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Abstract The paper gives an extension of Clausen’s identity to the square of any
Gauss hypergeometric function. Accordingly, solutions of the related third-order lin-
ear differential equation are found in terms of certain bivariate series that can reduce
to 3 series similar to those in Clausen’s identity. The general contiguous variation
of Clausen’s identity is found as well. The related Chaundy’s identity is generalized
without any restriction on the parameters of the Gauss hypergeometric function. The
special case of dihedral Gauss hypergeometric functions is underscored.
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1 Introduction

Clausen’s identity [4] is

Z_FZ 2a,2b, a+b
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E a, b )
Na+b+l )
A related identity is [3, (5)]
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134 R. Vidunas

Up to a power factor, the two F; functions in the second identity are solutions of
the same Euler’s hypergeometric differential equation. The two identities demon-
strate a case where the symmetric tensor square of Euler’s hypergeometric equation
coincides with the hypergeometric differential equation for 3F functions. Accord-
ingly, formulas (1) and (2) relate quadratic forms in ,F; functions and 3F functions
as solutions of the same third-order linear differential equation; see Exercise 13 in
[1, p. 116].

This paper aims to generalize Clausen’s identity to the square of a general 2F
function, without any restriction on the three parameters. Accordingly, we try to find
other attractive solutions of the symmetric tensor square equation for general Euler’s
hypergeometric equation. We present the symmetric tensor square equation in Sect. 3;
see formula (31).

We find that the general symmetric square equation has solutions expressible as
specializations of the following double hypergeometric series:
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If a = c, these two series reduce to the bivariate Appell’s F> or F3 hypergeometric
series, respectively. These functions are special cases of Kampé de Fériet series.

Surely, the left-hand sides of (1)—(2) are trivially double hypergeometric series as
well. The significance of new solutions is that they reduce to 3F functions of similar
shape as in (1)—(2) in special cases and that they represent elementary solutions (that
is, a polynomial times a power function) if the symmetric square equation has such
solutions.

Our main results are summarized in the following two theorems. In Theorem 1, by
a univariate specialization of F 12::11;11 or F 12::11;;11 function we understand the restriction
of any branch (under analytic continuation) of the bivariate F 12::1];;1] or F 12::11;11 function
to the curve parameterized by z. In Theorem 2, we refer to the F 12::11;11 or F 12::11;11 series
as defined in (3)—(4). A direct generalization of Clausen’s identity is formula (10). It
applies to the Gauss hypergeometric functions contiguous to Clausen’s instance. We
prove these theorems in Sects. 4 and 5, respectively.
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Theorem 1 The univariate functions
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. . . 2
satisfy the symmetric tensor square equation for 2F1(a’cb |z) .

Theorem 2 The following identities hold in a neighborhood of z = 0:
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Here a, b, c can be any complex numbers if only the involved lower parameters c,
2—c,a+b+ % are not zero or negative integers. The numbers m, n are assumed to
be nonnegative integers.

The F 12::11;;11 series in (10) is understood to terminate in the second argument at the
power (1 — z)", but it is never a terminating series in the first argument even if a +
b+ n is a nonpositive integer —m (when the term-wise limit b — —a —n — m should
be applied). The F 12::11;;11 series in (11) is a finite rectangular sum with (m + 1)(n + 1)
terms.
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If n =0, formula (10) reduces to Clausen’s identity (1). f c=a + b + %, formula
(9) reduces to (2). We should observe that Clausen’s identity is wrong if a + b is a
nonpositive integer and the 3F series is interpreted as terminating. A correct identity
with the terminating 3 series is then the special case n =0 of (11):

2
Z)

2 2 11
a, —a—m @+ 532 )? at+m+5,5—a
ZF]( ' ) 2 m+1 ZZm—H »F 202
z). (12)

I ACI m+3
On the other hand, if 2a is an integer such that —2m > 2a > 0, Clausen’s formula is
evidently correct again, as used in [5, (8.34)].

