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Abstract We study a class of elliptic functions associated with the hypergeometric
function 2F1(

1
6 , 5

6 ;1; z). From the perspective of the properties of conformal map-
pings and differential equations, we provide new insight into a set of identities of
Ramanujan associated with the above hypergeometric function.
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1 Introduction

We begin by stating a set of identities of Ramanujan concerning the Eisenstein series
and the hypergeometric function 2F1(

1
6 , 5

6 ;1; z) [1, pp. 161–164]. The definitions of
the Eisenstein series E4(τ ), E6(τ ) and the theta functions θi(τ ) will be given in the
next section.

Let x = θ4
2 (τ )

θ4
3 (τ )

. If x2 satisfies the equation

4x2(1 − x2) = 27

4

x2(1 − x)2

(1 − x + x2)3
, (1.1)

then

τ = i
2F1(

1
6 , 5

6 ;1;1 − x2)

2F1(
1
6 , 5

6 ;1;x2)
(1.2)
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and

E4(τ ) = 2F
4
1

(
1

6
,

5

6
;1;x2

)
, (1.3)

E6(τ ) = (1 − 2x2)2F
6
1

(
1

6
,

5

6
;1;x2

)
. (1.4)

Moreover,

2F1

(
1

6
,

5

6
;1;x2

)
= (

1 − x + x2)1/4
2F1

(
1

2
,

1

2
;1;x

)
. (1.5)

Although these identities can be verified directly by manipulating some existing hy-
pergeometric identities, we will provide an alternative approach by studying a differ-
ential equation naturally associated with a class of elliptic function related to the hy-
pergeometric series 2F1(

1
6 , 5

6 ;1; z); in the process of proving these identities we shall
uncover and bring out interesting connections between this class of elliptic function
and the conformal mapping that arises from the above hypergeometric function.

The paper is organized as follows. In Sect. 2, we summarize pertinent properties
of the Weierstrass elliptic function. The crucial differential equation, its solution, and
its properties are studied in Sect. 3. In Sect. 4, we study the quantity x2 mentioned
in (1.1) with the help of the theory of conformal mappings and derive its geometric
significance.

We assume the reader is reasonably familiar with the theories of the Weierstrass
elliptic function and the theta functions contained in [8, Chaps. 20 and 21]. Finally,
we would like to refer the reader to an important pioneering work of the subject from
a different perspective [2].

2 Brief summary of some basic properties of the Weierstrass elliptic function

We will use the same notation 2F1(a, b; c; z) to denote the hypergeometric series

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

n!(c)n zn

and the hypergeometric function derived from the analytic continuation of the above
series which typically have branch points at z = 1 and ∞.

Throughout the paper, we will always assume that ω1 and ω2 are a pair of complex
numbers such that �ω2

ω1
> 0. Define

E4(ω1,ω2) = 45
∑

(m,n) �=(0,0)

1

(mω1 + nω2)4
,

E6(ω1,ω2) = 945

2

∑
(m,n) �=(0,0)

1

(mω1 + nω2)6
.
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Let τ be a complex number such that �τ > 0. The Eisenstein series E4(τ ) and
E6(τ ) are defined as

E4(τ ) = 45
∑

(m,n) �=(0,0)

1

(mπ + nπτ)4
,

E6(τ ) = 945

2

∑
(m,n) �=(0,0)

1

(mπ + nπτ)6
.

Let τ = ω2
ω1

. Then

E4(ω1,ω2) = π4

ω4
1

E4(τ )

and

E6(ω1,ω2) = π6

ω6
1

E6(τ ).

The theta functions of Jacobi are

θ2(τ ) = 2
∞∑

n=0

(−1)nq(n+ 1
2 )2

, θ3(τ ) =
∞∑

n=−∞
qn2

, θ4(τ ) =
∞∑

n=−∞
(−1)nqn2;

where q = eiπτ . We remind the reader of the following well-known identity:

θ4
3 (τ ) = θ4

2 (τ ) + θ4
4 (τ ). (2.1)

We first review the pertinent facts about the Weierstrass elliptic function. Let
℘(z;ω1,ω2) be the Weierstrass elliptic function of periods ω1 and ω2. We recall
its definition [8, p. 434]:

℘(z;ω1,ω2) = 1

z2
+

∑
(m,n) �=(0,0)

1

(z + mω1 + nω2)2
− 1

(mω1 + nω2)2
.

