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Abstract We present an extensive survey of bijective proofs of classical partitions
identities. While most bijections are known, they are often presented in a different,
sometimes unrecognizable way. Various extensions and generalizations are added in
the form of exercises.
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1. Introduction

Constructive Partition Theory is a rich subject, with many classical and important re-
sults which influenced the development of Enumerative Combinatorics in the twentieth
century. It is also a collection of various terminologies, notation and techniques, with a
number of results rediscovered on many occasions, and some fundamental bijections
remain in obscurity. This survey is an attempt to present the subject in a coherent way.

First, let us outline the framework of what we do in the survey. Our goal is to give
direct combinatorial (bijective or involutive) proofs of partition identities, and occa-
sionally some applications. To start, we translate the identities into equalities between
the numbers of two types of partitions. In most cases, we represent these partitions
graphically, by means of Young diagrams, and then use various combinatorial tools
to transform one of the classes of partitions into the other. Although this approach
appears to be simple, this is rather misleading as the resulting partition identities are
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6 I. Pak

often very powerful and at times difficult to prove by other means. As the reader will
see, finding bijective proofs requires a great deal of ingenuity, but once found they are
often not difficult to understand.

Historically, most partition identities were first proved analytically, and only much
later combinatorially. The subject of this survey is so much intertwined with the
subjects of partition identities, hypergeometric series, and q-series in general, that
it is difficult to give an adequate historical presentation of one without the other.
Nevertheless we cannot refrain from making a brief historical overview of the 120
years of effort of giving bijective proofs of partition identities. We emphasize the
combinatorial part of the story and leave aside the meaning and history of partition
identities (see Section 10 for the references).

The Theory of Partitions as a subject started with Euler’s celebrated treatise [66],
where Chapter 16 introduced integer partitions as we know them. Back in 1748, Euler
proved a variety of partition identities, most notably the Pentagonal Theorem and the
“partitions of n into odd parts vs. partitions of n into distinct parts” theorem. In the next
250 years a great number of partition identities were proved, including those bearing
the names of Gauss, Cauchy, Jacobi, Weierstrass, Sylvester, Heine, Lebesgue, Schur,
MacMahon and Ramanujan.

As a research area, Partition Theory had trouble fitting in with other fields, per-
haps due to its multidisciplinary nature. It originated as a part of the Analysis, but
then quickly became a part of the Number Theory, when numerous applications has
emerged. Older textbooks, such as [82], traditionally had at least one section devoted
to Partition Theory. Later, Partition Theory was considered as a part of Combinato-
rial Analysis, a subject which evolved into modern day Combinatorics and Discrete
Mathematics. Most recently, it seems, the subject gained rights of its own.

The method of proving partition identities “constructively” was pioneered by
Sylvester in [121]. To be fair, the monumental paper [121] with a playful title is a
long survey of results of Sylvester himself, as well as his students and collabora-
tors. The method was largely accepted after Franklin’s involution was published [72].
Franklin was a student of Sylvester at Johns Hopkins University and wrote a few
sections of [121]. Almost immediately an unexpected benefit of having combinatorial
proofs was discovered by Cayley: He noted in a letter to Franklin (published in [53])
that Franklin’s involution “gives more,” meaning it preserves a certain statistic on
partitions, and thus proves a more general partition result.

With the two notable exceptions of Schur and MacMahon, few people worked in
the field until the mid-1960s. Freeman Dyson [60] had to fight the following attitude
at the time:

Professor Littlewood, when he makes use of an algebraic identity, always saves
himself trouble of proving it; he maintains that an identity, if true, can be verified
in a few lines by anybody obtuse enough to feel the need for verification.

In about 1965 the “golden age” had begun. In a short span of less than 20 years
many different people proved a large number of partition identities by combinatorial
methods, giving an impression that one should expect “constructive” proofs of most
if not all partition identities. This was the time when George Andrews arrived on the
scene and played an important role in these developments. In his two fundamental
papers [12, 13], which are somewhat forgotten now, he built a basis for both now
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standard techniques by which partition bijections are obtained. Thus in the late 1970s
one had an impression that a unifying theory was in sight. Depending on one’s point
of view, the birth of the involution principle either confirmed or destroyed these
hopes. The “golden age” was over.

In essence, Garsia and Milne showed that one can “mechanically” construct bijec-
tions out of existing bijections and involutions. Typically, these bijections turned out
to be indirect and quite complicated. They introduced the involution principle, giving
a long-awaited bijective proof of the Rogers–Ramanujan identities by combining the
already-known Vahlen’s involution, Sylvester’s bijection and Schur’s involution [76].
This approach was further extended in subsequent publications to give bijective proofs
of many partition identities (see e.g. [48, 91, 109]).

