a very similar argument with Hua’s estimate (see Lemma
4.1 in [5] for example).

Therefore, for all sufficiently large integers n ∈ Ns satisfying N � n � N +N
2
3 U ,

with at most O(N
2
3 U1−ε) exceptions,

∫

m∪l

Ss(α)e(−nα)dα � Us−1− ε
4 N− 2

3 . (2.7)

Consequently, Theorem 1 follows from (2.4), (2.7) and Lemma 2.1. �

3 Proof of Lemma 2.1

In this section, we apply the iterative idea in [6] to establish Lemma 2.1.
For q � P and N1 < p � N2, we write

S

(
a

q
+ λ

)

= C(q, a)

ϕ(q)
V (λ) + 1

ϕ(q)

∑

χmodq

C(χ,a)W(χ,λ),

where

C(χ,a) =
q

∑

h=1

χ(h)e

(
ah3

q

)

, C(q, a) = C
(

χ0, a
)

,

V (λ) =
∑

N1<m�N2

e
(

m3λ
)

, W(χ,λ) =
∑

N1<p�N2

(logp)χ(p)e
(

p3λ
) − δχV (λ),

where δχ = 1 or 0 according as χ is the principal character or not. Thus,
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∫

M

Ss(α)e(−nα)dα = I0 + sI1 + s(s − 1)

2
I2 + · · · + s(s − 1)

2
Is−2 + sIs−1 + Is,

(3.1)

where

Ij =
∑

q�P

q
∑

a=1
(a,q)=1

Cs−j (q, a)

ϕs(q)
e

(

−an

q

)

×
∫ 1

qQ

− 1
qQ

V s−j (λ)

{
∑

χmodq

C(χ,a)W(χ,λ)

}j

e(−nλ)dλ. (3.2)

We shall prove that I0 gives the main term and I1, . . . , Is contribute to the error term.
We first compute the main term I0. Define

B(n,q,χ1, . . . , χs) =
q

∑

a=1
(a,q)=1

C(χ1, a) · · · C(χs, a)e

(

−an

q

)

,

B(n, q) = B
(

n,q,χ0, . . . , χ0),

and

G(n) =
∞
∑

q=1

B(n,q)

ϕs(q)
. (3.3)

Then G(n) converges and satisfies G(n) � 1 for n ∈ Ns . Note that

I0 =
∑

q�P

B(n, q)

ϕs(q)

∫ 1
qQ

− 1
qQ

V s(λ)e(−nλ)dλ. (3.4)

Applying Lemma 8.8 in [3] to V (λ) we get

V (λ) =
∫ N2

N1

e
(

λu3)du + O(1)

= 1

3

∫ N3
2

N3
1

v− 2
3 e(λv)dv + O(1)

= 1

3

∑

N3
1 �m�N3

2

m− 2
3 e(λm) + O(1).

Substituting this into I0 and extending the integral to [− 1
2 , 1

2 ], we have

I0 = 1

3s

∑

q�P

B(n, q)

ϕs(q)

∫ 1
qQ

− 1
qQ

(
∑

N3
1 �m�N3

2

m− 2
3 e(λm)

)s

e(−nλ)dλ

+ O

(
∑

q�P

B(n, q)|
ϕs(q)

∫ 1
qQ

− 1
qQ

∣
∣
∣
∣

∑

N3
1 �m�N3

2

m− 2
3 e(λm)

∣
∣
∣
∣

s−1

dλ

)



Sums of cubes of primes in short intervals 315

= 1

3s

∑

q�P

B(n, q)

ϕs(q)

∫ 1
2

− 1
2

(
∑

N3
1 �m�N3

2

m− 2
3 e(λm)

)s

e(−nλ)dλ

+ O

(
∑

q�P

|B(n,q)|
ϕs(q)

∫ 1
2

1
qQ

∣
∣
∣
∣

∑

N3
1 �m�N3

2

m− 2
3 e(λm)

∣
∣
∣
∣

s

dλ

)

+ O

(
∑

q�P

|B(n,q)|
ϕs(q)

∫ 1
qQ

− 1
qQ

∣
∣
∣
∣

∑

N3
1 �m�N3

2

m− 2
3 e(λm)

∣
∣
∣
∣

s−1

dλ

)

.