It satisfies the differential equation

y′2 = 4y3 − g2y − g3, y(0) = ∞, (2.2)

where

g2 = 4

3
E4(ω1,ω2), g3 = 8

27
E6(ω1,ω2) (2.3)

and

g3
2 − 27g2

3 �= 0.
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Conversely, suppose g3
2 − 27g2

3 �= 0. Then there exists a pair of complex numbers ω1

and ω2 such that the elliptic function ℘(z;ω1,ω2) satisfies (2.2) and (2.3). Define

J = g3
2

g3
2 − 27g2

3

= E3
4

E3
4 − E2

6

.

Let

e1 = ℘

(
ω1

2
;ω1,ω2

)
, e2 = ℘

(
ω1 + ω2

2
;ω1,ω2

)
, e3 = ℘

(
ω2

2
;ω1,ω2

)
.

(2.4)
Then

4y3 − g2y − g3 = 4(y − e1)(y − e2)(y − e3).

The notation ℘(z;ω1,ω2) and ℘(z;g2, g3) will be used interchangeably.
For simplicity, let ℘(z|τ) = ℘(z;π,πτ).The values of the Weierstrass elliptic

function at the points of half periods can be expressed in terms of the Jacobi theta
functions [6, p. 133]:

℘

(
π

2

∣∣∣∣τ
)

= θ4
3 (τ ) + θ4

4 (τ )

3
,

℘

(
π + πτ

2

∣∣∣∣τ
)

= θ4
2 (τ ) − θ4

4 (τ )

3

and

℘

(
πτ

2

∣∣∣∣τ
)

= −θ4
2 (τ ) + θ4

3 (τ )

3
.

We recall the homogeneous relation resulting from scaling the fundamental periods
ω1 and ω2 with a factor of α:

℘(αz;αω1, αω2) = α−2℘(z;ω1,ω2) (2.5)

or equivalently

℘
(
αz;α−4g2, α

−6g3
) = α−2℘(z;g2, g3). (2.6)

From (2.4) and (2.5), we have

Lemma 2.1

e1 = π2

ω2
1

θ4
3 (τ ) + θ4

4 (τ )

3
,

e2 = π2

ω2
1

θ4
2 (τ ) − θ4

4 (τ )

3



A note on Ramanujan’s identities involving the hypergeometric 215

and

e3 = −π2

ω2
1

θ4
2 (τ ) + θ4

3 (τ )

3
.

From (2.3), we have

Lemma 2.2

g2 = 4

3

π4

ω4
1

E4(τ )

and

g3 = 8

27

π6

ω6
1

E6(τ ).

Before we proceed to the main part of the paper, it is instructive to recall the
well-known classical identities between the Eisenstein series and the hypergeometric
function 2F1(

1
2 , 1

2 ;1; z) associated with the theory of the Jacobi elliptic functions (for
details, see Chap. 21 of [8]). Consider the differential equation

y′2 = (
1 − y2)(1 − k2y2), y(0) = 0.

The solution of this equation is the Jacobian sine function sn(z|k), and its fundamen-
tal periods 4K and 2iK ′ are given by

K =
∫ 1

0

dt√
(1 − t2)(1 − k2t2)

and

iK ′ =
∫ 1/k

1

dt√
(1 − t2)(1 − k2t2)

.

We can express K and K ′ in terms of the hypergeometric function:

K = π

2
2F1

(
1

2
,

1

2
;1; k2

)

and

K ′ = π

2
2F1

(
1

2
,

1

2
;1;1 − k2

)
.

Let

τ = i
2F1(

1
2 , 1

2 ;1;1 − k2)

2F1(
1
2 , 1

2 ;1; k2)
.
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Then, k2 can be expressed as a function of τ :

k2(τ ) = θ4
2 (τ )

θ4
3 (τ )

;

moreover, we have the following relationship between the Eisenstein series and the
hypergeometric function:

E4(τ ) = (
1 − k2 + k4)

2F
4
1

(
1

2
,

1

2
;1; k2

)

and

E6(τ ) = (
1 + k2)(1 − 2k2)(1 − k2

2

)
2F

6
1

(
1

2
,

1

2
;1; k2

)
.