Despite the clamorous claims of success of the “involution principle technology”
(see [91]), from a traditional combinatorial view this approach is unsatisfactory. First,
the resulting bijective proofs are not simpler than the analytic proofs; in a sense they are
not even new at all. The involution principle bijections are too complicated to follow
and do not seem to produce new refinements of known partition identities. In fact,
even the complexity of the Garsia–Milne bijection remains open. To quote Joichi and
Stanton, “The emphasis now should be placed on combinatorially important proofs
rather than just a proof ” [91].

While it has been over twenty years since the Garsia–Milne paper [76], the state
of “constructive partition theory” remains confused and the years uneventful. Few
genuine new bijections have been discovered, as the importance of combinatorial
proofs seem to have plunged once again in the anonymous “public opinion.” We hope
this survey will help to reverse this course.

Let us briefly summarize the state of art from a nontechnical point of view.1 The
way we see it, finding direct bijective or involutive proofs or most identities is an
infeasible task. Right now very few partition identities have such proofs and it seems
there is little reason why the remaining identities should be so fortunate to have them,
especially after resisting a combinatorial proof for so many years. Of course, just like
bijections, partition identities are not created equal and one can make a plausible case
that only the “important” partition identities should have a combinatorial proof. Few
open problems we include in this survey present the first challenge to this thesis.

Right now the number of different combinatorial proofs (of “important” partition
identities) remains rather small, many of them covered in this survey. The correspond-
ing identities are often classical and their study is easy to justify. Unfortunately, many
recent bijections give the same correspondences as the old ones, with the authors
often aware of this. While new bijections are often easier to present than their older
counterparts, there is a limit to this, and after a certain point little room is left for
improvement. On the other hand, there is an appalling absence of new original ideas
in bijection constructions. It is clear that large classes of partitions identities, such as
Macdonald’s eta-function identities in their full generality (see [101, 116]), require a
new combinatorial approach.2

1 We suggest the diligent reader at this point first review “The language” section of the introduction (see
below).
2 A largely overlooked paper [98] makes the first step in this direction, but the proof stops shy of being
bijective.
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Another venue awaiting exploration is our current lack of understanding where
“natural” bijections come from. It is conceivable that some partition results simply
do not have direct combinatorial proofs. At the moment we are not, aware of any
negative results in this direction. Even finding a formal framework for such results is
an important challenge. To be more specific, recall that after so many years of studies,
the Rogers-Ramanujan’s identities still lack a direct bijective proof despite having an
essentially royal status in the world of Partition Theory. Should we assume that there
is no such proof at least in the way we are trying to find it, or we are just waiting for
the right idea to come along and correct this oversight?

Let us conclude this brief excursion into the past, present and future of “Constructive
Partition Theory” on an optimistic note. We believe there is a great deal of work yet
to be done before we reach a better understanding of the combinatorial nature of
partition identities. We hope this survey will provide guidance and the foundation for
the future investigations. As D.J. Kleitman once said, “Combinatorics will survive as
long as mathematics does” [94]. To paraphrase this, Partition Theory will survive as
long as Combinatorics does, and we believe its future is as bright as it was imagined
by Sylvester so many years ago. . .

Material selection. As we mentioned before, in this survey we concentrate on bijec-
tions of what we view as the “important” partition identities. Of course, classifying
partition identities into “important” and “unimportant” is not easy. This requires a
good analytic background, work experience with partition identities, and an intangi-
ble “sense of beauty”. Although we do not claim to possess either of these qualities,
we hope the reader will agree with and appreciate our selection.

Upon going through some of the extensive partition literature, we were over-
whelmed by the task. We can only agree with the sentiment expressed by George
Andrews in [16] (in a much less general context), that “the superficial sameness of
these results leaves one daunted.” Later, on the same page Andrews continues, “[A]
compendium of Rogers-Ramanujan type identities leaves the impression that it is im-
possible to have any idea of what is really going on.” Thus we are conservative in our
selection, hoping that combinatorial proofs of partition identities will help the reader
to see beyond their “superficial sameness.”

To summarize, we concentrate on a few key classical partition identities, and present
a number of their extensions and generalizations. No attempt is made to cover the whole
field or to be complete in references. A great deal of material is placed in the exercises
which are interspersed with the main results. Because of space limitations, no hints
or solutions are provided. We hope this survey will be useful to both beginners and
experts in the field.

