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Abstract In this paper we present an algorithm that takes as input a generating
function of the form

∏
δ|M

∏∞
n=1(1 − qδn)rδ = ∑∞

n=0 a(n)qn and three positive inte-
gers m, t,p, and which returns true if a(mn + t) ≡ 0 (mod p),n ≥ 0, or false other-
wise. Our method builds on work by Rademacher (Trans. Am. Math. Soc. 51(3):609–
636, 1942), Kolberg (Math. Scand. 5:77–92, 1957), Sturm (Lecture Notes in Math-
ematics, pp. 275–280, Springer, Berlin/Heidelberg, 1987), Eichhorn and Ono (Pro-
ceedings for a Conference in Honor of Heini Halberstam, pp. 309–321, 1996).
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Introduction

Throughout this article M denotes a positive integer, and r = (rδ) denotes a sequence
of integers rδ indexed by all positive integer divisors δ of M .

In this paper we present an algorithm that takes as input a generating function of
the form

∏
δ|M

∏∞
n=1(1 − qδn)rδ = ∑∞

n=0 a(n)qn and three positive integers m, t,p,
and which returns true if a(mn+ t) ≡ 0 (mod p),n ≥ 0, or false otherwise. A similar
algorithm for generating functions of the form

∏∞
n=1(1 − qn)r1 (i.e. the case M = 1)

has already been given in [3]. Our original plan was to implement that algorithm in
order to prove some congruences from [1]. The algorithm we present here and the
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one in [3] both have in common that at the end one has to check that the congruence
is true for the first coefficients up to a bound ν that the algorithm returns, and then to
use the theorem of Sturm [17] to conclude that it is true for all coefficients. However
we noticed that for our purpose the bound ν given in [3] was extremely high for
some inputs. Encouraged by comments of Peter Paule we examined the problem in
more detail. Finally our study resulted in a significant improvement of estimating
the bound ν a priori. Our main tools to derive a better bound ν are the ones used by
Rademacher [12], Newman [10]; Kolberg [6] was another major source of inspiration.

The organization of this paper is as follows: In Sect. 1 we present the basic ter-
minology. In Sect. 2 we prepare some results needed to apply the theorem of Sturm.
The main result, Theorem 2.14, can be viewed as a generalization of a theorem of
R. Lewis [8]. In Sect. 3 we estimate functions at different points; this is needed in
order to prove they are indeed modular forms. In Sect. 4 we show how to apply the
theorem of Sturm in order to prove our desired congruence. In Sect. 5 we conclude
by giving some examples.

1 Basic terminology and formulas

We use the notation X ≡v Y , for a positive integer v, if X and Y are congruent
modulo v.

For integers m and n we let throughout gcd(m,n) denote the greatest common
divisor of m and n which is always normalized to return positive values.

Let a be an integer relatively prime to 6, i.e. gcd(a,6) = 1. For such a one can
easily show that a2 −1 ≡24 0. Similarly if gcd(a,3) = 1 then a2 −1 ≡3 0, and finally,
if gcd(a,2) = 1 then a2 − 1 ≡8 0. These facts will be used throughout the text.

For a positive integer N we define the following matrix groups:

M2(Z)∗ :=
{(

a b

c d

)

| a, b, c, d ∈ Z, ad − bc > 0

}

,

� :=
{(

a b

c d

)

∈ M2(Z)∗ | ad − bc = 1

}

,

�∞ :=
{(

a b

c d

)

∈ � | c = 0

}

,

�0(N) :=
{(

a b

c d

)

∈ � | c ≡N 0

}

.

There is an explicit formula for the index (e.g. [15]):

[� : �0(N)] = N
∏

p|N
(1 + p−1), where p prime. (1)

Throughout we use the following conventions:

• N
∗ denotes the positive integers.

• q := e2πiτ .
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• η(τ) denotes the Dedekind eta function for which

η(τ) := q
1
24

∞∏

n=1

(1 − qn). (2)

• H := {x ∈ C | Im(x) > 0}.
• H

∗ := H ∪ Q ∪ {∞}.
• γ = (

a b
c d

) ∈ M2(Z)∗ acts on elements τ ∈ H
∗ as γ τ := aτ+b

cτ+d
because of the for-

mula Im(γ τ) = (ad − bc)
Im(τ )

|cτ+d|2 (e.g. [15]). Let f (τ) be a function of τ . We will

later use that f (γ1(γ2τ)) = f ((γ1γ2)τ ) where γ1, γ2 ∈ M2(Z)∗.
• [x]m denotes an element of Z/mZ. (Note: [x]m = [y]m iff x ≡m y.)

Definition 1.1 Let k ∈ Z. A modular form of weight k for a subgroup G of � is a
function f (τ) defined on H

∗ such that:

(1) f (τ) is holomorphic in H;
(2) (cτ + d)−kf (γ τ) = f (τ) for all τ ∈ H

∗ and all γ ∈ G;
(3) for all γ ∈ � the function (cτ + d)−kf (γ τ) has a Taylor series expansion in

powers of q
1
n , n a positive integer, which converges in a nontrivial neighborhood

of 0.

Definition 1.2 Let a ∈ Z. For an odd integer n > 0 we define:

• If n = 1 then:
(

a

n

)

=
(

a

1

)

:= 1.

• If n is a prime p then:

(
a

n

)

=
(

a

p

)

:=
⎧
⎨

⎩

0 if p | a,

1 if a is a square modulo p,

−1 otherwise.

• If p
α1
1 · . . . · pαk

k is the prime factorization of n then:

(
a

n

)

:=
(

a

p1

)α1

· . . . ·
(

a

pk

)αk

.

The symbol ( a
n
) is called the Legendre-Jacobi symbol.

Lemma 1.3 Let n > 0 be an odd integer, then the following relations hold:

• If a and b are integers then

(
a

n

)(
b

n

)

=
(

ab

n

)

. (3)
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•
(

2

n

)

= (−1)
n2−1

8 . (4)

• If m is an odd integer then

(
m

n

)

=
(

n

m

)

(−1)
m−1

2
n−1

2 . (5)

Proof See [13, p. 71]. �

Definition 1.4 We define ε : {(a, b, c, d) | ( a b
c d

) ∈ �} → C to be the unique mapping
that satisfies

η(γ τ) = (−i(cτ + d))
1
2 ε(a, b, c, d)η(τ ), (6)

for all γ = (
a b
c d

) ∈ � and τ ∈ H
∗.

Remark 1.5 This definition is meaningful because for all γ = (
a b
c d

) ∈ � and

τ ∈ H
∗ we have η24(γ τ) = (cτ + b)12η24(τ ) (e.g. [14]). This also implies that

ε24(a, b, c, d) = 1 for all
(

a b
c d

) ∈ �.

For γ ∈ � with gcd(a,6) = 1, a > 0 and c > 0 Newman [10] determined ε as

ε(a, b, c, d) =
(

c

a

)

e− aπi
12 (c−b−3). (7)

Lemma 1.6 (Newman [10]) Let N ∈ N
∗, k ∈ Z and f : H

∗ → C a function such
that for all γ = (

a b
c d

) ∈ �0(N) with gcd(a,6) = 1, a > 0, c > 0 we have f (γ τ) =
(cτ + d)2kf (τ ). Then for all γ = (

a b
c d

) ∈ �0(N) we have f (γ τ) = (cτ + d)2kf (τ ).

Definition 1.7 Given a positive integer m let ϕ : [0,m−1]×H
∗ → H

∗ be a function
with expansion ϕ(t, τ ) = q−t

∑∞
n=0 a(n)qn, where t ∈ {0, . . . ,m − 1}. Let Sm be a

complete set of non-equivalent representatives of the residue classes modulo m. For
κ ∈ N with gcd(m,κ) = 1 we define:

Mm,κ(ϕ(t, τ )) :=
∑

λ∈Sm

ϕ

(

t,
τ + κλ

m

)

. (8)

In this paper we are always choosing

κ := gcd(1 − m2,24). (9)

With this choice clearly gcd(κ,m) = 1.
Another property needed later is as follows:

Lemma 1.8 Let κ be as defined in (9), then 6|κm.
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Proof One can proceed by case distinction. For instance, if 2 � m and 3|m, then m2 −
1 ≡8 0 because gcd(m,2) = 1. Hence by (9) we have 8|κ , thus 6|κm. The other cases
are similar. �

Lemma 1.9 Given positive integers m and κ , let ϕ(t, τ ) be as in Definition 1.7. Then
we have:

Mm,κ(ϕ(t, τ )) = m

∞∑

n=0

a(mn + t)qn. (10)

Proof By Definition 1.7 we have

Mm,κ(ϕ(t, τ )) =
∑

λ∈Sm

e−2πit τ+κλ
m

∞∑

n=0

a(n)e2πin τ+κλ
m

=
∞∑

n=0

a(n)e− 2πiτ t
m e

2πinτ
m

∑

λ∈Sm

e2πiλ −κt+κn
m

=
∑

n≥0
n≡mt

m · a(n)e− 2πiτ t
m e

2πinτ
m

= m

∞∑

n=0

a(mn + t)q
−t
m q

t
m qn

= m

∞∑

n=0

a(mn + t)qn.

Note that the sum
∑

λ∈Sm
e2πiλ −κt+κn

m equals m if −κt + κn ≡m 0. This is exactly the
case when n ≡m t . For n 	≡m t the sum is 0. �

Definition 1.10 Let M ∈ N
∗. By R(M) we denote the set of all integer sequences

(rδ) indexed by all positive divisors δ of M .

Definition 1.11 For m,M ∈ N
∗, t ∈ N such that 0 ≤ t ≤ m−1 and r = (rδ) ∈ R(M),

we define:

f (τ, r) :=
∏

δ|M

∞∏

n=1

(1 − qδn)rδ =
∞∑

n=0

a(n)qn, (11)

and

gm,t (τ, r) := q
24t+∑

δ|M δrδ
24m

∞∑

n=0

a(mn + t)qn.
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Lemma 1.12 For m,M ∈ N
∗, t ∈ N such that 0 ≤ t ≤ m − 1 and r = (rδ) ∈ R(M)

we obtain the following representation:

gm,t (τ, r) = 1

m

m−1∑

λ=0

e
2πiκλ(−24t−∑

δ|M δrδ)

24m

∏

δ|M
ηrδ

(
δ(τ + κλ)

m

)

. (12)

Proof Using (2) we see that f (τ, r) = q−
∑

δ|M δrδ
24

∏
δ|M ηrδ (δτ ). Next applying Mm,κ

to ϕ(t, τ ) := q−t f (τ, r), by Definition 1.7 we see that:

Mm,κ(ϕ(t, τ )) =
m−1∑

λ=0

e2πi( τ+κλ
m

)(−t−
∑

δ|M δrδ
24 )

∏

δ|M
ηrδ

(
δ(τ + κλ)

m

)

= q
−24t−∑

δ|M δrδ
24m

m−1∑

λ=0

e
2πiκλ(−24t−∑

δ|M δrδ)

24m

∏

δ|M
ηrδ

(
δ(τ + κλ)

m

)

.

Alternatively by Lemma 1.9 we obtain:

Mm,κ(ϕ(t, τ )) = m

∞∑

n=0

a(mn + t)qn = mq− 24t+∑
δ|M δrδ

24m gm,t (τ, r).