To bound the O-terms, we use the elementary estimates

∑

N3
1 �m�N3

2

m− 2
3 e(λm) � min

(

U,
1

N
2
3 ‖λ‖

)

,

thus

I0 = 1

3s
J(n)

∑

q�P

B(n, q)

ϕs(q)
+ O

(

N− 2s
3 (PQ)s−1) + O

(

Us−2N− 2
3
)

= 1

3s
J(n)G(n) + O

(

Us−1N− 2
3 L−A

)

holds for any A > 0, where

J(n) :=
∑

m1+···+ms=n

N3
1 <mj �N3

2

(m1 · · · ms)
− 2

3 � Us−1N− 2
3 , (3.5)

and G(n) is defined by (3.3) and satisfies G(n) � 1 for n ∈ Ns . By (3.1), (3.4) and
(3.5), to prove Lemma 2.1, we only need to prove

Ij � Us−1N− 2
3 L−A, j = 1, . . . , s. (3.6)

For simplicity, we only prove (3.6) for Is , the most complicated one. Define

J (g) =
∑

r�P

[g, r]− 3
2 +ε

∑

χmod r

∗
max

|λ|� 1
rQ

∣
∣W(χ,λ)

∣
∣,

K(g) =
∑

r�P

[g, r]− 3
2 +ε

∑

χmod r

∗(∫ 1
rQ

− 1
rQ

∣
∣W(χ,λ)

∣
∣
2 dλ

) 1
2

,

where
∑

χmod r
∗ denotes the sum over all primitive characters modulo r .

The proof of Lemma 2.1 depends on the following four lemmas.

Lemma 3.1 Let χj mod rj with j = 1, . . . , s be primitive characters, χ0 mod q the
principal character and r0 = [r1, . . . , rs]. Then we have

∑

q�x
r0|q

|B(n,q,χ1χ
0, . . . , χsχ

0)|
ϕ5(q)

� r
− 3

2 +ε

0 logc x.
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Lemma 3.2 Let Q ≥ N
31
36 +ε and PQ ≤ UN

2
3 L−A. We have

J (g) � g− 3
2 +εULc.

Lemma 3.3 Let Q ≥ N
31
36 +ε and PQ ≤ UN

2
3 L−A. For g = 1 we further have for

any B > 0

J (1) � UL−B.

Lemma 3.4 Let Q ≥ N
31
36 +ε and PQ ≤ UN

2
3 L−A. We have

K(g) � g− 3
2 +εU

1
2 N− 1

3 Lc.

The proofs of these lemmas are standard now (for example, Lemma 3.1 see [4],
and others see [8]). However, for completeness we will give a proof of Lemma 3.2 in
Sect. 4.

Now we can prove (3.6) for Is . Reducing the characters in Is into primitive char-
acters and then applying Lemma 3.1, we have

Is �
∑

rj �P

j=1,...,s

∑

χj mod rj
j=1,...,s

∗ ∑

q�P
r0|q

|B(n,q,χ1χ
0, . . . , χsχ

0)|
ϕs(q)

×
∫ 1/(r0Q)

−1/(r0Q)

∣
∣W(χ1, λ)

∣
∣ · · · ∣∣W(χs,λ)

∣
∣dλ

� Lc
∑

rj �P

j=1,...,s

r
− 3

2 +ε

0

∑

χj mod rj
j=1,...,s

∗ ∫ 1/(r0Q)

−1/(r0Q)

∣
∣W(χ1, λ)

∣
∣ · · · ∣∣W(χs,λ)

∣
∣dλ.

Then, by Cauchy’s inequality, we get

Is � Lc
∑

r1�P

∑

χ1mod r1

∗
max

|λ|� 1
r1Q

∣
∣W(χ1, λ)

∣
∣

× · · · ×
∑

rs−2�P

∑

χs−2 mod rs−2

∗
max

|λ|� 1
rs−2Q

∣
∣W(χs−2, λ)

∣
∣

×
∑

rs−1�P

∑

χs−1mod rs−1

∗(∫ 1
rs−1Q

− 1
rs−1Q

∣
∣W(χs−1, λ)

∣
∣2 dλ

) 1
2

×
∑

rs�P

r
− 3

2 +ε

0

∑

χsmod rs

∗(∫ 1
rsQ

− 1
rsQ

∣
∣W(χs,λ)

∣
∣
2 dλ

) 1
2

.