While we heavily borrow from the available literature, we often felt the need to
significantly modify the original presentation for the sake of clarity and consistency.
Some of the bijections are different enough from the original exposition that they
probably constitute as new constructions. Since the line is virtually impossible to
draw, we never claim authorship but always refer to the source.

No references or attributions are given in the main body of the paper; we delay this
at times extensive or controversial material until the last section. We tend to refer only
to papers that were used directly in the writing or to the most recent papers containing
further references which may be useful to the reader. At times, for the benefit of the
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reader, we also cite more recent references where the results have been rediscovered or
presented in a different language. Normally, the bijections in such papers are equivalent
or the same as those in this survey. Also, as we emphasize the bijections themselves,
we tend to be less careful with combinatorial statistics on partitions. Given bijection
descriptions, such statistics often give new or old partition identities, some of which
are mentioned in the exercises.

The structure. Admittedly, we are heavily influenced by Andrews’s and Stanley’s
celebrated monographs [24, 115]. In fact, one can view this paper as a supplement
to either book, even if written in a rather different style. The order of the sections
and the results within the sections reflect our notions of difficulty and importance.
The exercises are placed directly after the relevant material. The placement of open
problems is less obvious at times.

The theorems are denoted by � and are rarely proved. Proofs are introduced by �
and end with �. The examples and exercises we deem important for understanding
the material are denoted by (♦). We suggest that the reader unfamiliar with the subject
should attempt to prove all the theorems and such exercises. Additional results and
exercises are marked by (◦), (◦◦) and (◦◦◦); our choice reflects their difficulty on
a log-scale: from simple to medium, from medium to hard, and from hard to very
hard. We also include a number of questions and open problems, which are marked
(∗), (∗∗) and (∗∗∗), to indicate approximately their difficulty on the same scale. We
should emphasize here that all identities mentioned in the open problems have already
been proved; it is a combinatorial proof that is sought.

It was our intention to use pictures as much as possible, so a number of definitions
and results are best understood upon examining the included figures. The formulas
and theorems are not numbered; they are usually unique in a subsection so subsection
numbers suffice. While the survey does not require any preliminary knowledge of
the subject, it is written in a concise manner. The reader is assumed to be familiar
with generating functions and occasionally other standard combinatorial concepts for
which we refer the reader to [115].

The language. We shall adopt the following conventions which we use throughout
the paper. A correspondence between two set is a one-to-one function from one set
into another. Typically, these two sets will be infinite sets of partitions, in which case
the correspondence preserves the size of partitions. A bijection is a correspondence
between two sets together with its lexical description. Naturally, the same correspon-
dence can be described in many different ways. Thus we can say that two bijections
give the same correspondence. We also say that two bijections are identical if their
descriptions are essentially the same or sufficiently close to each other.

When describing a bijection, we refer to its construction as a map and then prove (or
leave the proof to the reader) that it is well defined and one-to-one. Almost always, this
is straightforward. We say that a bijection is explicit if its descriptions is sufficiently
concise. Virtually all our bijections are explicit, except for those given by the involution
principle. There is a way to formalize the notion of “explicit bijection” by treating it
as an algorithm which may or may not be polynomial in the size of the input.

Informally, we refer say that a bijection is natural if we believe most people would
agree with this characterization. For example, conjugation is a natural bijection
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between partitions of n into at most k parts and partitions of n into parts which are no
larger than k.

We say that bijections ϕ : A → B and ϕ′ : A′ → B′ are equivalent if there are
natural bijections α : A → A′ and β : B → B′ such that ϕ ◦ β = α ◦ ϕ′. We say that
a bijection or involution is direct if it uses no intermediate steps in its constructions.
Of course, one uses common sense when deciding whether a particular bijection is
direct or not; same with natural bijections.

We say that a proof is combinatorial if it is based on a sequence of bijections or
involutions or double counting arguments. Similarly, a proof is bijective or involutive
if it is based on a direct bijection or involution, respectively. Thus, for example, the
proof of Rogers–Ramanujan’s identities we present in 7.2 is combinatorial but neither
bijective nor involutive.

The notation. We denote by N = {0, 1, 2, . . .} the set of natural numbers. We use
routinely both notations for partitions trusting this will not lead to confusion. Various
sets of partitions of n are denoted by script capital letters An,Bn , etc. Occasionally
some of these sets (such as partitions into distinct parts, Dn) are preserved throughout
the survey. Partitions are denoted by letters λ, μ, ν, and the bijections are denoted
by different Greek letters: α, ϕ, ψ , etc. Parameters of partitions (the largest part, the
number of parts, etc.) are denoted by Roman minuscules, such as a(λ), �(μ), etc.
Usually we write q-series with a parameter t instead of q. We do this for psychological
reasons, to underscore their combinatorial, not analytical, context.