Formula (11) has the following significance. The F; functions on the left-hand
side are dihedral Gauss hypergeometric functions, as the monodromy group of their
Euler’s hypergeometric equation is a dihedral group. Then the symmetric tensor
square equation is reducible, and its monodromy representation has an invariant one-
dimensional subspace. The F 12 11 11 function on the right-hand side is a polynomial,
so it is obviously an invariant of the monodromy group. Formula (11) identifies a
generator for the invariant space as a linear combination of »F; (z) solutions and as
an explicit terminating F 12::11;;11 expression [8, Sect. 3]. In more plain terms, the F 12::11;11
expression gives an expected elementary solution of the symmetric square equation.
Similarly, the F210202 series in (9) is terminating in both summation directions in the

following spec1ahzat10n with dihedral »F; functions:
Z)

E —a—m—n,%—a—n
L) 1—2a—m—n
Z
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The terminating F* 1. 1 1 ! and F 0 sums are closely related. Up to a constant multiple,

1
2

1

<2a, —2a —2m, —m
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a, a—l—m+2
2a+m+n+1

2a+m+n+1;1—2a—m—n
2:1;1

one can rewrite the termlnatmg Fi)/; sum as a terminating F’ ’0 sum, and vice
versa, simply by reversing the order of summation in both d1rect10ns

In addition to traditional applications of Clausen’s formula to show the positivity
of hypergeometric sums, Clausen formula is used in [5] to obtain a single series
expression for the probability of transition between quantum states of a parametric
oscillator.

2 Variation of formulas

A product of two single hypergeometric series is trivially a double hypergeometric
series. In particular, we can write

2
a, b sofa,a; b, b
2F1( . Z) =F(())1212< o ¢

Z, Z). (14)
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Chaundy [3, (6)] gives the following double series expansion:

a. b \* < Qa)@bilc — i
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—5 -G hatb—c+;
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But our formulas (10) and (9) are particularly interesting as direct generalizations of
the classical formulas (1)—(2).

Application of Euler’s transformation [1, (2.2.7)] to the second »F; factor on the
left-hand side of (9) gives
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The substitution z — z/(z — 1) and application of Pfaff’s transformation [1, (2.2.6)]
to the oFj functions in (11) and (12) give, respectively:
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The specializations m = 0 of (11) and (17) are interesting as well:

1 2
1 F, a, —a—n
“T3) 2 1/2

2 11
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z) +21(a)3+12F1( 22
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It is tempting to equate gFl(a’Cb |z)2 to the F 12::11;;11 function in (5) up to a constant
multiple, since the latter appears to have the power series expansion at z = 0 as well.
The kth derivative of the F 12::]1;]1 function at z = 0 would evaluate to a linear combina-
tion of the values

2a+k, 2b+k atb—c+j+1
P\atb+k+L 204220+ j+1

1), j=0,1,....k. (22)

However, the convergence condition of these 3F (1) sums is Re(1 — ¢ — k) > 0, so
the 3F (1) values are undefined for large enough k. The F 12::11;;11 function can have
branching behavior at z = 0 in general, as the local exponents z'~¢, z>72¢ of the
symmetric square equation can come into play. See [7] for explicit details.
The Flzfll;ll function in (5) can be evaluated at z = 0 and z = 1 using the 35 (1)
evaluation in [1, Theorem 3.5.5(1)]:
0, 1)

_T)ra+b+)rd—c)F+a+b—c)

F2L1 2a;2bi ¢~ 5.a+b—c+3
1:1;1 a+b+%;20—1,20+2b_26+1

_ ( : , (23)
Fa+)Irb+3r(+a—-c)'(1+b—c)
9 1 1
p2L1 2a;2b; c =3, a+b—c+; 1,0
P\ a4 b+ L 2e—1,2a 420 —2e+ 1|
1 1
_T3)Ira+b+5Hre)rc—a—b) (24)

S Ta+hre+hre-aore-n
The convergence conditions are Re(1 — ¢) > 0 and Re(c — a — b) > 0, respectively.
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F a, b
* ) a+b—c+1 Y

(25)