Following the iterative procedure in [6], we apply Lemma 3.4 to the sums over rs ,
rs−1, Lemma 3.2 to the sums over rs−2, . . . , r2, and Lemma 3.3 to the sum over r1
consecutively, and finally obtain

Is � Us−1N− 2
3 L−A,

for any A > 0. This proves (3.6) for Is . �
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4 Proof of Lemma 3.2

Let

Ŵ (χ,λ) =
∑

N1<m�N2

(

Λ(m)χ(m) − δχ

)

e
(

m3λ
)

.

Then

W(χ,λ) − Ŵ (χ,λ) � N
1
6 .

Therefore we have
∑

r�P

[g, r]− 3
2 +ε

∑

χ mod r

∗
max

|λ|� 1
rQ

∣
∣W(χ,λ) − Ŵ (χ,λ)

∣
∣

� g− 3
2 +εN

1
6

∑

r�P

(
r

(g, r)

)− 3
2 +ε

r

� g− 3
2 +εN

1
6 P

∑

r�P

(
r

(g, r)

)−1+ε

� g− 3
2 +εN

1
6 P

∑

d�P
d|g

d1−ε
∑

r�P
d|r

r−1+ε

� g− 3
2 +εN

1
6 P 1+ε � g− 3

2 +εULc.

Thus to establish Lemma 3.2, it suffices to show that
∑

r∼R

[g, r]− 3
2 +ε

∑

χmod r

∗
max

|λ|� 1
rQ

∣
∣Ŵ (χ,λ)

∣
∣ � g− 3

2 +εULc, R � P. (4.1)

By Perron’s formula, we have

∑

N1<m�u

Λ(m)χ(m) = 1

2πi

∫ b+iT

b−iT

F (s,χ)
us − Ns

1

s
ds + O

(

L2),

where

F(s,χ) =
∑

N1<m�u

Λ(m)χ(m)m−s , T = N, 0 < b � L−1.

Thus,

Ŵ (χ,λ) =
∑

N1<m�N2

Λ(m)χ(m)e
(

m3λ
)

=
∫ N2

N1

e
(

λu3)d

{
∑

N1<m�u

Λ(m)χ(m)

}

=
∫ N2

N1

e
(

λu3)d

{
1

2πi

∫ b+iT

b−iT

F (s,χ)
us − Ns

1

s
ds + O

(

L2)
}
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= 1

2πi

∫ b+iT

b−iT

F (s,χ)

∫ N2

N1

e
(

λu3)us−1 duds + O
(

L2(1 + |λ|N 2
3 U

))

= 1

6πi

∫ b+iT

b−iT

F (s,χ)

∫ N3
2

N3
1

v
b
3 −1e

(
t

6π
logv + λv

)

dv ds

+ O
(

L2(1 + |λ|N 2
3 U

))

,

where the error term is obviously admissible.
By Lemmas 4.3 and 4.4 in [10], we have

∫ N3
2

N3
1

v
b
3 −1e

(
t

6π
logv + λv

)

dv

� N
b
3 −1 min

{

N
2
3 U,

N√|t | ,
N

minN3
1 <v�N3

2
|t + 6πλv|

}

.

Let T0 = N
2
3 U−2, T̂0 = 12πN(RQ)−1 and b → 0. Then

Ŵ (χ,λ) � UN− 1
3 max

T1�T0

∫ T1

−T1

∣
∣F(it, χ)

∣
∣dt + L max

T0<T2�T̂0

T
− 1

2
2

∫ T2

−T2

∣
∣F(it, χ)

∣
∣dt

+ L max
T̂0<T3�T

T −1
3

∫ T3

−T3

∣
∣F(it, χ)

∣
∣dt.

Thus the left side of (4.1) is bounded by

� UN− 1
3
∑

r∼R

[g, r]− 3
2 +ε

∑

χmod r

∗
max
T1�T0

∫ T1

−T1

∣
∣F(it, χ)

∣
∣dt (4.2)

+ L
∑

r∼R

[g, r]− 3
2 +ε

∑

χmod r

∗
max

T0<T2�T̂0

T
− 1

2
2

∫ T2

−T2

∣
∣F(it, χ)

∣
∣dt (4.3)

+ L
∑

r∼R

[g, r]− 3
2 +ε

∑

χmod r

∗
max

T̂0<T3�T

T −1
3

∫ T3

−T3

∣
∣F(it, χ)

∣
∣dt. (4.4)

Note that [g, r](g, r) = gr , we find that (4.2) is

� UN− 1
3 g− 3

2 +ε max
T1�T0

∑

d|g
d�R

(
R

d

)− 3
2 +ε ∑

r∼R
d|r

∑

χmod r

∗ ∫ T1

−T1

∣
∣F(it, χ)

∣
∣dt.