Comparing the two expressions for Mm,κ(ϕ(t, τ )) we obtain our assertion. �

The following lemma will be used on several occasions:

Lemma 1.13 Given a real number k and maps f : H
∗ → C and g : � × H

∗ → C.
Suppose for all γ = (

a b
c d

) ∈ � and for all τ ∈ H
∗:

(cτ + d)−kf (γ τ) = g(γ, τ ).

Then for all ξ = (
A B
C D

) ∈ M2(Z)∗ and for all τ ∈ H
∗:

(
gcd(A,C)

AD − BC
(Cτ + D)

)−k

f (ξτ )

= g

((
A

gcd(A,C)
−y

C
gcd(A,C)

x

)

,
gcd(A,C)τ + Bx + Dy

AD−BC
gcd(A,C)

)

where the integers x and y are chosen such that Ax + Cy = gcd(A,C).

Proof Define

γ :=
(

A
gcd(A,C)

−y

C
gcd(A,C)

x

)

and γ ′ :=
(

gcd(A,C) Bx + Dy

0 AD−BC
gcd(A,C)

)

.
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Then the statement follows from the relation ξ = γ γ ′ and by

f (ξτ) = f (γ (γ ′τ)) =
(

C

gcd(A,C)
(γ ′τ) + x

)k

g(γ, γ ′τ). �

2 The function gm,t (τ, r) under modular substitutions

Throughout this section we will assume that gcd(a,6) = 1, a > 0 and c > 0 so that
(7) will always apply and a2 ≡24 1. For this reason it will be convenient to introduce
the following notation:

�0(N)∗ := {γ ∈ �0(N)|a > 0, c > 0,gcd(a,6) = 1}.
Because M and r = (rδ) are assumed as fixed we will write gm,t (τ ) := gm,t (τ, r) and
f (τ) := f (τ, r) throughout.

We are interested in deriving a formula for gm,t (γ τ) with γ ∈ �0(N)∗ where N is
an integer such that for every prime p with p|m we have also p|N , i.e.,

p|m implies p|N, (13)

and such that for every δ|M with rδ 	= 0 we have δ|mN , i.e.,

δ|M implies δ|mN; (14)

and some additional properties which we will specify later. For our purpose it is
convenient to define the following set:

Definition 2.1 We define

� := {(m,M,N, (rδ)) ∈ (N∗)3 × R(M) | m,M,N

and (rδ) satisfy the conditions (13) and (14)}.

Lemma 2.2 Let (m,M,N, (rδ)) ∈ �, γ = (
a b
c d

) ∈ �0(N)∗ and λ a nonnegative in-
teger. Then there exist integers x, y, a′ such that:

(i) (a + κλc)x + mcy = 1, where y := y0(mκc)3 for some integer y0.
(ii) a′a ≡24c 1.

Moreover, setting μ := λdx + bx−ba′m2

κ
,

(iii) For ε as in Definition 1.4, τ ∈ H
∗ and δ|M with rδ 	= 0 we have

η

(
δ(γ τ + κλ)

m

)

= (−i(cτ + d))
1
2 ε(a + κλc,−δy,mc/δ, x)η

(
δ(τ + κμ)

m

)

e
2πiabmδ

24 , (15)

and

ε(a + κλc,−δy,mc/δ, x) =
(

mcδ

a + κλc

)

e− (a+κλc)πi
12 (mc/δ−3). (16)
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(iv) The value μ is an integer, and if λ runs through a complete set of representatives
of residue classes modulo m then so does μ; i.e., λ �→ μ is a bijection of Z/mZ.

(v) We have

λ ≡c μa2 − ab
1 − m2

κ
. (17)

Proof We prove each part of Lemma 2.2 separately.
(i) We know that the equation

(a + κλc)x + mcy0(mκc)3 = 1 (18)

has integer solutions x and y0 iff

gcd(a + κλc,mc(mκc)3) = 1. (19)

To prove (19) it suffices to prove gcd(a + κλc,m) = 1 and gcd(a + κλc, κc) = 1. We
have that

gcd(a + κλc, κc) = gcd(a, κc).

But gcd(a, c) = 1 because ad − bc = 1, and gcd(a, κ) = 1 because gcd(a,6) = 1
by assumption and κ being a divisor of 24 from (9), so gcd(a, κc) = 1. Next we see
that gcd(a + κλc, c) = 1 implies gcd(a + κλc,N) = 1 because N |c. But gcd(a +
κλc,N) = 1 implies gcd(a + κλc,m) = 1 by (13). This proves (19).

Note: Because of y = y0(mκc)3 Lemma 1.8 gives

y ≡24 0. (20)

(ii) The assumptions gcd(a,6) = 1 and gcd(a, c) = 1 imply that gcd(a,24c) = 1,
which is equivalent to the existence of an integer a′ such that a′a ≡24c 1.

(iii) To prove (15) we let ε be as in Definition 1.4 let

K := (−i(cτ + d))
1
2 ε

(

a + κλc,−δy,
mc

δ
, x

)

. (21)

We apply Lemma 1.13 with

ξ =
(

A B

C D

)

=
(

δ(a + κλc) δ(b + κλd)

mc md

)

,

k = 1/2, f (τ ) = η(τ), g(γ, τ ) = (−i)1/2ε(a, b, c, d)η(τ ),

and we get

η

(
δ((a + κλc)τ + b + κλd)

mcτ + md

)

= Kη

(
δτ + δ(b + κλd)x + mdδy

m

)

(22)

which is valid under the assumption that (a + κλc)x + δy mc
δ

= 1 which implies that

δ(a + κλc)x + δymc = δ = gcd(δ(a + κλc),mc),

as required in Lemma 1.13.
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Note that mc
δ

is a positive integer (N |c and, by (14), δ|mN ), and that (a +κλc)x +
δy mc

δ
= 1 because of (i). Also recall that gcd(a + κλc,m) = 1 because of (13).

We will also need that for all integers j we have as a trivial consequence of (2):

η(τ + j) = η(τ)e
2πij

24 . (23)

Consequently,

η

(
δ(γ τ + κλ)

m

)

= η

(
δ((a + κλc)τ + b + κλd)

mcτ + md

)

(by substituting for γ )

= Kη

(
δτ + δ(b + κλd)x + mdδy

m

)

(by (22))

= Kη

(
δτ + δ(b + κλd)x

m

)

(by (23) and (20))

= Kη

(
δτ + δ(b + κλd)x − δba′m2

m
+ δba′m

)

= Kη

(
δτ + δ(b + κλd)x − δba′m2

m

)

e
2πiδa′bm

24 (by (23))

= Kη

(
δ(τ + κμ)

m

)

e
2πiδa′bm

24 (by the def. of μ)

= Kη

(
δ(τ + κμ)

m

)

e
2πiδabm

24 (because of a′ ≡24 a).

In the last line we used fact (ii), namely aa′ ≡24c 1. This together with a2 ≡24 1
implies that a ≡24 a′ because of uniqueness of the inverse modulo 24.

To prove (16) we first note that

gcd(a + κλc,6) = 1, (24)

because of κc ≡6 0 by Lemma 1.8 and (13) together with N |c.
We have that

ε

(

a + κλc,−δy,
mc

δ
, x

)

=
(

mc/δ

a + κλc

)

e− (a+κλc)πi
12 (mc/δ+δy−3) (by (7) and (24))

=
(

mc/δ

a + κλc

)

e− (a+κλc)πi
12 (mc/δ−3) (by (20))

=
(

mc/δ

a + κλc

)(
δ2

a + κλc

)

e− (a+κλc)πi
12 (mc/δ−3) (see below)
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=
(

mcδ

a + κλc

)

e− (a+κλc)πi
12 (mc/δ−3) (by (3)).

The third equality is shown as follows. If gcd(a + κλc, δ) = 1 then Defini-

tion 1.2 implies that ( δ2

a+κλc
) = 1. To prove relative primeness we see by (13)

and (14) that each prime p dividing δ also divides N and consequently also c. So
gcd(a + κλc,p) = gcd(a,p). But since p|c and gcd(a, c) = 1 by ad − bc = 1, we
conclude that gcd(a + κλc, δ) = 1.

(iv) In order to prove that μ is an integer we need to show that bx − ba′m2 ≡κ 0.
By (18) we obtain ax ≡κ 1. We also know by (ii) that aa′ ≡24c 1. Because of κ|24
by (9), we have that aa′ ≡κ 1. From this it follows that x ≡κ a′ by uniqueness of
inverses mod κ . Consequently,

bx − ba′m2 ≡κ bx − bxm2 ≡κ bx(1 − m2) ≡κ 0,

using κ|(1 − m2) from (9).
Next we show that the mapping λ �→ μ is a bijection of Z/mZ by providing an

inverse using the observation that:

μ − bx − ba′m2

κ
≡m λdx implies λ ≡m (xd)−1

(

μ − bx − ba′m2

κ

)

.

The only non-trivial step is to show that d and x are indeed invertible modulo m.
First of all, x is invertible modulo m because of (18). Because of ad − bc = 1 we
have that gcd(c, d) = 1, and since N |c we have that gcd(N,d) = 1. By (13) we get
that gcd(m,d) = 1 which shows that also d is invertible modulo m.

(v) By (18) we have that ax ≡κc 1. From aa′ ≡24c 1 and κ|24 we conclude that
aa′ ≡κc 1 which implies x ≡κc a′ by uniqueness of inverses mod κc.

Because of the relation ad − bc = 1 we have that ad ≡c 1. From ax ≡κc 1 it
follows that ax ≡c 1 which implies d ≡c x by uniqueness of inverses mod c.

Next we will show the validity of

μ ≡c λd2 + bd
1 − m2

κ
(25)

by the following chain of arguments starting with the definition of μ:

κμ ≡κc κλdx + bx − ba′m2 ≡κc κλdx + bx − bxm2 ≡κc κ

(

λdx + bx
1 − m2

κ

)

which implies that

μ ≡c λdx + bx
1 − m2

κ
≡c λd2 + bd

1 − m2

κ
.

We thus have proven (25). By multiplying the last congruence with a2, we obtain:

μa2 − ba
1 − m2

κ
≡c λ.
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We have again used that the inverse of d is a modulo c. �

In order to arrive at our main result, Theorem 2.14, we need to introduce some
additional assertions, Lemmas 2.3 to 2.11.

Lemma 2.3 Let l, j be integers and C,a, s non-negative integers such that:

(1) the relation p|l implies p|C for any prime p;
(2) gcd(a, l) = 1;
(3) l = 2sj where j is odd;
(4) a is odd and C is even.

Then for any non-negative integer λ:

(
l

a + λC

)

=
(

l

a

)

(−1)
λC(j−1)

4 (−1)
s(2aλC+λ2C2)

8 .

Proof By a similar reasoning as in the proof of (16) we see that gcd(a + λC, l) = 1
for all integers λ and thus gcd(a + λC, j) = 1.

Next we can write j = j1j2 where j1 is squarefree and j2 is a square. Clearly j1|C
by assumption. Then:

(
j

a + λC

)

=
(

j1

a + λC

)(
j2

a + λC

)

(by (3))

=
(

j1

a + λC

)

(because of gcd(a + λC, j) = 1)

= (−1)
a+λC−1

2
j1−1

2

(
a + λC

j1

)

(by (5))

= (−1)
a+λC−1

2
j1j2−1

2

(
a + λC

j1

)

(because of j2 ≡4 1)

= (−1)
λC(j−1)

4 (−1)
a−1

2
j1−1

2

(
a

j1

)

(because of a + λC ≡j1 a)

= (−1)
λC(j−1)

4

(
j1

a

)

(by (5))

= (−1)
λC(j−1)

4

(
j

a

) (

by (3) and because of

(
j2

a

)

= 1

)

.