2. Basic results

2.1. Partitions and Young diagrams

2.1.1. We define a partition λ to be an integer sequence (λ1, λ2, . . . , λ�) such that
λ1 ≥ λ2 ≥ · · · ≥ λl > 0. We say that λ is a partition of n, denoted λ � n and |λ| = n,
if

∑
i λi = n. We refer to the integers λi as the parts of the partition. Let a(λ) = λ1 and

s(λ) = λ� denote the largest and the smallest parts of the partition λ. The number of
parts of λ we denote by �(λ) = �. Let mi = mi (λ) be the number of parts of λ equal to
i. We also use λ = (1m1 2m2 . . .) as an alternative notation for partitions. The conjugate,
partition λ′ = (λ′

1, λ
′
2, . . .) of λ is defined by λ′

i = |{ j : λ j ≥ i}| = mi + mi+1 + · · ·.
Clearly, |�(λ′)| = a(λ).

For partitions λ = (λ1, λ2, . . .) and μ = (μ1, μ2, . . .) define the sum λ + μ to be
a partition (λ1 + μ1, λ2 + λ2, . . .). Similarly, define the union λ ∪ μ to be a partition
with parts {λi , μ j } (arranged in nonincreasing order). Observe that (λ ∪ μ)′ = λ′ + μ′.

2.1.2. A Young diagram [λ] of a partition λ � n is a collection of n 1 × 1 squares (i, j)
on a square grid Z2, with 1 ≤ i ≤ �(λ), 1 ≤ j ≤ λi . Pictorially, we adopt a convention
(the so-called English convention), with the first coordinate i increasing downward,
while the second coordinate j increases from left to right. The conjugate Young diagram
[λ′] is then obtained by reflection of [λ] through the line i = j (see Fig. 1). Young
diagrams corresponding to the sum and the union of partitions are shown in Fig. 2.

2.1.3. A MacMahon diagram [λ, �] is a Young diagram [λ] and a subset of squares
which we call “marked”, such that a marked square can be only the rightmost square in
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λ λ'

Fig. 1 Young diagrams of
partitions
λ = (6, 5, 5, 3) = (3526) and
λ′ = (4, 4, 4, 3, 3, 1) = (132 43)

a row, and no marked square can lie above an unmarked one. We refer to the partition
λ as the shape of [λ, �]. Of course, there are many MacMahon diagrams of the same
shape λ. By abuse of notation, we denote by [λ] the diagram with no marked squares,
and by [λ] the diagram with all rightmost squares marked. We denote by [λ, �] the
number of marked squares in a MacMahon diagram [λ, �]. Clearly, [λ] = �(λ).

MacMahon diagrams with marked squares only in the corners are called standard
MacMahon diagrams. Observe that if [λ, �] is a standard MacMahon diagram, then
so is [λ, �]′. We define the sum [ν] + [λ, �] and the union [ν] ∪ [λ, �] of a Young
diagram and a standard MacMahon diagram in the obvious fashion.

2.1.4. Modular diagrams. A 2-modular diagram [μ]2 to be a Young diagram with the
integers 1 or 2 written in squares, such that 1 can appear only in the last square of a row,
and no 2 can appear above 1. There exists a natural bijection between Young diagrams
and 2-modular diagrams by collapsing two consecutive squares into one 2-square (see
Fig. 3). We denote by [λ]2 the 2-modular diagram corresponding to partition λ. Finally,
there is an obvious bijection between 2-modular diagrams and MacMahon diagrams
as in Fig. 3. We shall use this bijection later in the paper.

In general, a m-modular diagram [μ]m is defined by having an integer m written in
all squares of [μ] which are not the last of a row; any integer i such that 1 ≤ i ≤ m
can be written in the last square of a row.

λ
μ λ+μ

λ μ

Fig. 2 Young diagrams of partitions λ = (4, 4, 3, 1), μ = (5, 3, 2), λ + μ = (9, 7, 5, 1), λ ∪ μ =
(5, 4, 4, 3, 3, 2, 1)

2 2
2

1

22
2
2

1
1

2

2
2 2 2

[λ] [λ] [λ,  ]

Fig. 3 Young diagram [8, 6, 5, 4, 3, 3, 2], the corresponding 2-modular diagram and MacMahon diagram
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2.1.5. (♦) A partition λ is called self-conjugate if λ = λ′. Prove that the number of
self-conjugate partitions is equal to the number of partitions into distinct odd parts.