By Theorem 1.1 in [1], we know that

∑

r∼R
d|r

∑

χmod r

∗ ∫ T1

−T1

∣
∣F(it, χ)

∣
∣dt � N

1
3 + R2T1

d
N

11
60 .
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Thus (4.2) is bounded by

� UN− 1
3 g− 3

2 +ε max
T1�T0

max
d|g

d�R

(
R

d

)− 3
2 +ε(

N
1
3 + R2T1

d
N

11
60

)

� g− 3
2 +εULc,

for R � P and U = N
s+28

6s+72 +ε .
For R � P and U = N

s+28
6s+72 +ε , (4.3) and (4.4) can be estimated similarly. This

finishes the proof of Lemma 3.2. �

5 The sketch of Proof of Theorem 2

In order to prove Theorem 2, we also use the circle method. We will give the proof
of Theorem 2 for E8(N,U), and the proof for E7(N,U) is similar.

Take U = N
1
3 − 1

198 +ε . For the major arcs, we put

P0 = N
16
99 +11ε, Q0 = N

161
198 −11ε, P = N

2
99 +ε, Q = N

31
36 +2ε,

and have the following asymptotic formula.

Lemma 5.1 For N ≤ n ≤ N + N
2
3 U and any A > 0, we have

∫

M

S8(α)e(−αN)dα ∼ C8G8(n)N− 2
3 U7. (5.1)

Using the argument of preceding sections, we can show that the exponential sums
S(α) over m ∪ l satisfies the following estimate.

Lemma 5.2 We have

sup
α∈m∪l

∣
∣S(α)

∣
∣ � N− 2

3 U3−ε. (5.2)

With Lemmas 5.1 and 5.2 known, we can use the method in [11] instead of
Bessel’s inequality to establish Theorem 2.

We assume U = N
1
3 − 1

198 +ε . Denote by E8(N,U) the set of integers n ∈ N8, and
yet the equation

{

n = p3
1 + · · · + p3

8,

|pj − 3
√

N
8 | � U, j = 1, . . . ,8,

has no solutions in prime numbers p1, . . . , p8. Define the exponential sum

G(α) =
∑

n∈E8(N,U)

e(nα)
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and write Z = Card(E8(N,U)). In view of the definition of E8(N,U), we have
∫ 1

0
S8(α)G(−α)dα =

∑

n∈E8(N,U)

∫ 1

0
S8(α)e(−nα)dα = 0.

By Lemma 5.1, one has
∫

M

S8(α)G(−α)dα =
∑

n∈E8(N,U)

∫

M

S8(α)e(−nα)dα � ZU7N− 2
3

and thus we deduce that
∫

m∪l

S8(α)G(−α)dα � ZU7N− 2
3 . (5.3)

On the other hand, we have
∣
∣
∣
∣

∫

m∪l

S8(α)G(−α)dα

∣
∣
∣
∣
≤ sup

α∈m∪l

∣
∣S(α)

∣
∣I

1
2

1 I
1
2

2 . (5.4)

where I1 = ∫ 1
0 |S6(α)G(α)|2 dα and I2 = ∫ 1

0 |S(α)|8 dα. One can easily find (see
Sects. 6 and 7 in [11])

I1 � N
ε
4
(

U3Z2 + U4Z
)

and I2 � N
ε
4 U5. (5.5)

Collecting Lemma 3.2, (3.3–3.5), we obtain

ZU7N− 2
3 � N− 2

3 U3−εN
ε
4
(

U3Z2 + U4Z
) 1

2 U
5
2 .

Noting that N− 2
3 U3−εN

ε
4 U

3
2 ZU

5
2 = o(ZU7N− 2

3 ), we conclude that

ZU7N− 2
3 � N− 2

3 U3−εN
ε
4
(

U4Z
) 1

2 U
5
2

namely Z � U1− ε
5 . The proof for E7(N,U) is similar. This completes the proof of

Theorem 2. �
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