The relation between k2(τ ) and J (τ) is given by

J = 4

27

(1 − k2 + k4)3

k4(1 − k2)2
. (2.7)

For future reference, we record the following identities:

k2(τ ) = θ4
2 (τ )

θ4
3 (τ )

,

(
θ2

3

)2
(τ ) = (

θ2
4

)2
(τ ) + (

θ2
2

)2
(τ ),

and

θ2
3 (τ ) = 2F1

(
1

2
,

1

2
;1; k2(τ )

)
. (2.8)

3 A differential equation associated with Ramanujan’s identities involving
2F1(

1
6 , 5

6;1;z)

We now present the differential equation associated with the set of identities of Ra-
manujan stated in the Introduction.

Consider the differential equation

y′2 = 4y3 − 3y − (
1 − 2μ2), y(0) = ∞. (3.1)

We note that (3.1) is a special case of (2.2) with the invariant

J = 1

4μ2(1 − μ2)
. (3.2)

We will derive the solution of the differential equation and its associated identi-
ties by first restricting the parameter μ in the interval [−1,1]; the restriction is then
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removed by a standard argument of analytic continuation. Since the solution of this
differential equation is completely determined by a pair of fundamental periods ω1
and ω2, we consider the solution found once they are known.

Lemma 3.1 Suppose μ = sinβ . Then

4x3 − 3x − (
1 − 2μ2) = 4(x − e1)(x − e2)(x − e3),

where

e1 = cos
2β

3
, e2 = cos

2π − 2β

3
, e3 = cos

2β + 2π

3
.

If, in addition 0 ≤ β < π
2 , then

e3 < 0 < e2 < e1 < 1. (3.3)

Proof We note that 1 − 2μ2 = cos 2β and

4 cos3 θ − 3 cos θ − (
1 − 2μ2) = cos 3θ − cos 2β.

The conclusion follows readily by observing that the right-hand side of the trigono-
metric identity equals zero, for 0 ≤ θ ≤ 2π , when θ = ± 2β

3 ,± 2π−2β
3 ,± 2β+2π

3 . �

Theorem 3.2 Suppose 0 ≤ β < π
2 . Let a pair of fundamental periods ω1 and ω2 be

defined by [6, p. 88]

ω1

2
=

∫ e2

e3

dx√
4x3 − 3x − (1 − 2μ2)

and

ω2

2
=

∫ e1

e2

dx√
4x3 − 3x − (1 − 2μ2)

.

Then

ω1 = π

√
2

3
2F1

(
1

6
,

5

6
;1;μ2

)
= π

√
2

3
2F1

(
1

6
,

5

6
;1; sin2 β

)

and

ω2 = iπ

√
2

3
2F1

(
1

6
,

5

6
;1;1 − μ2

)
= iπ

√
2

3
2F1

(
1

6
,

5

6
;1; cos2 β

)
.

Proof Substituting x = cos 2θ
3 and 1 − 2μ2 = cos 2β in (2.2), we have

ω1

2
= 2

3

∫ π+β

π−β

sin 2θ
3 dθ√

cos 2θ − cos 2β
= 2

3

∫ β

−β

sin( 2θ
3 + 2π

3 ) dθ√
cos 2θ − cos 2β

= 2

3
sin

2π

3

∫ β

−β

cos 2θ
3 dθ√

cos 2θ − cos 2β
+ 2

3
cos

2π

3

∫ β

−β

sin 2θ
3 dθ√

cos 2θ − cos 2β
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= 2√
3

∫ β

0

cos 2θ
3 dθ√

cos 2θ − cos 2β
= 1√

3

∫ 2β

0

cos θ
3 dθ√

cos θ − cos 2β
.

We now appeal to an integral representation of the Legendre functions [5, p. 174,
(7.4.10)]:

2F1

(
−ν, ν + 1;1; sin2 β

2

)
=

√
2

π

∫ β

0

cos(ν + 1
2 )θ dθ√

cos θ − cosβ
.