2.1.6. (♦) Prove bijectively the following summation formula:

∑
λ=(1m1 2m2 ...)�n

1

m1!1m1 m2!2m2 · · · = 1.

2.1.7. (◦) Prove bijectively the following product formula:

∏
λ=(1m1 2m2 ...)�n

m1!m2! · · · =
∏

λ=(1m1 2m2 ...)�n

1m1 2m2 · · ·

2.2. Generating functions

2.2.1. Number of partitions. Denote by Pn = {λ � n} the set of partitions of n, and
let p(n) = |Pn| be the number of partitions of n. Denote by P = ∪nPn the set of all
partitions. Let Pn,k = {λ � n : �(λ) ≤ k} be the set of partitions of n with at most k
parts, and let pk(n) = |Pn,k |. For convenience, let p(0) = pk(0) = 1.

From the representation λ = (1m1 2m2 . . .) we immediately have:

P(t) :=
∞∑

n=0

p(n)tn =
∞∏

i=1

1

1 − t i

Taking the conjugate partition, we obtain pk(n) = |{λ � n : a(λ) ≤ k}|. Therefore:

Pk(t) :=
∞∑

n=0

pk(n)tn =
k∏

i=1

1

1 − t i

Similarly, we obtain more general formulas:

P(t, s) :=
∑

n

( ∑
λ�n

s�(λ)

)
tn =

∞∏
i=1

1

1 − st i
,

Pk(t, s) :=
∑

n

( ∑
λ�n,�(λ)≤k

sa(λ)

)
tn =

k∏
i=1

1

1 − st i
,

2.2.2. (∗∗∗) Prove combinatorially the following Ramanujan’s identity:

∞∑
k=1

p(5k − 1)t k = 5
∞∏

i=1

(1 − t5i )5

(1 − t i )6
.
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2.2.3. Euler’s first row decomposition. The following identity is due to Euler:

1 +
∞∑

n=1

sntn

(1 − t)(1 − t2) · · · (1 − tn)
=

∞∏
i=1

1

1 − st i

Indeed, on the r.h.s. we have a generating function for all partitions:∑
λ∈P

s�(λ)t |λ| =
∑

n

sn
∑

λ:�(λ)=n

t |λ| =
∑

λ

sn Pk(t),

which proves the result.

2.2.4. (♦) Prove that the following sum is symmetric in a and b:

F(a, b; t) :=
∞∑

n=1

a bntn

(1 − at)(1 − at2) · · · (1 − atn)
.

2.2.5. (♦) Let (k)q = 1 + q + · · · + qk−1, k!q = (k)q (k − 1)q · · · (1)q . Define the

Gaussian coefficients
(n

k

)
q
= n!q

k!q (n−k)!q
. Prove combinatorially:

∑
λ: a(λ)≤k,�(λ)≤�

q |λ| =
(

k + �

k

)
q

2.3. Basic geometry of Young diagrams

2.3.1. Durfee square. The largest square [δr ] = {(i, j), 1 ≤ i, j ≤ r} which fits into a
Young diagram [λ] is called the Durfee square (see Fig. 4). Observe that [λ]\[δr ] is a
disjoint union of two Young diagrams [μ] and [ν], such that μ, ν ′ ∈ Pn,k . Define the
map ϕ : Pn → ⊔

r,k Pn−k,r × Pk−r2,r by letting ϕ(λ) = (μ, ν).

� Map ϕ defined above is a bijection.

This proves P(t) = ∑
r tr2

Pr (t)Pr (t) and implies Euler’s identity:

∞∏
i=1

1

1 − t i
= 1 +

∞∑
r=1

tr2

(1 − t)2(1 − t2) · · · (1 − tr )2
,

More generally, we have P(t, s) = ∑
r sr tr2

Pr (t)Pr (t, s), which implies Cauchy’s
identity:

∞∏
i=1

1

1 − st i
= 1 +

∞∑
r=1

sr tr2

(1 − t)(1 − t2) · · · (1 − tr )(1 − st)(1 − st2) · · · (1 − str )
.
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Fig. 4 Young diagrams
λ = (7, 7, 6, 6, 4, 1) with Durfee
square [δ4], and
μ = (11, 9, 8, 7, 5, 1) ∈ D41

with Sylvester’s triangle [ρ6]

2.3.2. (◦) Generalize Durfee squares to prove the following identity:

∑
a,b≥0

t (a2−ab+b2)z(a−b)

(1 − t)(1 − t2) · · · (1 − ta)(1 − t)(1 − t2) · · · (1 − tb)
=

∞∑
n=−∞

tn2

zn
∞∏

i=1

1

1 − t i
.