T N e 0 TR A
x°, (1 —x = X —x .
2 e = at+b—c+1
(26)

The Fi(x2, (1 — x)?) function is another solution of the symmetric tensor square
equation. In particular, we have the following identity for x € [0, 1] if Rec < 1 and
Re(c — a — b) > 0, due to the connection formula in [1, (2.3.13)]:

It is worth mentioning that Bailey’s identity [2]

F a, b 1 ) y(l )) =,F a, b
+ c,a+b—c+1 o Yy V)= .

specializes to

a, b
Fy
(c,a+b—c+1

a, b 2 r@erc—a—b a; b
2F z) = ©F( )F4 x2, (1—x)?
c I'(c—a)l(c—D>b) c,a+b—c+1
I'(c)I'(a+b—c) (1 — p)2e-2a-2b
I'(a) " (b)
B c—a,c—b| , (1 )2 27
X - .
+ c,c—a—b+1 N *
3 The differential equations
Let ©,, ©,, ©, denote the differential operators
d d a
O, =7—, O, =x —, O,=y—. 28
z Zdz x =X ax y=DY 3y (28)

Euler’s hypergeometric differential equation [1, (2.3.5)] for a general Gauss hyperge-
ometric function zFl(“’C b ‘ z) can be compactly written as follows:

2(O; +a)(O; +b)y(z) = O(O; +¢c = Dy(z) =0. (29)

This is a Fuchsian equation with three regular singular points z =0, 1, and co. The
local exponents at the singular points are:

0,1—c atz=0; 0,c—a—b atz=1; and a,b atz=o00.
In general, a basis of solutions is

a, b B l4a—c,1+b—c
2F1< ) z), ! CzFl( z). (30)

2—c
Notice that the left-hand sides of formulas (2) and (9) are products of these two solu-
tions of the same Euler’s equation, with the power factor z! = ignored. The classical
formulas (1)—(2) apply when the difference of local exponents at z = 1 isequal to 1/2.
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140 R. Vidunas

If y1, y» are two independent solutions of a second-order homogeneous linear dif-
ferential equation like (29), the functions ylz, y1y2, y22 satisfy a third-order linear
differential equation called the symmetric tensor square of the second-order equa-
tion. The symmetric tensor square equation for Euler’s equation (29) can be written
as follows [3, (2)]:

2(0; +2a)(O; +2b)(O; +a+D)y(z) — O(O; +c — D(O; +2c —2)y(z)
2a+2b—2c+ 1)z
+ P

((@+b—c+ 1O, +2ab)y(z) =0. 31)

Ifc=a+b+ %, this is a differential equation for the 3F function in (1).
Partial differential equations for the F 12::11,;11 (x, y) function in (3) can be obtained
by considering the first-order recurrence relations between its coefficients. Writing

the F 12::11;;11 sumas »_;2, 3% ¢ j, we have the relations

Citlj _ (a+i+j))b+i+j)(p1+i)x

cij  (c+i+ g +i(1+i0)
Cij+l _ (a+i+jHb+i+j)p2+ i)y
Cij (c+i+ Hg+id+j)

and also ¢;1,j/ci j+1 = (p1 +i)(q2+ )L+ j) x/(p2 + j)(q1 +i)(1 +1i) y. These
relations translate to the following partial differential equations for the F' 12::11_;11 (x,y)
function:

P =x(0x + 0, +a)(Ox + O, +b)(Ox + p1)

— O (Or + Oy +c— (O +q1 — 1), 32)
Py =y(Oy + Oy +a)(Oy + Oy +b)(Oy + p2)
— OOy + Oy +c—1)(Oy+q2— 1), (33)

Py =x0y(0y+q—1)(Ox + p1) =y Ox(Ox +q1 — D(Oy + p2).  (34)

In general, two of these operators generate the ideal J in C(x, y){®,, ®,) annihilat-
ing the F 12;11_;11 (x, y) series. In particular, we have the following obvious syzygies:

—y(Oy + p2)P1 +x(Ox + p1) P2+ (Ox + Oy +c = 2)P3 =0,
Oy(Oy+q—1)P1 — Oy (O +q1 — 1) P
F+(Or+Oy+a—1)(Oy+ 6O, +b—1)P3=0.