Now choose ν = − 1
6 . We obtain the first identity. Since the proof of the second iden-

tity follows from an identical argument, we omit the details. �

We observe that, from (3.3), �ω2
ω1

> 0.

We remarked earlier that (3.1) is a special case of (2.2); we can, however, scale the
solution of one into the other using the homogeneous relation (2.6). Thus we have

℘(z;g2, g3) = a℘
(√

az;3,1 − 2μ2) (3.4)

where a =
√

g2
3 and μ2 = 1

2 (1 − g3
a3 ). From (3.4), we derive the following corollary.

Corollary 3.3 Suppose g3
2 − 27g2

3 �= 0. For g2 �= 0, let

ω1 = π

√
2√
3g2

2F1

(
1

6
,

5

6
;1; 1

2

(
1 −

√
27g2

3/g3
2

))

and

ω2 = iπ

√
2√
3g2

2F1

(
1

6
,

5

6
;1; 1

2

(
1 +

√
27g2

3/g3
2

));

for g2 = 0, let

ω1 = √
π21/33−1g

−1/6
3


(1/6)


(2/3)

and

ω2 = ei2π/3√π21/33−1g
−1/6
3


(1/6)


(2/3)
.

Then ω1,ω2 generate the period lattice for ℘(z;g2, g3).

We only need to prove the case for g2 = 0.

Proof A pair of periods ω1,ω2 can be obtained from the following integrals:

ω1 = 2
∫ ∞

(g3/4)1/3

dx√
4x3 − g3

= 21/3g
−1/6
3

∫ ∞

1

dx√
t3 − 1

= √
π21/33−1g

−1/6
3


(1/6)


(2/3)
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and

ω2 = 2
∫ ∞

ρ(g3/4)1/3

dx√
4x3 − g3

= ρ21/3g
−1/6
3

∫ ∞ρ

1

dx√
t3 − 1

= ρ
√

π21/33−1g
−1/6
3


(1/6)


(2/3)
;

where ρ = ei2π/3. We remind the reader of the beta function identity used in the
calculation of both integrals:

∫ ∞(ρ)

1

dx√
t3 − 1

=
√

π

3


(1/6)


(2/3)
. �

It is interesting to note that the above identities allow us to compute a set of funda-
mental periods for ℘(z;g2, g3) directly in terms of 2F1(

1
6 , 5

6 ;1; z) and the parame-
ters g2 and g3. The standard method for computing fundamental periods ω1,ω2 of the
Weierstrass elliptic function is to first find the roots a < b < c of the cubic polynomial
4x3 − g2x − g3, and then evaluate the periods by

ω1 = π

M(
√

c − a,
√

c − b)

and

ω2 = iπ

M(
√

c − a,
√

b − a)
,

where M(x,y) is the arithmetic–geometric mean of x and y (see Proposition 6.34
of [4]).

4 Representation of x2 in terms of Schwarzian triangle function

In this section we will study the quantity x2 with help from the properties of con-
formal mappings and derive its geometric significance. We first establish the crucial
connection between the hypergeometric function 2F1(

1
6 , 5

6 ;1; z) and a Schwarzian
triangle function. One can find a very readable account of the basic facts used in this
work in Sect. 7 of Chap. 5 and Sect. 5 of Chap. 7 of [7] and [3, pp. 96–99].

Let � denote the triangular region on the upper half plane τ : �τ > 0 bounded by
three circular arcs with vertices located at ∞,0 and eiπ/3. The angles of � at these
points are 0,0 and 2π

3 . Define

S(z) = i
2F1(

1
6 , 5

6 ;1;1 − z)

2F1(
1
6 , 5

6 ;1; z) . (4.1)

Then, S(z) maps the upper half plane �z > 0 conformally to the triangle �. Let
τ = S(z) and let z = s(τ ) be its inverse. Applying the Schwarz reflection principle
repeatedly, we can construct the domain of s(τ ) which is a Riemann surface with
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branch points of order − 3
2 at the points generated from eiπ/3 by the repeated appli-

cations of the reflection principle.
Let C denote the complex plane and let F be the region on the upper half plane

obtained by reflecting the triangular region � across the y axis and identifying the
two edges vertical to the real axis.