2.3.3. (◦◦) Generalize Durfee squares to prove the Rogers-Fine identity:

1 +
∞∑

n=1

(1 + at)(1 + at3) · · · (1 + at2n−1)znt2n

(1 − bt2)(1 − bt4) · · · (1 − bt2n)

=
∞∑

r=0

(1 + azt4r+3)br zr t2r (r+1)(
1 − zt2(r+1)

) r∏
i=1

(1 + at2i−1)(1 + ab−1zt2i+1)

(1 − bt2i )(1 − zt2i )
.

Hint: The l.h.s. is a generating function for partitions λ into parts such that odd parts
are not repeated. Now consider a maximal 2r × (r + 1) rectangle which fits into [λ],
interpret the remaining pieces of [λ] accordingly, and sum over all r ≥ 0.

2.3.4. Sylvester’s triangle. Let Dn be the set of partitions λ � n into distinct parts:
λ1 > λ2 > · · · > λl > 0, and let D = ∪nDn . Clearly,

D(t, s) := 1 +
∑
λ∈D

s�(λ)t |λ| =
∞∏

i=1

(1 + st i ).

Consider a diagram [ρk] = {(i, j) : i + j ≤ k + 1}, with k = �(λ) (see Fig. 4). We
shall refer to [ρk] as Sylvester’s triangle. Observe that the horizontal parts of the
diagram [λ]\[ρk] for a partition. This gives D(t, s) = ∑

r s�(ρr )t |ρr | Pr (t), and implies
another Euler identity:

∞∏
i=1

(1 + st i ) = 1 +
∞∑

r=1

sr t
r (r+1)

2

(1 − t)(1 − t2) · · · (1 − tr )
.

2.3.5. Frobenius coordinates. Let D′
n be the set of partitions λ � n into nonnegative

distinct parts: λ1 > λ2 > · · · > λl ≥ 0, and let D′ = ∪nD′
n . When λl = 0, we say that

λ contains the empty part, and let �(λ) = l. Note that we distinguish here partitions
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[λ]
[μ] [ν]

Fig. 5 Partition λ = (8, 5, 4, 4, 3, 1) � 25, and its Frobenius coordinates (μ, ν), where μ = (8, 4, 2, 1) ∈
D15,4, ν = (5, 3, 2, 0) ∈ D10,4

λ ∈ D′ with and without the empty part. Clearly.

D′(t, s) := 1 +
∑
λ∈D′

s�(λ)t |λ| =
∞∏

i=0

(1 + st i ).

When drawing a Young diagram of λ ∈ D′, we add an interval onto the bottom for the
auxiliary empty part.

Let Dn,k = {λ ∈ Dn : �(λ) = k},D′
n,k = {λ ∈ D′

n : �(λ) = k}. Observe that
|D′

n,k | = |Dn,k | + |Dn,k−1|. Let us show that |Pn| = ∑
k

∑
m |Dm,k | · |D′

n−m,k |.
Indeed, start with λ � n and let k be the side of the Durfee square δk ⊂ [λ]. Now split
the Young diagram [λ] into two parts: one on or above the diagonal i − j = 0, and one
below the diagonal. Now read the rows of the first part and the columns of the second
diagram (see Fig. 5). The resulting pair of partitions are the Frobenius coordinates
(μ, ν) of λ, where μ ∈ Dm,k, ν ∈ D′

n−m,k . Let ϕ : Pn → �m,kDm,k × D′
n−m,k defined

by ϕ(λ) := (μ, ν). Then the above formula follows from the following result:

� Map ϕ defined above is a bijection.

2.3.6. Consider the following simple Ramanujan’s identity:

∞∑
m=0

tm

(1 − tm+1) · · · (1 − t2m)
=

∞∑
m=0

t2m+1

(1 − tm+1) · · · (1 − t2m+1)

Let An be the set of all partitions λ � n with unique smallest part s(μ), and a(λ) ≤
2s(λ). Let Bn be the set of all partitions μ � n with odd a(μ), and a(μ) < 2s(μ). The
above identity is equivalent to |An| = |Bn|, for all n > 0.

We define a bijection ϕ : Bn → An as follows. Start with a partition μ ∈ Bn with
a(μ) = 2m + 1. Split the Young diagram [μ] into a (m + 1) × �(μ) rectangle and
the remaining part [ν]. Move [ν] so it attaches below the rectangle. Let [λ] be the
conjugate of the resulting Young diagram. Define ϕ(μ) = λ (see Fig. 6).

� The map ϕ : Bn → An defined above is a bijection.