If the coefficient &, + @, + ¢ — 2 does not divide (O + Oy +a — 1)(O, + O, +
b — 1), we can express P3 in terms of Py, P», etc.
Note the following commutation relations in C(x, y)(Oy, ©y):

Ox=x0, +x=x(O, +1), Oyy =y (O, +1). 35
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A generalization of Clausen’s identity 141

The variables x, @, commute with y, ®,. Up to the multiplication order, these re-
lations are the same as shift operator relations, such as S,n = (n + 1)§, in the Ore
algebra C(n, S,). We will keep working with Euler-type differentiation operators in
(28) in our transformations of differential equations.

Grobner basis computations show that third-order partial differential operators in
the ideal J are linearly generated by P, P>, P3. A residue basis over C(x, y) is
formed by the 7 monomials 1, ®,, @y, (H))%, 0,06,, @)3, @; Hence the rank of the

differential system for F 12::11‘;11 (x, y) functions is equal to 7. The leading coefficients
in various Grobner bases suggest that the following lines are in the singular locus of
the differential system:

x=0, x=1, y=0, y=1,
x+y=0, x+y=1, y+2x =1, 2y +x=1.

It is easy to apply the transformations F(x,y) — x*y#F(x,y) or x — 1/x,
y = 1/y to the differential system generated by the operators P;, P». In effect, we
only have to replace additionally &, > @y + a, &y > Oy + B or Oy > —0Oy,
®, — —0,, respectively. We may attempt to find transformations of the operators
P, P to a pair of similar hypergeometric operators. This gives us the following so-
lutions of the same system of partial differential equations, besides the F 12::11;11 (x,y)
function in (3):

1/ 1 —qi;14+b—qq;1 —q1,
xl—qulg.ll_,ll ta—qi;1+0—q1i;1+p1—q1,p2 xy). (36)
" l+c—q1;2—q1, ¢
1.1/ 1 —qg2; 1+b—qgo; p1,1 —
yl-a Flg.ll_,ll ta—q 1+b—qypi,1+p2—q2 xy). 37)
'* l4+c—q2;,91,2—q2
x!ayl-a
XF2;1;1(2+a—q1—qz;2+b—q1—qz;1+p1—q1,1+p2—q2 . y)
L1 24c—q1—q2;2—q1,2 —q2
(38)
oo l+pi+p—cl+pi—qi,l+pr—qup,p2|l 1
x—ply—sz;:bg,(?( prtpz=cildpi—anltpmgipn e _,_>.(39)
' I14+pi+pr—a; 1+p1+pr—> X'y

As we see, the systems of partial differential equations for the F 121] 1] and lezbg;()z func-

tions are easily transformable to each other. In the other direction, here is an F 12::11_;11

function satisfying the same partial differential equations as the F21::02.;02 (x, y) function
in (4):
(1 —a; 1 —b; p1, 11
TPy Flz-'ll-f( +pi+pr—a; 14+ pi+p2 pp2| 1 _> 4o
C\I+pitp-al+pi—q.l+pp—qlx y

From this the other F 12::1],91] companion solutions for the F21::02.;02 (x, y) function in (4)
can be obtained using the symmetries p; <> g1 and py <> ¢».
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142 R. Vidunas

4 Proof of Theorem 1

First we prove that the F 12::11_;11 function in (5) satisfies the symmetric square equation

(31) for zFl(“’Cb ’z)z. The ideal of partial differential operators annihilating

X, y) (41)

is generated by the polynomials Py, P», Pz in (32)—(34) with the parameters special-
ized to linear functions in a, b, c. Here are the specialized differential equations:

FL 2a; Zb;c_%’“"'b_c"'%
1:1;1 a~|—b+%;2c—1a2a+2b_2c+1

1
0=x(O) + Oy +2a)(O, + O, +2b)(@x teo— 5)