Summarizing, we have proven:

(
j

a + λC

)

= (−1)
λC(j−1)

4

(
j

a

)

. (26)

Next,
(

2

a + λC

)

= (−1)
2aλC+λ2C2

8

(
2

a

)

(27)
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is easily seen by

(
2

a + λC

)

= (−1)
(a+λC)2−1

8 (by (4))

= (−1)
2aλC+λ2C2

8

(
2

a

)

(by (4)).

The following derivation concludes the proof:

(
l

a + λC

)

=
(

2

a + λC

)s(
j

a + λC

)

(by (3))

=
(

2

a

)s(
j

a

)

(−1)
λC(j−1)

4 (−1)
s(2aλC+λ2C2)

8 (by (26) and (27))

=
(

l

a

)

(−1)
λC(j−1)

4 (−1)
s(2aλC+λ2C2)

8 (by (3)). �

In order to make the next lemmas more readable we need to introduce some helpful
definitions:

Definition 2.4 A tuple (m,M,N, (rδ)) ∈ � is said to be κ-proper, if

κN
∑

δ|M
rδ

mN

δ
≡24 0, (28)

and

κN
∑

δ|M
rδ ≡8 0, (29)

where as usual κ = gcd(1 − m2,24).

Definition 2.5 For (m,M,N, (rδ)) ∈ �, γ = (
a b
c d

) ∈ �0(N)∗ and λ a non-negative
integer we define:

β(γ,λ) := e
∑

δ|M
2πirδδamb

24
∏

δ|M

(
mcδ

a + κλc

)|rδ |
e
− (a+κλc)πi

12

∑
δ|M rδ(mc/δ−3)

, (30)

where ( ·
· ) is the Jacobi symbol.

Remark 2.6 It follows by Definition 2.5 that (β(γ,λ))24 = 1 for all λ ∈ Z.

Definition 2.7 For M a positive integer and (rδ) ∈ R(M) let π(M, (rδ)) = (s, j)

where s is a non-negative integer and j an odd integer uniquely determined by∏
δ|M δ|rδ | = 2sj .
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Lemma 2.8 Let (m,M,N, (rδ)) ∈ � be κ-proper, γ = (
a b
c d

) ∈ �0(N)∗, (s, j) :=
π(M, (rδ)). Then for λ a non-negative integer the following relations hold:

β(γ,λ) =
∏

δ|M

(
mcδ

a + κλc

)|rδ |
e
− πia

12 (
∑

δ|M mc
δ

rδ−∑
δ|N rδδmb−3

∑
δ|M rδ), (31)

and

β(γ,λ) =
⎧
⎨

⎩

β(γ,0) if κc ≡8 0,

β(γ,0)(−1)
κλc(j−1)

4 (−1)s
2aκλc+κ2λ2c2

8 if
∑

δ|M rδ ≡2 0.
(32)

Proof To prove (31) we see from its definition that β(γ,λ) can be rewritten as

=
∏

δ|M

(
mcδ

a + κλc

)|rδ |
e
− πia

12 (
∑

δ|M rδ
mc
δ

−∑
δ|M mbδrδ−3

∑
δ|M rδ)

× e
− πiκλc

12 (
∑

δ|M rδ
mc
δ

−3
∑

δ|M rδ).

Because of N |c, (28) and (29) we can conclude that
∑

δ|M rδcκ
mc
δ

≡24 0 and
κc

∑
δ|M rδ ≡8 0. Hence

e
− πiκλc

12 (
∑

δ|M rδ
mc
δ

−3
∑

δ|M rδ) = 1.

To prove (32) we see that condition (29) implies that either
∑

δ|M rδ ≡2 0 or
κN ≡8 0. From (31) and Lemma 2.3 we see that if κc ≡8 0 then β(γ,λ) =
β(γ,0), λ ≥ 0.

If
∑

δ|M rδ ≡2 0 then

∏

δ|M

(
mc

a + κλc

)|rδ |
=

(
mc

a + κλc

)∑
δ|M |rδ |

=
(

mc

a + κλc

)∑
δ|M rδ

= 1,

and we have

∏

δ|M

(
δmc

a + κλc

)|rδ |
=

(∏
δ|M δ|rδ |

a + κλc

)

(by (3))

=
(∏

δ|M δ|rδ |

a

)

(−1)
κλc(j−1)

4 (−1)
s(2aκλc+κ2λ2c2)

8 (by Lemma 2.3)

=
∏

δ|M

(
δmc

a

)|rδ |
(−1)

κλc(j−1)
4 (−1)

s(2aκλc+κ2λ2c2)
8 (by (3)).

In view of (31) this implies that

β(γ,λ) = β(γ,0)(−1)
κλc(j−1)

4 (−1)
s(2aκλc+κ2λ2c2)

8 . (33)

Note that in order to apply Lemma 2.3 above we need to verify that p|∏δ|M δ|rδ |

implies p|κc and that gcd(a,
∏

δ|M δ|rδ |) = 1. This follows from (13) and (14) to-
gether with gcd(a, c) = 1 because of ad − bc = 1. �
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Lemma 2.9 Let (m,M,N, (rδ)) ∈ �, γ = (
a b
c d

) ∈ �0(N)∗ and t an integer with
0 ≤ t ≤ m − 1 such that the relation

24m

gcd(κ(−24t − ∑
δ|M δrδ),24m)

∣
∣
∣
∣N (34)

holds, then for τ ∈ H
∗ we have that

gm,t (γ τ) = (−i(cτ + d))

∑
δ|M rδ

2 e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m

× 1

m

m−1∑

λ=0

β(γ,λ)e
2πiκμa2(−24t−∑

δ|M δrδ)

24m

∏

δ|M
ηrδ

(
δ(τ + κμ)

m

)

, (35)

where μ is defined as in Lemma 2.2.

Proof Given two integers λ,λ′ such that λ ≡c λ′, relation (34) implies

λ ≡ 24m
gcd(24m,κ(−24t−∑

δ|M δrδ))
λ′,

consequently

e
2πiλκ(−24t−∑

δ|M δrδ)

24m = e
2πiλ′κ(−24t−∑

δ|M δrδ)

24m .

Therefore by (v) in Lemma 2.2 we conclude that:

e
2πiλκ(−24t−∑

δ|M δrδ)

24m = e
2πiκ(μa2− ab(1−m2)

κ )(−24t−∑
δ|M δrδ)

24m . (36)

Hence,

gm,t (γ τ) = 1

m

m−1∑

λ=0

e
2πiκλ(−24t−∑

δ|M δrδ)

24m

∏

δ|M
ηrδ

(
δ(γ τ + κλ)

m

)

(by (12))

= (−i(cτ + d))

∑
δ|M rδ

2

× 1

m

m−1∑

λ=0

β(γ,λ)e
2πiκλ(−24t−∑

δ|M δrδ)

24m

∏

δ|M
ηrδ

(
δ(τ + κμ)

m

)

(by (15), (16) and (30))

= (−i(cτ + d))

∑
δ|M rδ

2 e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m

× 1

m

m−1∑

λ=0

β(γ,λ)e
2πiκμa2(−24t−∑

δ|M δrδ)

24m

∏

δ|M
ηrδ

(
δ(τ + κμ)

m

)

(by (36)). �
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Lemma 2.10 Let (m,M,N, (rδ)) ∈ � be κ-proper, γ = (
a b
c d

) ∈ �0(N)∗, and t an
integer with 0 ≤ t ≤ m − 1 such that (34) holds. Let t ′ be the unique integer satisfy-

ing 0 ≤ t ′ ≤ m − 1 and t ′ ≡m ta2 + a2−1
24

∑
δ|M δrδ . Assume that κN ≡8 0, then for

τ ∈ H
∗ we have that

gm,t (γ τ) = β(γ,0)(−i(cτ + d))

∑
δ|M rδ

2 e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m gm,t ′(τ ).

Proof

gm,t (γ τ) = β(γ,0)(−i(cτ + d))

∑
δ|M rδ

2 e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m

× 1

m

m−1∑

λ=0

e
2πiκμ(−24t ′−∑

δ|M δrδ)

24m

∏

δ|M
ηrδ

(
δ(τ + κμ)

m

)

(by (35) and because β(γ,0) = β(γ,λ), λ ∈ Z by (32))

= β(γ,0)(−i(cτ + d))

∑
δ|M rδ

2 e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m gm,t ′(τ )

(by (12) and (iv) in Lemma 2.2). �

Lemma 2.11 Let (m,M,N, (rδ)) ∈ � be κ-proper, γ = (
a b
c d

) ∈ �0(N)∗, (s, j) =
π(M, (rδ)) and t an integer with 0 ≤ t ≤ m − 1 such that (34) holds. Assume further
that

∑
δ|M rδ ≡2 0 and 2|m.

(i) If s ≡2 0 let t ′ be the unique integer satisfying t ′ ≡m ta2 + a2−1
24

∑
δ|M δrδ −

3mca2(j−1)
24 and 0 ≤ t ′ ≤ m − 1. Then for τ ∈ H

∗ we have that

gm,t (γ τ) = (−1)
abc(1−m2)(j−1)

4 β(γ,0)

× (−i(cτ + d))

∑
δ|M rδ

2 e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m gm,t ′(τ ). (37)

(ii) If κc ≡4 0 let t ′ be the unique integer satisfying t ′ ≡m − 3mcsa2

24 + ta2 +
a2−1

24

∑
δ|M δrδ and 0 ≤ t ′ ≤ m − 1. Then for τ ∈ H

∗ we have that

gm,t (γ τ) = (−1)
sa2bc(1−m2)

4 β(γ,0)

× (−i(cτ + d))

∑
δ|M rδ

2 e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m gm,t ′(τ ). (38)

Proof (i):

gm,t (γ τ) = (−i(cτ + d))

∑
δ|M rδ

2 e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m β(γ,0)

× 1

m

m−1∑

λ=0

(−1)
κλc(j−1)

4 e
2πiκμa2(−24t−∑

δ|M δrδ)

24m

∏

δ|M
ηrδ

(
δ(τ + κμ)

m

)
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(by (35) and (33), together with 2|m which implies 2|c because of (13))

= (−1)
abc(1−m2)(j−1)

4 β(γ,0)(−i(cτ + d))

∑
δ|M rδ

2 e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m

× 1

m

m−1∑

λ=0

(−1)
κμa2c(j−1)

4 e
2πiκμa2(−24t−∑

δ|M δrδ)

24m

∏

δ|M
ηrδ

(
δ(τ + κμ)

m

)

(by (17) and c ≡2 0)

= (−1)
abc(1−m2)(j−1)

4 β(γ,0)(−i(cτ + d))

∑
δ|M rδ

2 e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m

× 1

m

m−1∑

λ=0

e
2πiκμa2(3mc(j−1)−24t−∑

δ|M δrδ)

24m

∏

δ|M
ηrδ

(
δ(τ + κμ)

m

)

= (−1)
abc(1−m2)(j−1)

4 β(γ,0)(−i(cτ + d))

∑
δ|M rδ

2 e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m

× 1

m

m−1∑

λ=0

e
2πiκμ(−24t ′−∑

δ|M δrδ)