2.3.7. Vahlen’s involution. Consider the following trivial identity:

k∏
i=1

(1 − t i )
k∏

r=1

1

1 − tr
= 1

Springer



16 I. Pak

Fig. 6 Bijection ϕ

Observe that the coefficient of tn on the l.h.s. is equal to
∑

(λ,μ)(−1)�(μ), where the
summation is over all λ ∈ P, μ ∈ D, |λ| + |μ| = n, and a(λ), a(μ) ≤ k. Define an
involution on P × D by moving the smallest part s(λ) from λ to μ, if s(λ) < s(μ), or
by moving part s(μ) from μ to λ, if s(λ) ≥ s(μ). This map is called Vahlen’s involution.
By the construction, it has no fixed points for all n ≥ 1.

2.4. Number of distinct parts

2.4.1. Denote by γ (λ) the number of distinct parts of a partition λ. The following result
is, perhaps, a bit surprising at first glance:

∑
λ∈P

γ (λ)t |λ| = t

1 − t

∞∏
i=1

1

1 − t i
.

� In a Young diagram [λ], a corner is a square (i, j) ∈ [λ], such that (i, j + 1), (i +
1, j) �∈ [λ]. Similarly, an outside corner is a square (i, j) �∈ [λ], such that (i, j − 1) ∈
[λ], if j > 1, and (i − 1, j) ∈ [λ], if i > 1. Observe that γ (λ) is equal to the number
of corners of λ. Similarly, γ (λ) + 1 is the number of outside corners of λ (see Fig. 7).

Denote by [λ̃] = [λ] − (i, j), a Young diagram obtained by removal of a square
(i, j) from [λ]. Obviously, if λ � n, then λ̃ � n − 1. We have:∑

λ�n

γ (λ) =
∑

[λ̃]⊂[λ]

1 =
∑

λ̃�n−1

(γ (λ̃) + 1) = p(n − 1) +
∑

λ̃�n−1

γ (λ̃)

= 1 + p(1) + p(2) + · · · + p(n − 1).

This immediately implies the result. �

2.4.2. (◦◦) In a Young diagram [λ], the boundary ∂[λ] is a collection of squares (i, j) ∈
[λ] such that (i + 1, j + 1) �∈ [λ]. Similarly, the outside boundary ∂[λ] is a collection
of squares (i, j) �∈ [λ] such that either (i, j − 1), or (i − 1, j), or (i − 1, j − 1) ∈ [λ].
Define a rim hook R in [λ] to be a rookwise connected sequence of squares R ⊂ ∂[λ],

Fig. 7 Young diagram
[λ], λ = (72, 6, 3, 22, 1), with
γ (λ) = 5 corners and
γ (λ) + 1 = 6 outside corners
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Fig. 8 Young diagram [7263221]. Three rim hooks and four outside hooks of height 3 and length 2

such that [λ] − R is also a Young diagram of a partition. Similarly, an outside hook
R′ (outside of [λ]) is a rookwise connected sequence of squares R′ ⊂ ∂[λ], such that
[λ] ∪ R is a Young diagram of a partition. The height and length of a hook are the
dimensions of the smallest rectangle which contains the hook.

Prove that for every λ, the number of rim hooks of height h and length � in λ is one
less than the number of hooks of height h and length � outside of λ (see Fig. 8). When
k = � = 1 this was a crucial observation in the proof above. Compute a generating
function

∑
λ η(λ, k, �)t |λ| for the number η(λ, k, �) of hooks of height k and length �

in λ.

2.5. Dyson’s rank

2.5.1. Fine–Dyson symmetry relations. Define the rank of a partition λ to be r (λ) =
a(λ) − �(λ). Denote by p(n, r ) the number of partitions λ � n of rank r. Denote by
Hn,r and Gn,r the set of partitions of n with rank at most r and at least r, respec-
tively. Let h(n, r ) = |Hn,r |. Clearly, p(n, r ) = h(n, r ) − h(n, r − 1). By conjugation,
|Gn,r | = |Hn,−r | = h(n, −r ). Since Pn = Hn,r ∪ Gn,r+1, we also have complementar-
ity relations:

h(n, r ) + h(n, −1 − r ) = p(n).

The following relations are called the Fine-Dyson symmetry relations:

h(n, 1 + r ) = h(n + r, 1 − r ).

We shall prove this formula by an explicit bijection ψr : Hn,r+1 → Gn+r,r−1. Start with
a partition λ ∈ Hn,r+1. Remove the leftmost column in [λ], with � = �(λ) squares. Add
the top row with (� + r ) squares. Let [μ] be the resulting Young diagram (see Fig. 9.)
We call the map ψr : λ → μ Dyson’s map.