1
—@)x<(~)x+(~)y+a+b—5)(@x+2c—2), (42)
1
O:y(@x+@y+2a)(@x+@y+2b)(@y~|—a+b—c+§)
1
—@y(@x+@y+a+b—5)(@y+2a+2b—2c), (43)
1
0=x0,(0, +2a+2b—2c)<@x +c— 5)
i 1
—y(H)x((H)x+2c—2)<(~)y+a+b—c+§). (44)

The variables and derivatives are related as follows under the univariate specialization
under consideration:
d d 0 Z

— <, =1—, —_— ==, @:@
xX=z y z Az ox 9y 2z X+z—

Oy (45)

Following [6, Definition 1.1], the partial differential form of an ordinary differen-
tial equation under a specialization like (45) is the expression where the univariate
derivatives are replaced by respective linear combinations of partial derivatives. On
the other hand, the specialized form of a partial differential equation under the same
kind of specialization is the expression with coefficients to the partial derivatives
specialized to univariate functions. In our setting, the two forms are “mixed” linear
differential expressions in the partial derivatives &,, @, but with the coefficients uni-
variate in z. Algebraically, we work in the C[z](®;) module generated by the partial
derivatives of any order. The action of ®, on the partial derivatives is given by the
identification in (45).

To show that the univariate F 12::11;11 function in (10) satisfies the symmetric tensor
square equation (31), we demonstrate that the partial differential form of the sym-
metric square equation coincides with the specialized form of a partial differential
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A generalization of Clausen’s identity 143

equation following from the partial differential equations (42)—(44). In the terminol-
ogy of [6, Definition 1.1], we show that the symmetric square equation follows fully
from the differential equations (42)—(44) under the specialization defined in (45).

To give a partial differential form of the symmetric square equation (31), we intro-
duce a way to work with multiplicative expressions of (noncommutative) differential
operators. Suppose that G, H are functions in z. Then

(0, +6G)(O,+H)= (O, +G)<

=<@x+ HV+A>(@)€+ y+B>

z dH
-0, —_, 46
(z—1)? y e dz (46)

where we use the dot between two differential factors to signify commutative formal
multiplication. In other words, an expanded expression for (®, + G)(©®, + H) can
be obtained by multiplying commutatively the two large factors in (46), collecting
terms to the monomials in ®,, ©,, then interpreting those monomials as differential
operators of suitable order, and writing the coefficients to those monomials as left-
side factors.

If A, B, C are constants, the product (@, + A)(®; + B)(®, + C) can be written
as follows:

Z Z
) e RE NG —0® B ) —0 C
("z—ly ><<+ —1 +>("+z—1y+>
2z

z z z(z+1)
_(z—l)zo)’>_(z—1>20 ( > ©y

[C=
and finally, as

Z Z
O, + Oy+A)|Oy+—-60,+B)-|Oy+—-60,+C
1 z—1 z—1

I
(Z_Zl)z (30 T —-0, +A+B+C)+Z((Z+1)3)(). 47)

Following this “commutative” expression, the symmetric square equation (31) can be

ot ) [
YO

<~ —Z )(
Tz—1
(a+b)Z+1—C) z(z+1)

3
(z—1)? z—1 (z—1)2

Z
0, -(@x + O+ 0,

-1
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(2a+2b 2c+ 1)z
z—1

((a+b—c+ 1)(@X n il@v) +2ab) —0. (48)
9

Using formal commutative computations, one can check that this equation coincides
with the specialized (under x =z, y = 1 — z) form of

2

<

[eq. (43)] — [eq. (44)]. (49)

(z—1)?

We proved that the FZ 1. 1 1 ! function in (5) satisfies the symmetric square equation (31).

The relation between the functions in (4) and (40) implies that the function in (8)
satisfies the same symmetric square equation. The symmetric square equation has the
following two solutions as well:

2 2
24 a, l+a—c|1 Y ,C—b 1
F -, 1-— F — . 50
z 21( lda—b |2 (I =272k u—b (50)

The relation between the functions ;F (a‘cb ‘2)2 and (8) translates into the claim that
(6) and (7) are solutions of the same symmetric square equation as well. This com-
pletes the proof of Theorem 1.