24m

∏

δ|M
ηrδ

(
δ(τ + κμ)

m

)

(by substituting for t ′)

= (−1)
abc(1−m2)(j−1)

4 β(γ,0)(−i(cτ + d))

∑
δ|M rδ

2 e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m gm,t ′(τ )

(by (12) and (iv) in Lemma 2.2).
(ii):

gm,t (γ τ) = (−i(cτ + d))

∑
δ|M rδ

2 e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m β(γ,0)

× 1

m

m−1∑

λ=0

(−1)
saκλc

4 e
2πiκμa2(−24t−∑

δ|M δrδ)

24m

∏

δ|M
ηrδ

(
δ(τ + κμ)

m

)

(by (35) and (33))

= (−1)
sa2bc(1−m2)

4 β(γ,0)(−i(cτ + d))

∑
δ|M rδ

2 e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m

× 1

m

m−1∑

λ=0

(−1)
κμa3cs

4 e
2πiκμa2(−24t−∑

δ|M δrδ)

24m

∏

δ|M
ηrδ

(
δ(τ + κμ)

m

)

(by (17) and c ≡2 0))

= (−1)
sa2bc(1−m2)

4 β(γ,0)(−i(cτ + d))

∑
δ|M rδ

2 e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m

× 1

m

m−1∑

λ=0

e
2πiκμ(−24t ′−∑

δ|M δrδ)

24m

∏

δ|M
ηrδ

(
δ(τ + κμ)

m

)
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(by substituting for t ′)

= (−1)
sa2bc(1−m2)

4 β(γ,0)(−i(cτ + d))

∑
δ|M rδ

2 e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m gm,t ′(τ )

(by (12) and (iv) in Lemma 2.2). �

Note that if 2 � m then κN ≡8 0 and Lemma 2.10 applies. If 2|m and κN 	≡8 0
then the Lemma 2.11 applies.

Let (m,M,N, (rδ)) ∈ � and s, j integers such that π(M, (rδ)) = (s, j). In the
next theorem we will also assume that:

κN ≡4 0 and 8|Ns, (39)

or

s ≡2 0 and 8|N(1 − j). (40)

Definition 2.12 We define

�∗ := {all tuples (m,N,N, t, (rδ)) with properties as listed in (41) below}:

(m,M,N, (rδ)) ∈ � is κ-proper, t ∈ N,0 ≤ t ≤ m − 1;

in addition (34) hold and (39) or (40). (41)

Definition 2.13 Let m,M,N ∈ N
∗ and (rδ) ∈ R(M). Define the operation 
 :

�0(N)∗ × {0, . . . ,m − 1} → {0, . . . ,m − 1}, (γ, t) �→ γ 
 t , where for γ = (
a b
c d

)

the image γ 
 t is uniquely defined by the relation

γ 
 t ≡m ta2 + a2 − 1

24

∑

δ|M
δrδ. (42)

Finally we arrive at the main theorem of this section which can be viewed as a
generalization of a theorem of R. Lewis; see Remark 2.15 below.

Theorem 2.14 Let (m,M,N, t, (rδ) = r) ∈ �∗, gm,t (τ, r) be as in Definition 1.11,
γ = (

a b
c d

) ∈ �0(N)∗, and β as in Definition 2.5. Then for all τ ∈ H
∗ we have that

gm,t (γ τ, r) = β(γ,0)(−i(cτ + d))

∑
δ|M rδ

2 e2πi
ab(1−m2)(24t+∑

δ|M δrδ)

24m · gm,γ
t (τ, r).

(43)

Proof If 2 � m then κN ≡8 0 and (43) follows from Lemma 2.10. If 2|m we split
the proof in two cases depending on if (39) or (40) holds. If (39) holds we have that
−3mcsa2

24 ≡m 0 and (−1)
sa2bc(1−m2)

4 = 1 and by (ii) in Lemma 2.11 we obtain (43).

Similarly when (40) holds we have that 3mca2(j−1)
24 ≡m 0 and (−1)

abc(1−m2)(j−1)
4 = 1

and by (i) in Lemma 2.11 we obtain (43). �
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Remark 2.15 Theorem 2.14 extends Theorem 1 in [8] which covers products of the
form

∏∞
n=1(1 − qn)r1 where r1 is a fixed integer.

3 Formulas for gm,t (γ τ) when γ ∈ �

Usually gm,t (τ ) = gm,t (τ, r) as defined in Definition 1.11 is not a modular form.
But if we choose a sequence (aδ) ∈ R(N) properly, we can always make sure that
(
∏

t ′∈P(t) gm,t ′(τ ))(
∏

δ|N ηaδ (δτ )) (with P(t) as in (53)) is a modular form. To prove
this we need some formulas for

∏
δ|N ηaδ (δ(γ τ)) and for gm,t (γ τ) that are valid for

all γ in �, in order to check condition (3) in Definition 1.1 of a modular form. This
is done in the Lemmas 3.1 to 3.7 below.

Recall from (9) that κ = gcd(1 − m2,24).

Lemma 3.1 Let (m,M,N, (rδ)) ∈ � and γ = (
a b
c d

) ∈ �. For δ|M with δ > 0 and λ

an integer let x(δ,λ) and y(δ,λ) be any fixed solutions to the equation δ(a + κλc) ·
x(δ,λ) + mc · y(δ,λ) = gcd(δ(a + κλc),mc). Further define

w(δ,λ, γ, τ ) := gcd(δ(a + κλc),mc)τ + δ(b + κλd)x(δ,λ) + mdy(δ,λ)
δm

gcd(δ(a+κλc),mc)

. (44)

Then there exists a map C : � → C such that for all γ ∈ � and τ ∈ H
∗ the following

relation holds:

∏

δ|M
ηrδ

(
δ(γ τ + κλ)

m

)

= C(γ )(cτ + d)
1
2

∑
δ|M rδ

∏

δ|M
ηrδ (w(δ,λ, γ, τ )). (45)

In addition, there exist mappings C′ : � → C and μ : Z �→ Z such that for all γ ∈
�0(N) and τ ∈ H

∗ the following relation holds:

∏

δ|M
ηrδ

(
δ(γ τ + κλ)

m

)

= C′(γ )(cτ + d)
1
2

∑
δ|M rδ

∏

δ|M
ηrδ

(
δ(τ + κμ(λ))

m

)

, (46)

where μ is chosen such that [λ]m �→ [μ(λ)]m is a bijection of Z/mZ.

Proof To prove (45) let γ = (
a b
c d

) ∈ �. Apply Lemma 1.13 with k set to 1
2 , f (τ) to

η(τ), g(γ, τ ) to (−i)
1
2 ε(a, b, c, d)η(τ ) and ξ to

(
δ(a+κλc) δ(b+κλd)

mc md

)
; then for all δ|M

with δ > 0 the following relation holds:

(
gcd(δ(a + κλc),mc)

δm
m(cτ + d)

)− 1
2

η

(
δ((a + κλc)τ + b + κλd)

m(cτ + d)

)

= (−i)
1
2 ε

(
δ(a + κλc)

gcd(δ(a + κλc),mc)
,−y(δ,λ),

mc

gcd(δ(a + κλc),mc)
, x(δ, λ)

)

× η(w(δ,λ, γ, τ )).
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Taking the product over δ|M on both sides and using that

η

(
δ(γ τ + κλ)

m

)

= η

(
δ((a + κλc)τ + b + κλd)

m(cτ + d)

)

proves (45).
To prove (46) we first will prove that gcd(δ(a + κλc),mc) = δ if N |c. By (14)

we see that δ|mc hence gcd(δ(a + κλc),mc) = δ gcd(a + κλc, mc
δ

). Also since
gcd(a + κλc, c) = 1 because of ad − bc = 1, and gcd(a + κλc,m) = 1 because
of (13), we can conclude that gcd(a + κλc, mc

δ
) = 1. Next, for λ ∈ Z let x0(λ) and

y0(λ) be any solutions to the equation (a + κλc)x0(λ) + mcy0(λ) = 1. Then we can
define x(δ,λ) := x0(λ) and y(δ,λ) := δy0(λ) because of gcd(δ(a + κλc),mc) = δ.
Consequently,

η(w(δ,λ, γ, τ )) = η

(
δτ + δ(b + κλd)x0(λ)

m
+ δdy0(λ)

)

. (47)

Next, let X and Y be integers such that κX + mY = 1. Such integers clearly exist
by (9). Define μ(λ) := (b + κλd)Xx0(λ). Then

η

(
δ(τ + κμ(λ))

m

)

= η

(
δ(τ + κ(b + κλd)Xx0(λ))

m

)

= η

(
δ(τ + (b + κλd)x0(λ))

m
− δY (b + κλd)x0(λ)

)

. (48)

This shows that

η(w(δ,λ, γ, τ )) = εη

(
δ(τ + κμ(λ))

m

)

for some 24-th root of unity ε because of (23) and by (47) and (48). It only remains to
show that μ is a bijection of Z/mZ. Note that x0(λ) is invertible modulo m because
of (a + κλc)x0(λ) + mcy0(λ) = 1 implying (μ(λ)X−1x0(λ)−1 − b)κ−1d−1 ≡m λ.
Note that d is invertible modulo m because of gcd(c, d) = 1 which by (13) implies
gcd(m,d) = 1. �

Remark 3.2 Note that (46) is very similar to (15) in Lemma 2.2 but here we lifted the
restriction gcd(a,6) = 1, a > 0, c > 0.

Proposition 3.3 Let M be a positive integer and r, a, b, c ∈ R(M). Then there exists
a positive integer k and a Taylor series h(q) in powers of q1/k such that

∏

δ|M
ηrδ

(
aδτ + bδ

cδ

)

= q
1
24

∑
δ|M rδ

aδ
cδ h(q). (49)

Proof The proof follows by substituting (2) into (49). We omit the details. �
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Lemma 3.4 Let γ0 ∈ �, (m,M,N, (rδ)) ∈ �, t ∈ Z with 0 ≤ t ≤ m − 1, and define
the mappings p : � × [0, . . . ,m − 1] → Q and p : � �→ Q by

p(γ,λ) := 1

24

∑

δ|M
rδ

gcd2(δ(a + κλc),mc)

δm
, (50)

and

p(γ ) := min
λ∈{0,...,m−1}p(γ,λ). (51)

Then for all γ = (
a b
c d

) ∈ �0(N)γ0�∞ there exists a positive integer k and a Taylor

series h(q) in powers of q
1
k such that for τ ∈ H

∗ we have

(cτ + d)
− 1

2

∑
δ|M rδgm,t (γ τ ) = h(q)qp(γ0).