We state a consequence of the above discussion.

Theorem 4.1 Let s(τ ) be the inverse of S(z). Then it maps F conformally to C −
[1,∞) such that s(∞) = 0, s(0) = 1 and s(eiπ/3) = ∞. Moreover,

s

(−1

τ

)
= 1 − s(τ ). (4.2)

Proof The first part of the theorem follows from the above discussion; we need only
to justify the identity (4.2). We observe that, from (4.1), we have s(τ ) = z and

S(1 − z) = i
2F1(

1
6 , 5

6 ;1; z)
2F1(

1
6 , 5

6 ;1;1 − z)
= −1

τ
.

This implies

s

(−1

τ

)
= 1 − z = 1 − s(τ ). �

For a given 0 ≤ μ2 < 1, let x2 = μ2. According to Theorem 4.1, there is a unique
τ on the imaginary axis such that μ2 = s(τ ). From (2.7) and (3.2), we see that the
identity (1.1) describes precisely the relation between s(τ ) and k2(τ ):

4s(1 − s) = 27

4

k4(1 − k2)2

(1 − k2 + k4)3
.

Solving s in terms of k2, we obtain

s(τ ) = 1

2
− 1

2

(1 + k2)(1 − 2k2)(1 − k2

2 )

(1 − k2 + k4)3/2

and

s

(−1

τ

)
= 1

2
+ 1

2

(1 + k2)(1 − 2k2)(1 − k2

2 )

(1 − k2 + k4)3/2
.

From (3.2),

J−1(τ ) = 4s(τ )
(
1 − s(τ )

)
.

Thus

s(τ ) = 1

2

(
1 −

√
1 − J−1(τ )

)
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and using the definition of J , we express s in terms of the Eisenstein series:

s(τ ) = 1

2

(
1 − E6(τ )

E
3/2
4 (τ )

)
.

We now derive the Ramanujan identities stated in the Introduction. The identities
(1.2) and (1.3) follow from Lemma 2.2 (with g2 = 3, g3 = 1−2μ2) and Theorem 3.2:

E4(τ ) = 2F
4
1

(
1

6
,

5

6
;1; s(τ )

)

E6(τ ) = (
1 − 2s(τ )

)
2F

6
1

(
1

6
,

5

6
;1; s(τ )

)
.

Before proving (1.5), we first derive the following identity.

Lemma 4.2

sin
2β

3
= 1√

3

π2

ω2
1

θ4
2 (τ ).

Proof Equating the two different representations of e2 in Lemma 2.1 and Lemma 3.1,
we have

e2 = π2

ω2
1

θ4
2 (τ ) − θ4

4 (τ )

3
= cos

2π − 2β

3
= −1

2
cos

2β

3
+

√
3

2
sin

2β

3
.

Similarly,

e3 = −π2

ω2
1

θ4
2 (τ ) + θ4

3 (τ )

3
= cos

2π + β

3
= −1

2
cos

2β

3
−

√
3

2
sin

2β

3
.

The difference of these two identities (along with (2.1)) gives the desired identity. �

We now prove (1.5).

Proof From Lemmas 2.1, 3.1, and 4.2,

1 = sin2 2β

3
+ cos2 2β

3
= 4

9

π2

ω2
1

(
θ8

2 − θ4
2 θ4

3 + θ8
3

)
.

Thus

ω2
1

π2
= 4

9

(
θ8

2 − θ4
2 θ4

3 + θ8
3

) = 4

9
θ8

3

(
1 − k2 + k4).

The identity (1.5) follows from this identity along with Theorem 3.2 and (2.8). �
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We end the paper by observing the following parallel of (2.8): Let a = E
1/4
4 , b =

[ 1
2 (E

3/2
4 + E6)]1/6, and c = [ 1

2 (E
3/2
4 − E6)]1/6. Then

μ2(τ ) = c6(τ )

a6(τ )

a6(τ ) = b6(τ ) + c6(τ )

and

a(τ) = 2F1

(
1

6
,

5

6
;1;μ2(τ )

)
.
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