Notice that the upper parameters in (6)—(8) contain the local exponent differences
of 2F1(“ b| ) increased by 1/2, while the lower parameters are the same local ex-

ponent differences increased by 1. A set of twelve F* 11 ;1 solutions can be obtained
using the relation between the functions in (4) and (40).

5 Proof of Theorem 2

To prove formula (9), we compare the function in (6) with the following solution of

the symmetric square equation:
_ a, b l+a—c, 1+b—c
z! Cm( z)zFl( z). (51)
c 2—c

Both solutions have the same local exponent 1 — ¢ at z = 0. For those values of ¢ for
which both 2 F; solutions are generally defined, the linear space of solutions with this
local exponent is one-dimensional. After division by z!7¢ both solutions (6) and (51)
evaluate to 1 at z = 0, and therefore formula (9) follows.

To prove formula (10), we observe that (for general a, b) the linear space of power
series solutions at z = 0 to the symmetric square equation is one-dimensional. The
F 12 11 11 function in (10) and the square function in (14) are both power series solutions
with the local exponent 0. Hence they must differ by a constant multiple. To compute
the constant multiple, we evaluate both sides of z = 1. Observe that the convergence
condition Re(n + 1 53) > 0 for both sides is always satisfied. The left-hand side is eval-
uated by the Gauss formula [1, Theorem 2.2.2]; the right-hand side is evaluated by
24)withc=a+b+n+ 2. The Pochhammer-type factor follows.
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To prove formula (11), we take the term-wise limit b - —a — m — n in (10). We
use

(e—kuy  (—kek!  (=DFK&H?  (=DF&!

lim = = = (52)
e—0 (26 —2k)ok41  (—2k)pr -2 2. (2k)! 22]‘“(%)1(
to get the limiting formula
@+ 5ag—a—m—n), . (a, —a—m-—n )2
2k 1 z
(3 —m —n), I m
1.1 ( 2a; —2a —2m —2n; —m, —n
= F12511-’1]< 1 z, 11— Z)
b 5—m—n; —2m, —2n
Qa)ym+1(=2a —2m — 2n)opy1 (=1)"m! 5,
(3—m—nmou1@m+ 1! 22m+(]),
qaf2a+2m+1;1—-2a—-2n; m+1, —n
12:'11711( 3 21— z) . (33)
’ §+m—n;2m+2,—2n

Due to (10), the latter F 12::11_;11 function can be written as

(a+m+1),(1-a—n), F a+m+%,%—a—n
21
($nm —n+3), m+ 3

2
z) . 54

We replace 2m + 1)! = 22m+1ly) (%)m—H and rewrite identity (53) as follows:

(@+ Pnla+m+3)n F(a, —a—m-—n
(%)n(m'i‘%)n
I(Za; —2a —2m —2n; —m, —n

2:1;
= F N
L1 %—m—n; —2m, —2n

z,l—z)

(_l)m+n+1 Qa)am+12a + 2n)2m+1 sz+1

22 (D (Pt (5 —m =)o
2
z) . (55)
(1/2 -—m— n)2m+l(m —n+ 3/2)11

=(1/2=m —momintt = (=" 1/ 2)min(1/ 21,
Qa)am+1 =22" T (@ pms1(a+1/2)m,

@m+y1(@+m~+ 1), =(@myns1, etc,

L atmt Dy@a a+m+3i.3—a—n
(Dnm —n+3)n m+ 3

After regrouping

we obtain (11).
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146 R. Vidunas

Alternatively, we may find the constant multiple in (10) by evaluating both sides

at z = 0. The evaluation of the right-hand side can be done by Zeilberger’s algorithm.
Formula (11) can be independently proved by observing that the linear space of power
series solutions at z = 0 to the symmetric square equation is two-dimensional and
evaluating at the two points z =0and z = 1.
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