Proof We write γ = (
a b
c d

) = γNγ0γ∞ where γN = ( aN bN

cN dN

) ∈ �0(N), γ∞ = ( 1 b∞
0 1

) ∈
�∞ and γ0 = ( a0 b0

c0 d0

) ∈ �. Then

gm,t (γ τ) = 1

m

m−1∑

λ=0

C1(λ)
∏

δ|M
ηrδ

(
δ(γ τ + κλ)

m

)

(by (12)) with suitably chosen C1 : {0, . . . ,m − 1} → C)

= (cN(γ0γ∞τ) + dN)
1
2

∑
δ|M rδ

× 1

m

m−1∑

μ(λ)=0

C2(μ(λ))
∏

δ|M
ηrδ

(
δ(γ0γ∞τ + κμ(λ))

m

)

(by (46) with suitably chosen C2 : {0, . . . ,m − 1} → C)

= ((cN(γ0γ∞τ) + dN)(c0(γ∞τ) + d0))
1
2

∑
δ|M rδ

× 1

m

m−1∑

μ(λ)=0

C3(μ(λ))

×
∏

δ|M
ηrδ

(
gcd2(δ(a0 + κμ(λ)c0),mc0)τ + C4(μ(λ), δ)

δm

)

(by (45) with suitably chosen C3 : {0, . . . ,m − 1} → C and C4 : {0, . . . ,m − 1} × {δ |
δ ∈ N, δ|M} �→ C)

= (cτ + d)
1
2

∑
δ|M rδ

× 1

m

m−1∑

μ(λ)=0

C3(μ(λ))
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×
∏

δ|M
ηrδ

(
gcd2(δ(a0 + κμ(λ)c0),mc0)τ + C4(μ(λ), δ)

δm

)

(because of
( aN bN

cN dN

)( a0 b0
c0 d0

)( 1 b∞
0 1

) = (
a b
c d

)
)

= (cτ + d)
1
2

∑
δ|M rδ

m−1∑

μ(λ)=0

C3(μ(λ))qp(γ0,μ(λ))h(μ(λ), q)

(where for each μ(λ), h(μ(λ), q) is a Taylor series in powers of q24p(γ0,μ(λ)) by (49))

= (cτ + d)
1
2

∑
δ|M rδqp(γ0)h(q)

(with h(q) := qp(γ0)
∑m−1

μ(λ)=0 C3(μ(λ))qp(γ0,μ(λ))−p(γ0)h(μ(λ), q)). �

Lemma 3.5 Let N ∈ N
∗, (aδ) ∈ R(N), f (τ) := ∏

δ|N ηaδ (δτ ), and define the map-

ping p∗ : � → C by p∗(( a0 b0
c0 d0

)) := 1
24

∑
δ|N

aδ gcd2(δ,c0)
δ

. Then for all γ = (
a b
c d

) ∈ �

there exists an integer k and a Taylor series h∗(q) in powers of q
1
k such that

(cτ + d)
− 1

2

∑
δ|N aδf (γ τ) = h∗(q)qp∗(γ ). (52)

Furthermore, for γ1 ∈ � and γ2 ∈ �0(N)γ1�∞ we have p∗(γ1) = p∗(γ2).

Proof Let wδ := gcd(δa, c)
gcd(δa,c)τ+δbxδ+dyδ

δ
where xδ, yδ ∈ Z such that aδxδ +

cyδ = gcd(aδ, c) for any fixed δ|N with δ > 0. Then

(cτ + d)
− 1

2

∑
δ|N aδ

∏

δ|N
ηaδ (δγ τ) = (cτ + d)

− 1
2

∑
δ|N aδ

∏

δ|N
ηaδ

( δa
gcd(δa,c)

wδ − yδ

c
gcd(δa,c)

wδ + xδ

)

= C
∏

δ|N
ηaδ (wδ)

(by (6)) with suitably chosen C ∈ C)

= Cqp∗(γ )
∏

δ|N
h∗(δ, q)

(by (2) for some Taylor series h∗(δ, q) where δ|N (with constant term 1)). This
proves (52).

To prove the remaining part of Lemma 3.5 let γ1 = (
a b
c d

)
and γ2 = (

A B
C D

)
. Because

of γ2 ∈ �0(N)γ1�∞ we have that γ2 = γNγ1γ∞ for some γN = (
a′ b′

c′N d ′
) ∈ �0(N) and

γ∞ = ( 1 b∞
0 1

) ∈ �∞. This shows that C = ac′N + d ′c and clearly gcd(d ′, c′N) = 1

because of a′d ′ − c′Nd ′ = 1. For δ|N this implies that gcd(δ,C) = gcd(δ, ac′δ N
δ

+
d ′c) = gcd(δ, d ′c) = gcd(δ, c). By this we have shown that the sums p∗(γ1) and
p∗(γ2) have the same summands which proves that they are identical. �



236 S. Radu

Theorem 3.6 Let (m,M,N, (rδ)) ∈ �, t ∈ Z with 0 ≤ t ≤ m − 1, p be as in
Lemma 3.4, (aδ) and p∗ be as in Lemma 3.5, and γ0 ∈ �. Then for all γ = (

a b
c d

) ∈
�0(N)γ0�∞ the expression

q−(p(γ0)+p∗(γ0))(cτ + d)
− 1

2

∑
δ|M rδ− 1

2

∑
δ|N aδgm,t (γ τ )

∏

δ|N
ηaδ (δ(γ τ))

finds a representation as a Taylor series in powers of q
1
k for some positive integer k.

Proof By Lemmas 3.4 and 3.5, for each γ = (
a b
c d

) ∈ �0(N)γ0�∞ there exists a pos-

itive integer k, and Taylor series h(q) and h∗(q) in powers of q
1
k such that

(cτ + d)
− 1

2 (
∑

δ|M rδ+∑
δ|N aδ)gm,t (γ τ )

∏

δ|N
ηaδ (δ(γ τ)) = h(q)h∗(q)qp(γ0)+p∗(γ0).

�

Lemma 3.7 Let F : H
∗ → C be a mapping, k an integer, and l a positive integer.

Assume that for all γ = (
a b
c d

) ∈ � there exists a positive integer n and a Taylor series

h(γ, q) in powers of q
1
n such that for all τ ∈ H

∗ the relation (cτ + d)−kF (γ τ) =
h(γ, q) holds. Then for all γ = (

a b
c d

) ∈ � there exists a positive integer n′ and a

Taylor series h∗(γ, q) in powers of q
1
n′ such that for all τ ∈ H

∗ the relation (cτ +
d)−kF (l(γ τ)) = h∗(γ, q) holds.

Proof We apply Lemma 1.13 with f (τ) = F(τ), g(γ, τ ) = h(γ, q), ξ = (
al bl
c d

)
, g :=

gcd(al, c), and x, y some integers such that alx + cy = g. As a consequence we have
that

(
g

l
(cτ + d)

)−k

f (l(γ τ)) = h

((
al
g

−y

c
g

x

)

, q
g2

l e
2πig

l
(blx+dy)

)

.

Choosing n′ = g2

l
n and

h∗(γ, q) = (g/l)kh

((
al
g

−y

c
g

x

)

, q
g2

l e
2πig

l
(blx+dy)

)

concludes the proof. �

Definition 3.8 We define

Z
∗
n := {[x]n ∈ Zn|gcd(x,n) = 1},

and

Sn := {y2|y ∈ Z
∗
n}.

Lemma 3.9 For all integers w ≥ 2 we have 24
∑

s∈Sw
s = [0]w . If gcd(w,6) = 1

then
∑

s∈Sw
s = [0]w .
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Proof If gcd(w,6) = 1 then [22]w ∈ Sw , which implies that [22]w ∑
s∈Sw

s =∑
s∈Sw

s. This is because multiplication by an element of Sw just permutes the sum-
mands. Consequently [22 − 1]w ∑

s∈Sw
s = [0]w , but 22 − 1 is invertible modulo

w and we can conclude that
∑

s∈Sw
s = [0]w . If we assume that w = 2s3t then

[52 − 1]w ∑
s∈Sw

s = [0]w . Next consider a general w = 2s3t u,gcd(u,6) = 1.
We have a ring isomorphism φ : Z2s3t u �→ Z2s3t × Zu given by φ([x]2s3t u) =
([x]2s3t , [x]u). Obviously,

φ

(

[24]w
∑

s∈Sw

s

)

= φ([24]w)
∑

s∈S2s3t ,

s′∈Su

(s, s′)

= φ([24]w)

(

[|Su|]2s3t

∑

s∈S2s3t

s, [|S2s3t |]u
∑

s∈Su

s

)

=
(

[24|Su|]2s3t

∑

s∈S2s3t

s, [24|S2s3t |]u
∑

s∈Su

s

)

= ([0]2s3t , [0]u).

Since φ is an isomorphism its kernel is {0}, which proves the lemma. �

Definition 3.10 For m,M ∈ N
∗, (rδ) ∈ R(M) and t ∈ N with 0 ≤ t ≤ m − 1 we de-

fine the map 
 : S24m×{0, . . . ,m−1} → {0, . . . ,m−1} where the image [s]24m
t is
uniquely determined by the relation [s]24m
t ≡m ts + s−1

24

∑
δ|M δrδ . We also define

P(t) := {[s]24m
t |[s]24m ∈ S24m}. (53)

Lemma 3.11 Let m, t,M,N be positive integers with 0 ≤ t ≤ m − 1 such that (13)
holds. Let (rδ) ∈ R(M), γ = (

a b
c d

) ∈ �0(N)∗, and 
 as in (42). Moreover, define

w := 24m

gcd(κ(24t + ∑
δ|M δrδ),24m)

.

Then the following statements hold:

(i) γ 
 t = [a2]24m
t .
(ii) [x]24m
t = [y]24m
t iff x ≡w y for all x, y ∈ Z.

(iii) P(t) = {γ 
 t |γ ∈ �0(N)∗}.
(iv) For [s]24m ∈ S24m we have

P(t) = {[s]24m
t ′|t ′ ∈ P(t)}.

(v) χ := ∏
t ′∈P(t) e

2πi
ab(1−m2)(24t ′+∑

δ|M δrδ)

24m is a 24-th root of unity.

Proof (i) If γ ∈ �0(N)∗ then gcd(a,6) = 1. By (13) and because of gcd(a,N) = 1
we also have that gcd(a,m) = 1, hence gcd(a,24m) = 1. This means that [a2]24m ∈
S24m.
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(ii) Assume that [s1]24m
t = [s2]24m
t for [s1]24m, [s2]24m ∈ S24m. Then

κ

(

s1t + s1 − 1

24

∑

δ|M
δrδ

)

≡m κ

(

s2t + s2 − 1

24

∑

δ|M
δrδ

)

(54)

because gcd(κ,m) = 1. Consequently (54) is equivalent to

κ

(

24t +
∑

δ|M
δrδ

)

(s1 − s2) ≡24m 0 (55)

and (55) is equivalent to

s1 − s2 ≡w 0.

(iii) By (i) we have

{γ 
 t |γ ∈ �0(N)∗}

=
{

[a2]24m
t |
(

a b

c d

)

∈ �0(N)∗
}

⊆ {[s]24m
t |[s]24m ∈ S24m}.

To show the other inclusion let [s]24m ∈ S24m. By definition there exists an [a]24m ∈
Z

∗
24m such that [s]24m = [a2]24m. Because gcd(a,24) = 1 we have gcd(a,6) = 1. We

want to show that there exists a λ such that gcd(a +24λm,N) = 1 because then there
exist integers x and y such that

(
a + 24λm −y

N x

)


 t = [s]24m
t

and the other inclusion is shown. It is sufficient to show that for each prime p with
p|N there exists an integer λp s.t. gcd(a + 24λpm,p) = 1 because then by the Chi-
nese remainder there exists a λ s.t. for all p|N we have that λ ≡p λp . If p is such that
p|N and p|24m then we simply choose λp = 0. If p|N and p � 24m and p|a then
choose λp = 1, if p � a choose λp = 0.

(iv) We have to show that given [s]24m ∈ S24m, the mapping [s]24m
t : P(t) �→
P(t) is a bijection. This is clear because the inverse is [s]−1

24m
t .
(v) Let S be a subset of S24m such that for [r1]24m, [r2]24m ∈ S we have r1 	≡w r2,

and such that for all [s]24m ∈ S24m there exists [r]24m ∈ S with r ≡w s. Then by (ii):

P(t) =
{

ts + s − 1

24

∑

δ|M
δrδ|[s]24m ∈ S

}

.

It is straight-forward to prove that the set S gives a complete set of representatives
of Sw . Next note that

χ =
∏

t ′∈P(t)

e2πi
ab(1−m2)(24t ′+∑

δ|M δrδ)

24m
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=
∏

[s]w∈Sw

e2πi
sab(1−m2)(24t+∑

δ|M δrδ)

24m

= e
2πiab(1−m2)(24t+∑

δ|M δrδ)

24m

∑
[s]w∈Sw

s.

Since κ|(1 − m2) and 24
∑

s∈Sw
s ≡w 0, by Lemma 3.9 we conclude that χ is a

24-th root of unity. �

4 Proving congruences by Sturm’s theorem

4.1 Proof strategy

Let M be a positive integer and r = (rδ) ∈ R(M). Let f (τ, r) = ∏
δ|M

∏∞
n=1(1 −

qδn)rδ = ∑∞
n=0 a(n)qn be as in Definition 1.11. Let m and u be positive integers and

t an integer satisfying 0 ≤ t ≤ m − 1. We want to prove or disprove the conjecture
a(mn + t) ≡u 0, n ≥ 0. It is convenient to introduce the following definition:

Definition 4.1 For u a positive integer and c(τ ) := ∑∞
n=0 c(n)qn a power series we

define ordu(c(τ )) := inf{n | u � c(n)}; we write c(τ ) ≡u 0 if ordu(c(τ )) = ∞.

First note that if c1(τ ) and c2(τ ) are power series in q and if p is a prime number
then the relation c1(τ )c2(τ ) ≡p 0 implies either c1(τ ) ≡p 0 or c2(τ ) ≡p 0.

Proposition 4.2 Let A,u be integers. Assume that for all divisors u′ of u and all
primes p dividing u/u′ we have

u′|A implies (u′p)|A. (56)

Then u|A.

Proof To prove this statement assume that u � A then there exists a prime q and α ∈ N

such that qα|A, qα+1
� A and qα+1|u. Set u′ = pα and p = q then by (56) pα+1|A

contradicting qα+1
� A. �

Suppose that we already know that u′|a(mn + t) for all divisors u′ of u and all
n ≥ 0. If we can prove that a(mn+t)

u′ ≡p 0 for any prime p dividing u/u′, then by
Proposition 4.2 we have a(mn + t) ≡u 0, n ≥ 0. In other words, our aim is to prove

1

u′
∑

n=0

a(mn + t)qn ≡p 0,

which is equivalent to proving

(
1

u′
∞∑

n=0

a(mn + t)qn

)24

≡p 0,
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which in turn is equivalent to proving

H(τ) :=
(

1

u′
∞∑

n=0

a(mn + t)qn

)24

h1(τ ) ≡p 0, (57)

where h1(τ ) is a power series in q with h1(τ ) 	≡p 0. We will choose h1(τ ) in
such a way that H(τ) becomes a modular form of weight k for some subgroup G

of � and some positive integer k. Then by Theorem 4.3 below it is sufficient to
show that ordp(H(τ)) > k

12 [� : G] in order to conclude that H(τ) ≡p 0 and hence
a(mn+ t)/u′ ≡p 0, n ≥ 0. In order to derive a bound for ordp(H(τ)) we will use that
for given power series c1(τ ) and c2(τ ) with ordp(c1(τ )) ≥ b1 for some b1 ∈ N and
ordp(c2(τ )) ≥ b2 for some b2 ∈ N then ordp(c1(τ )c2(τ )) ≥ b1 + b2.

We will consider two types of congruences:

Type 1: a(mn + t) ≡u 0, n ≥ 0;
Type 2: a(mn + t ′) ≡u 0, t ′ ∈ P(t), n ≥ 0.

Obviously congruences of Type 2 are special cases of congruences of Type 1 but we
have observed that one can be “|P(t)| times faster in practical computations” when
considering congruences of Type 2. At the current stage this observation relies on
experimental data and is not yet proved; for a comparison see Example 5.2.

Before entering a detailed discussion of how to prove congruences of Type 1 and 2
we recall a theorem of J. Sturm.

Theorem 4.3 (Sturm [17]) Let k be an integer and c(τ ) = ∑∞
n=0 c(n)qn a modular

form of weight k for a subgroup G of �. Assume that ordu(c(τ )) > k
12 [� : G] then

c(τ ) ≡u 0.

For setting up the lemmas in the next two subsections we have collected valuable
ideas from [16, p. 134, Corollary 9.1.4], attributed to Buzzard.

Proving congruences of Type 1

Lemma 4.4 Let (m,M,N, t, (rδ) = r) ∈ �∗, (aδ) ∈ R(N), n be the number of dou-
ble cosets in �0(N)\�/�∞ and {γ1, . . . , γn} ⊆ � a complete set of representatives of
the double cosets �0(N)\�/�∞. Assume that p∗(γi)+|P(t)|p(γi) ≥ 0 for 1 ≤ i ≤ n

and with p and p∗ as in the Lemmas 3.4 and 3.5. Next define:

ν := 1

24

((∑

δ|N
aδ + |P(t)|

∑

δ|M
rδ

)

[� : �0(N)] −
∑

δ|N
δaδ

)

− 1

m

∑

t ′∈P(t)

t ′ − |P(t)|
24m

∑

δ|M
δrδ.

Then for f (τ, r) = ∑∞
n=0 a(n)qn and gm,t (τ, r) as in Definition 1.11 the following

statements hold:
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(i) {(∏t ′∈P(t) gm,t ′(τ ))(
∏

δ|N ηaδ (δτ ))}24 is a modular form for the group �0(N) of
weight 12

∑
δ|N aδ + 12|P(t)|∑δ|M rδ .

(ii) For any u ∈ N
∗ we have that if ordu(

∑∞
n=0 a(mn+ t)qn) > ν then

∑∞
n=0 a(mn+

t)qn ≡u 0.

Proof (i) Let γ
(

a b
c d

) ∈ �0(N)∗ and let χ be as in (v) in Lemma 3.11. Then:

( ∏

t ′∈P(t)

gm,t ′(γ τ)

)24

= (β(γ,0)|P(t)|χ)24(cτ + d)
12|P(t)|∑δ|M rδ

×
( ∏

t ′∈P(t)

gm,[a2]24m
t ′(τ )

)24

(by (43), Remark 2.6 and (i) in Lemma 3.11)

= (cτ + d)
12|P(t)|∑δ|M rδ

( ∏

t ′∈P(t)

gm,t ′(τ )

)24

(58)

(by (iv) and (v) in Lemma 3.11).
By (6) we get:

(∏

δ|N
ηaδ

(
a(δτ) + bδ
c
δ
(δτ ) + d

))24

= (cτ + d)
12

∑
δ|N aδ

(∏

δ|N
ηaδ (δτ )

)24

. (59)

By (58) and (59) we obtain:

(( ∏

t ′∈P(t)

gm,t ′(γ τ)

)(∏

δ|N
ηaδ (δ(γ τ))

))24

= (cτ + d)
12

∑
δ|N aδ+12|P(t)|∑δ|M rδ

(( ∏

t ′∈P(t)

gm,t ′(τ )

)(∏

δ|N
ηaδ (δτ )

))24

(60)

We want to prove that

V (τ) :=
(( ∏

t ′∈P(t)

gm,t ′(τ )

)(∏

δ|N
ηaδ (δτ )

))24

(61)

is a modular form of weight 12
∑

δ|N aδ + 12|P(t)|∑δ|M rδ for the group �0(N).
Clearly, condition (1) of Definition 1.1 is satisfied. Also condition (2) is satisfied
because of (60) and because of Lemma 1.6. The only assertion left to verify is condi-
tion (3). Let γ ∈ �0(N)γi�∞, i ∈ {1, . . . , n}, then by Lemmas 3.5 and 3.4 there exists
a positive integer k such that h1(q), . . . , h|P(t)|(q), h∗(q) are Taylor series in powers
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of q
1
k such that:

(cτ + d)
−12

∑
δ|N aδ+12|P(t)|∑δ|M rδV (γ τ) = q24p∗(γi )+24|P(t)|p(γi )h∗(q)

|P(t)|∏

j=1

hj (q).

But by assumption p∗(γi) + |P(t)|p(γi) ≥ 0, so also condition (3) of Definition 1.1
is satisfied.

(ii) Assume that a(mn + t) ≡u′ 0 for some integer u′ that divides u. Let l ∈ N
∗ be

such that

h0(τ ) := 1

l

(
∏

t ′∈P(t),t ′ 	=t

( ∞∑

n=0

a(mn + t ′)qn

))24( ∞∏

n=1

∏

δ|N
(1 − qδn)aδ

)24

,

is a power series with integral coefficients such that for any prime p we have
h0(τ ) 	≡p 0. Then V (τ)

lu′24 in (61) can be written as:

V (τ)

lu′24
= 1

lu′24
q

∑
t ′∈P (t)(24t ′+∑

δ|M δrδ)/m

(
∏

t ′∈P(t)

( ∞∑

n=0

a(mn + t ′)qn

))24

× q
∑

δ|N δaδ

( ∞∏

n=1

∏

δ|N
(1 − qδn)aδ

)24

=
(

1

u′
∞∑

n=0

a(mn + t)qn

)24

q
1
m

(24
∑

t ′∈P (t) t ′+|P(t)|∑δ|M δrδ)+∑
δ|M δaδh0(τ ).

If we choose h1(τ ) := q
1
m

(24
∑

t ′∈P (t) t ′+|P(t)|∑δ|M δrδ)+∑
δ|M δaδh0(τ ) then in order

to prove a(mn+t)
u′ ≡p 0, n ≥ 0 for some prime p dividing u/u′ we need to prove

V (τ)

lu′24
=

(
1

u′
∞∑

n=0

a(mn + t)qn

)24

h1(τ ) ≡p 0, (62)

which is exactly (57) above. From the above derivation we note that

ordp(h1(τ )) ≥ 1

m

(

24
∑

t ′∈P(t)

t ′ + |P(t)|
∑

δ|M
δrδ

)

+
∑

δ|M
δaδ (63)

which is an integer because V (τ + 1) = V (τ). Because

ordp

((
1

u′
∞∑

n=0

a(mn + t)qn

)24
)

> 24ν,

by assumption, we have that

ordp

(
1

lu′24
V (τ)

)

>

(∑

δ|N
aδ + |P(t)|

∑

δ|M
rδ

)

[� : �0(N)]



An algorithmic approach to Ramanujan’s congruences 243

because of (62), (63) and by substituting according to the definition of ν. Theorem 4.3
allows us to conclude that 1

lu′24 V (τ) ≡p 0 which implies that a(mn+t)
u′ ≡p 0, n ≥ 0. �

We display the results of this subsection in the form of an algorithm description.
Our input to the algorithm is m,M,u ∈ N

∗, t ∈ {0, . . . ,m− 1} and (rδ) ∈ R(M). The
output of the algorithm is true of false depending on if a(mn + t) ≡u 0 for all n ≥ 0
where

∑∞
n=0 a(n)qn = ∏∞

n=1
∏

δ|M(1 − qδn)rδ . The steps are as follows:

• Compute the minimal N such that (m,M,N, t, (rδ)) ∈ �∗.
• Compute a complete set of representatives γ1, . . . , γd for the double cosets

�0(N)\�/�∞.
• Compute (aδ) ∈ R(N) such that p∗(γi) + |P(t)|p(γi) ≥ 0, i ∈ {1, . . . , d}, p and

p∗ are as in Lemmas 3.4 and 3.5.
• Let ν be as in Lemma 4.5. If a(mn + t) ≡u 0 for n ∈ {0, . . . , ν} then return true

otherwise return false.

Proving congruences of Type 2

Lemma 4.5 Let u be a positive integer, (m,M,N, t, (rδ)) ∈ �∗, (aδ) ∈ R(N), n be
the number of double cosets in �0(N)\�/�∞ and {γ1, . . . , γn} ⊆ � a complete set
of representatives of the double cosets �0(N)\�/�∞. Assume that p(γi)+p∗(γi) ≥
0, i = 1, . . . , n, with p and p∗ as in the Lemmas 3.4 and 3.5. Furthermore, let l :=
24m
κ

, tmin := mint ′∈P(t) t
′ and

ν := 1

24

((∑

δ|N
aδ +

∑

δ|M
rδ

)

[� : �0(N)] −
∑

δ|N
δaδ

)

− 1

24m

∑

δ|M
δrδ − tmin

m
.

Then

(i) (
∏

δ|N ηaδ (lδτ )
∑

t ′∈P(t) gm,t ′(lτ ))24 is a modular form of weight 12(
∑

δ|M rδ +∑
δ|N aδ) for the group �0(lN).

(ii) If ordu(
∑∞

n=0 a(mn + t ′)qn) > ν for all t ′ ∈ P(t) then
∑∞

n=0 a(mn + t ′)qn ≡u 0
for all t ′ ∈ P(t).

Proof (i) Clearly condition (1) of Definition 1.1 is satisfied.
In order to prove condition (2) we only need to consider γ ∈ �0(lN)∗ because of

Lemma 1.6. Let γ = (
a b
c d

) ∈ �0(lN)∗ then by Theorem 2.14 the following relation
holds:

gm,t (l(γ τ)) = β

((
a lb
c
l

d

)

,0

)

(−i(cτ + d))

∑
δ|M rδ

2

× e2πi
abl(1−m2)(24t+∑

δ|M δrδ)

24m · gm,[a2]24m
t (lτ )

= β

((
a lb
c
l

d

)

,0

)

(−i(cτ + d))

∑
δ|M rδ

2 gm,[a2]24m
t (lτ ), (64)
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because

e
2πiabl(1−m2)(24t+∑

δ|M δrδ)

24m = e
2πiab(1−m2)(24t+∑

δ|M δrδ)

κ = 1.

In this derivation we have substituted for l and used that κ|(1 − m2).
By (64), Remark 2.6 and (iv), (i) of Lemma 3.11 we obtain:

( ∑

t ′∈P(t)

gm,t ′(l(γ τ))

)24

= ((cτ + d))
12

∑
δ|M rδ

( ∑

t ′∈P(t)

gm,t ′(lτ )

)24

. (65)

By (65) and (59) we obtain:

(∏

δ|N
ηaδ (δl(γ τ))

∑

t ′∈P(t)

gm,t ′(l(γ τ))

)24

= ((cτ + d))
12(

∑
δ|N aδ+∑

δ|M rδ)

(∏

δ|N
ηaδ (δlτ )

∑

t ′∈P(t)

gm,t ′(lτ )

)24

; (66)

hence condition (2) of Definition 1.1 is satisfied.
In order to prove (3) in Definition 1.1 fix a t ′ ∈ P(t), and a γ ∈ �0(N)γi�∞, i ∈

{1, . . . , n}. Then by Lemmas 3.4 and 3.5 there exist positive integers k, k′ and Taylor

series h(q),h∗(q) in powers of q
1
k and q

1
k′ , respectively, such that

(cτ + d)
− 1

2 (
∑

δ|N aδ+∑
δ|M rδ)gm,t ′(γ τ)

∏

δ|M
ηaδ (δ(γ τ)) = h(q)h∗(q)qp(γi )+p∗(γi ).

Because of the positivity of p(γi) + p∗(γi), there exists an positive integer j such

that h(q)h∗(q)qp(γi )+p∗(γi ) is a Taylor series in powers of q
1
j . Summarizing, we have

proven that for all t ′ ∈ P(t) and all γ there exists a positive integer k and a Taylor
series h(γ, q) such that

(cτ + d)
− 1

2 (
∑

δ|N aδ+∑
δ|M rδ)gm,t ′(γ τ)

∏

δ|M
ηaδ (δ(γ τ)) = h(γ, q).

Then by Lemma 3.7 there exist positive integers k′(t ′), t ′ ∈ P(t) and Taylor series
h∗(t ′, γ, q), t ′ ∈ P(t) in powers of q1/k′(t ′) such that

(cτ + d)
− 1

2 (
∑

δ|N aδ+∑
δ|M rδ)gm,t ′(l(γ τ))

∏

δ|M
ηaδ (δl(γ τ)) = h∗(t ′, γ, q).

This proves that

(cτ + d)
−12(

∑
δ|N aδ+∑

δ|M rδ)

(∏

δ|N
ηaδ (δl(γ τ))

∑

t ′∈P(t)

gm,t ′(l(γ τ)

)24

=
( ∑

t ′∈P(t)

h∗(t ′, γ, q)

)24

.
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So we have proven condition (3) of Definition 1.1.
(ii) First we note that given positive integers u′, ν′ and a power series c(τ ) :=∑∞
n=0 c(n)qn such that ordu′(c(τ )) > ν′ we have that ordu(

∑∞
n=0 c(n)qan+b) >

aν′ + b for any positive integers a and b.
We have proven above that V2(τ ) := (

∏
δ|N ηaδ (lδτ )

∑
t ′∈P(t) gm,t ′(lτ ))24 is a

modular form of weight 12(
∑

δ|N aδ + ∑
δ|M rδ) on group �0(lN).

Let u′ be a divisor of u and p a divisor of u/u′. Assume that u′|a(mn + t ′) for
n ≥ 0 and t ′ ∈ P(t). We have that

V2(τ )

u′24
= q

24
κ

∑
δ|M δrδ+l

∑
δ|N δaδ+ 242

κ
tmin

( ∑

t ′∈P(t)

∞∑

n=0

a(mn + t ′)
u′ q

24
κ

(mn+t ′−tmin)

)24

×
( ∞∏

n=1

∏

δ|N
(1 − qlδn)aδ

)24

.

For this rewriting we have used the definition of gm,t (τ ), the definition of l and
that η(τ) can be written as an infinite product according to (2). We observe that

ordp(V2(τ )/u′24) >
24

κ

∑

δ|M
δrδ + l

∑

δ|N
δaδ + 242

κ
tmin + 242

κ
mν, (67)

by looking at the above rewriting of V2(τ )

u′24 and using the assumption that

ordu

( ∞∑

n=0

a(mn + t ′)qn

)

> ν,

for t ′ ∈ P(t). If we substitute for ν in (67) we obtain:

ordp(V2(τ )/u′24) >

(∑

δ|N
aδ +

∑

δ|M
rδ

)

[� : �0(N)]l.

Next observe that [� : �0(N)]l = [� : �0(Nl)] because there in no prime q such that
q|l and q � N together with (1). Next apply Theorem 4.3 and we obtain V2(τ )

u′24 ≡p 0.
This completes the proof. �

As in the previous subsection we display the results of this subsection in the
form of an algorithm description. Our input to the algorithm is m,M,u ∈ N

∗,
t ∈ {0, . . . ,m − 1} and (rδ) ∈ R(M). The output of the algorithm is true of false
depending on if a(mn + t ′) ≡u 0 for all n ≥ 0 and t ′ ∈ P(t) where

∑∞
n=0 a(n)qn =∏∞

n=1
∏

δ|M(1 − qδn)rδ . The steps are as follows:

• Compute the minimal N such that (m,M,N, t, (rδ)) ∈ �∗.
• Compute a complete set of representatives γ1, . . . , γd for the double cosets

�0(N)\�/�∞.
• Compute (aδ) ∈ R(N) such that p∗(γi) + p(γi) ≥ 0, i ∈ {1, . . . , d}, p and p∗ are

as in Lemmas 3.4 and 3.5.
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• Let ν be as in Lemma 4.5. If a(mn + t ′) ≡u 0 for n ∈ {0, . . . , ν} and t ′ ∈ P(t) then
return true otherwise return false.

5 Examples

Example 5.1 The generating function for broken 2-diamonds according to Andrews
and Paule [1] is given by

∞∏

n=1

(1 − q2n)(1 − q5n)

(1 − qn)3(1 − q10n)
=

∞∑

n=0

�2(n)qn.

In this paper they state some conjectures about the congruence properties of this
function such as

�2(10n + 2) ≡2 0, n ≥ 0, (68)

and

�2(25n + 14) ≡5 0, n ≥ 0. (69)

The first congruence (68) has been proven in [5] and the second (69) in [2].
Following our approach, alternative proofs can be provided as follows. Since
Chan [2] also proved that �2(25n + 24) ≡5 0, n ≥ 0 we can consider this to
be a congruence of Type 2; i.e., we will apply Lemma 4.5. We observe that
(25,10,10,14, (r1, r2, r5, r10) = (−3,1,1,−1)) ∈ �∗. A complete set of representa-
tives of the double cosets �0(10)\�/�∞ is given by

γ0 =
(

1 0
0 1

)

, γ1 =
(

0 −1
1 0

)

, γ2 =
(

1 0
2 1

)

, γ3 =
(

1 0
5 1

)

.

Also let (a1, a2, a5, a10) = (73,−21,−15,5) ∈ R(10). According to Lemma 4.5 we
need to show that p∗(γk) + p(γk) ≥ 0, k = 0,1,2,3 which can be readily verified
from the data below.

p∗(γ0) = 1

24

(

12 73

1
− 22 21

2
− 52 15

5
+ 102 5

10

)

= 6

24
,

p∗(γ1) = 1

24

(
73

1
− 21

2
− 15

5
+ 5

10

)

= 60

24
,

p∗(γ2) = 1

24

(

12 73

1
− 22 21

2
− 12 15

5
+ 22 5

10

)

= 30

24
,

p∗(γ3) = 1

24

(

12 73

1
− 12 21

2
− 52 15

5
+ 52 5

10

)

= 0,

p(γ0) = min
λ∈{0,...,24}

1

24

(

−gcd2(1 · (1 + 24λ · 0),25 · 0)
3

1 · 25

+ gcd2(2 · (1 + 24λ · 0),25 · 0)
1

2 · 25

+ gcd2(5 · (1 + 24λ · 0),25 · 0)
1

5 · 25
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− gcd2(10 · (1 + 24λ · 0),25 · 0)
1

10 · 25

)

= − 1

100
,

p(γ1) = min
λ∈{0,...,24}

1

24

(

−gcd2(1 · (0 + 24λ · 1),25 · 1)
3

1 · 25

+ gcd2(2 · (0 + 24λ · 1),25 · 1)
1

2 · 25

+ gcd2(5 · (0 + 24λ · 1),25 · 1)
1

25 · 5

− gcd2(10 · (0 + 24λ · 1),25 · 1)
1

10 · 25

)

= −5

2
,

p(γ2) = min
λ∈{0,...,24}

1

24

(

−gcd2(1 · (1 + 24λ · 2),25 · 2)
3

1 · 25

+ gcd2(2 · (1 + 24λ · 2),25 · 2)
1

2 · 25

+ gcd2(5 · (1 + 24λ · 2),25 · 2)
1

25 · 5

− gcd2(10 · (1 + 24λ · 2),25 · 2)
1

10 · 25

)

= −5

4
,

p(γ3) = min
λ∈{0,...,24}

1

24

(

−gcd2(1 · (1 + 24λ · 5),25 · 5)
3

1 · 25

+ gcd2(2 · (1 + 24λ · 5),25 · 5)
1

2 · 25

+ gcd2(5 · (1 + 24λ · 5),25 · 5)
1

5 · 25

− gcd2(10 · (1 + 24λ · 5),25 · 5)
1

10 · 25

)

= 0.

Further we have that [� : �0(10)] = 18,
∑

δ|10 aδ = 42,
∑

δ|10 rδ = −2,
∑

δ|10 δrδ

= −6 and
∑

δ|10 δaδ = 6 hence ν = 1
24 (40 ·18−6)− 1

24·25 · (−6)− 14
25 = 146/5 ≈ 30.

Consequently by Lemma 4.5(ii) we have that if �2(25n + 14) ≡5 0 and �2(25n +
24) ≡5 0 for n = 0, . . . ,30 then �2(25n+ 14) ≡5 �2(25n+ 24) ≡5 0 for all nonneg-
ative n. Also note that by (ii) in Lemma 4.5 we have that

q144
( ∞∑

n=0

�2(25n + 14)q25n+14 + �2(25n + 24)q25n+24
)24

×
( ∞∏

n=1

∏

δ|10

(1 − q25δn)aδ

)24

,

is a modular form of weight 480 for the group �0(250).
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Hirschhorn and Sellers [5] proved that �2(10n + 6) ≡2 0, n ≥ 0. To prove (68)
and Hirschhorn and Sellers’ result we can again apply Lemma 4.5. This time
we have that (10,10,40,2, (r1, r2, r5, r10) = (−3,1,1,−1)) ∈ �∗. If we choose
(aδ) = (a1, a2, a4, a5, a8, a10, a20, a40) = (33,−15,0,−6,0,3,0,0) then all condi-
tions of Lemma 4.5 apply and we get that ν ≥ 39. Consequently, verification of
�2(10n + 2) ≡2 0 and �2(10n + 6) ≡2 0 for 0 ≤ n ≤ 39 implies that (68) is true
for all n ≥ 0.

Example 5.2 The generating function

∞∏

n=1

1

(1 − q3n)(1 − qn)3
=

∞∑

n=0

a(n)qn

appears in [11]. Here Ono proves that the numbers a(63n + j), j = 22,40,49, n ≥ 0
are divisible by 7.

Ono uses Sturm’s criterion and needs to compute 148147 coefficients of a certain
generating function.

In order to solve this problem we can again apply Lemma 4.5. We find that
(63,3,21,22, (r1, r3) = (−3,−1)) ∈ �∗ and see that the Lemma applies with (aδ) =
(a1, a3, a7, a21) = (240,−77,−33,11). We find that ν ≥ 182. Hence we need to ver-
ify that a(63n + 22) ≡7 a(63n + 40) ≡7 a(63n + 49) ≡ 0 for 0 ≤ n ≤ 182 in order to
conclude that this congruence holds for all nonnegative n.

However Ono restates the problem by defining:

∞∑

n=0

b(n)qn =
( ∞∏

n=1

(1 − qn)14

(1 − q7n)2

) ∞∑

n=0

a(n)qn.

He observes that a(63n + j) ≡7 0, j = 22,40,49 is equivalent to b(63n + j) ≡7

0, j = 22,40,49. This is clear since
∏∞

n=1
(1−qn)14

(1−q7n)2 ≡7 1.
We can again apply Lemma 4.5 to this reformulated problem. With input

(63,21,21, 22, (r1, r3, r7, r21) = (11,−1,−2,0)) ∈ �∗ we see that the lemma ap-
plies with (aδ) = (a1, a3, a7, a21) = (5,−1,0,0). This time we find that ν ≥ 16,
which is a huge improvement. Because of a(n) ≡7 b(n) for all nonnegative n we
need to show a(63n + 22) ≡7 a(63n + 40) ≡7 a(63n + 49) ≡ 0 for 0 ≤ n ≤ 16 in
order to conclude that this congruence holds for all nonnegative n.

We can also prove the congruence b(63n + 22) ≡7 0 with Lemma 4.4 and with
the same input (63,21,21,22, (r1, r3, r7, r21) = (11,−1,−2,0)) ∈ �∗. We see that
all conditions of Lemma 4.4 are satisfied if we choose (aδ) = (a1, a3, a7, a21) =
(15,−4,0,0), and we get that ν ≥ 45 (approximately 3 times higher in comparison
to using Lemma 4.5). Hence we need to verify that b(63n + 22) ≡7 0 for 0 ≤ n ≤ 45
in order for the congruence to be true for all nonnegative n. Also (i) in Lemma 4.4
gives us that

q45
( ∏

t ′∈{22,40,49}

( ∞∑

n=0

b(63n + t ′)qn

))24( ∞∏

n=1

(1 − qn)15

(1 − q3n)4

)24

,

is a modular form of weight 420 for the group �0(21).
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Table 1 Congruences for various generating functions

Ex. Gen. funct. m t p ν N (aδ) ∈ R(N)

1 1−3215110−1 25 14,24 5 30 10 1732−215−15105

2 1−3215110−1 10 2,6 2 39 40 1332−155−6103

3 3−11−3 63 22,40,49 7 182 21 12402111

377733

4 143−17−1 63 22,40,49 7 8 21 157−1

5 1−1 5 4 5 1 5 15

6 1−1 7 5 7 2 7 187−1

7 1−1 11 6 11 5 11 111

8 1−1 25 24 25 5 5 1265−5

9 1−1 49 47 49 14 7 1507−7

10 1−1 113 · 13 t ∈ P(237) 13 103145 143 117551143122

111595131342

11 11213−1 113 · 13 t ∈ P(237) 13 742 143 110411−9

12 1−1 125 74,124 125 26 5 11305−25

13 1−2 5 3 5 2 5 1115−2

14 1−2 25 23 25 10 5 1525−10

15 1−8 11 4 11 37 11 18911−8

16 1311−1 11 4 11 2 11 11

17 251−44−2 625 573 625 1301 20 11736443410217

2108553472086

18 1−3+593

3151 45 22,40 5 7 15 163−2151

19 1−3+793

3171 63 49 7 12 21 153−1

20 1−3+1193

31111 99 94 11 22 33 133−1

21 1−3+1993

31191 171 49 19 63 22 12

Example 5.3 In this example we are considering several generating functions and
consider their congruence properties. Given a positive integer M we assume a gen-
erating function to be of the form

∏
δ|M

∏∞
n=1(1 − qδn)rδ = ∑∞

n=0 a(n)qn, and we
abbreviate such a generating function by

∏
δrδ . In Table 1 below the second column

describes the generating function that we are considering. In columns 3,4 and 5 we
specify the integers m, t and p for which we wish to prove that a(mn+ t) ≡p 0, n ≥ 0.
The column labeled by N specifies the integer N as in Lemma 4.5. The last column
specifies the (aδ) in R(N) such that Lemma 4.5 applies; this is also listed in the form∏

δ|N δaδ . Finally the column ν shows the bound for the “verification proof”; i.e., that,
number such that if a(mn + t) ≡p 0 is true for all 0 ≤ n ≤ ν and all t in column 4,
then it is true for all n ≥ 0.

Remark 5.4 Note that the examples 5,6 and 7 are the famous Ramanujan congru-
ences. Let p(n) denote the number of partitions of n ∈ N; then the entries in example
5 show that in order to prove p(5n+4) ≡5 0 for all n ≥ 0, it is sufficient to verify that
5|p(4). Similarly if 7|p(5) and 7|p(12) then p(7n + 5) ≡7 0 for all n ≥ 0. Finally in
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order to prove p(11n+6) ≡11 0 for all n ≥ 0 we need to verify that p(11n+6) ≡11 0
for 0 ≤ n ≤ 5. Ono [3] obtains bounds twice as big for the same congruences.

Remark 5.5 Generally, for some congruences one obtains a much better bound if one
multiplies the generating function by

∏∞
n=1

(1−qn)p

(1−qpn)
≡p 1 for some prime p when

one wants to prove a congruence modulo p. This trick has been found by Ono [3].
In the table above examples 3 and 4 prove the same congruence because their gener-
ating functions are equal modulo p; the same holds for examples 10,11 and exam-
ples 15,16; however the bounds ν differ.

Remark 5.6 Example 17 in the table has been studied by Eichhorn and Sellers [4].
The generating function is denoted in their paper by

∑∞
n=0 cφ2(n)qn and corresponds

to 2-colored Frobenius partitions. They conclude that cφ2(625n+ 573) ≡625 0, n ≥ 0
if and only if cφ2(625n + 573) ≡625 0,0 ≤ n ≤ 198745. As seen in the table we only
require that cφ2(625n + 573) ≡625 0,0 ≤ n ≤ 1301. This improves the number of
coefficients needed to be checked by a factor of approximately 152. In the end of the
paper they are stating that the computation took 147 hours while with our bound we
are decreasing the computation time to less then one hour!

Remark 5.7 The congruences in examples 18,19,20 and 21 are studied by Love-
joy [9]. If we multiply the generating function in examples 18,19,20 and 21 by
∏∞

n=1
1−qpn

(1−qn)p
for p = 5,7,11,19 we then obtain the same generating function f (q)

(and 9qf (q) is the generating function for 3-colored Frobenius partitions, e.g., [7]).
For examples 18,20 and 21, Lovejoy proves the congruences by checking the first
181,505 and 841 initial values while with the methods developed here we only need
to check the first 7,22 and 63 initial values. This gives an improvement by a factor
of 25,22 and 13, respectively.

Remark 5.8 It should be noted that there is a difference between what Ono and Eich-
horn [3] do and the approach here. Let f (q) = ∑∞

n=0 a(n)qn and assume that we
want to prove that

∑∞
n=0 a(mn + t)qn ≡p 0. Ono multiplies f (q) be a suitable η

product and gets a new generating function
∑∞

n=0 b(n)qn which is a modular form.
Then he shows that

∞∑

n=0

a(mn + t)qn ≡p 0 ⇐⇒
∞∑

n=0

b(m′n + t ′)qn ≡p 0

for suitable m′ and t ′. Finally he uses a lemma which says that if
∑∞

n=0 b(n)qn is a
modular form for a group �′ then also

∑∞
n=0 b(m′n+ t ′)qm′n+t ′ is a modular form for

another group for which he applies the theorem of Sturm. We on the other hand are
transforming

∑∞
n=0 a(mn + t)qn into a modular form by multiplying with a suitable

function h1(q). As we have seen, our method which is a generalization of the method
in Rademacher [12] in practice gives much better bounds ν.

Acknowledgement I would like to thank Professor Peter Paule for introducing me to this topic. He also
gave me very precise advice in which direction to proceed which has led to progress which I probably
would never have made alone.
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