� Dyson’s map ψr : Hn,r+1Gn+r,r−1 is a bijection.
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18 I. Pak

ψ2

Fig. 9 Dyson’s map ψr :→ μ,
where λ = (9, 7, 6, 6, 3, 1) ∈
H32,r+1, μ = (8, 8, 6, 5, 5, 2) ∈
G32+r,r−1, and r = 2

� By assumption on λ, we have r (λ) = a(λ) − � ≤ r + 1, so � + r ≥ a(λ) − 1, and
the top row a(μ) is the largest indeed. Clearly, |μ| = |λ| − � + (� + r ) = n + r .
Also, r (μ) = a(μ) − �(μ) = �(λ) + r − (λ′

2 + 1) ≥ r − 1. Therefore, μ = ψr (λ) ∈
Gn+r,r−1.

2.5.2. (◦) Deduce from Fine-Dyson symmetry the following Fine’s relations:

(1) p(n) − p(n − 1) = p(n + r + 1, r ), for r + 3 ≥ n ≥ 1,
(2) p(n + 1, 0) − p(n, 0) + 2p(n − 1, 3) = p(n + 1) − p(n), for n ≥ 1,
(3) p(n, r + 1) − p(n − 1, r ) = p(n − r − 3, r + 4) − p(n − r − 2, r + 3), for n ≥

r + 3.

2.5.3. (♦) Interpret the l.h.s. in Fine’s relation (1) (see above) as the number of parti-
tions λ � n, with s(λ) ≥ 2. Now prove (1) bijectively.

2.5.4. Generating function. (♦) Let Gr (t) = �∞
n=1h(n, −r )tr be the generating func-

tion for |Gn,r |. Use the complementarity relations and the Fine-Dyson symmetry rela-
tions to obtain the following two identities:

1 + Gr (t) + G1−r (t) =
∞∏

i=1

1

(1 − t i )
, Gr (t) = tr+1(1 + G−2−r (t)).

Deduce from these identities that

Gr (t) = tr+1
∞∏
j=1

1

(1 − t i )
− tr+1Gr+3(t).

Iterate the above equation to conclude:

Gr (t) =
∞∑

m=1

(−1)m−1t
m(3m−1)

2
+rm

∞∏
i=1

1

(1 − t i )
.
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2.5.5. (◦) Use Dyson’s map 2.5.1 to give a bijective proof of the generating function
above.

2.5.6. (∗∗∗) Prove combinatorially Dyson’s combinatorial interpretation of Ramanu-
jan’s congruence:

∑
r≡i mod 5

p(5k − 1, r ) = 1

5
p(5k − 1), or all integers i, k > 0.

2.5.7. (◦◦) Let R = D × P × P be a set of triples of partitions (λ, μ, ν), such
that λ ∈ D. Let |(λ, μ, ν)| = |λ| + |μ| + |ν|, �(λ, μ, ν) = �(μ) − �(ν), and Rn,r =
{(λ, μ, ν) ∈ R : |(λ, μ, ν)| = n, �(λ, μ, ν) = r}. Consider Garvan’s weighted sum:

M(n, r ) =
∑

(λ,μ,ν)∈Rn,r

(−1)�(λ)

Check that M(n, r ) = M(n, −r ). Use Vahlen’s involution 2.3.7 to prove that∑
r M(n, r ) = p(n). Prove combinatorially the analogue of the Fine-Dyson symmetry

relations in this case.

2.5.8. (◦) Prove combinatorially:

∞∑
r=−∞

r2 M(n, r ) = 2np(n).

2.5.9. (◦◦) Define the crank of a partition λ as follows: cr (λ) = −�(λ) if t := λ1 −
λ2 = 0, and cr (λ) = t − λt+1 if t > 0. Let N (n, r ) be the number of partitions λ � n
with crank cr (λ) = r . Prove combinatorially that M(n, r ) = N (n, r ) for n > 1.

2.6. q-binomial theorem

2.6.1. The following classical identity is usually called the q-binomial theorem:

∞∑
k=1

(1 + a)(1 + at) · · · (1 + atk−1)zktk

(1 − t)(1 − t2) · · · (1 − t k)
=

∞∏
i=1

1 + azt i

1 + zt i

Let us show that both sides are equal to the generating function

M(a, t, z) =
∑
[λ,�]

aκ[λ,�]z�(λ)t |λ|,

where the sum is over all standard MacMahon diagrams with n squares. In other words,
we present two bijections between sets of partitions, one for each side of the identity,
and standard MacMahon diagrams.
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ϕ

ϕ

ψ

[λ]

[μ]

[υ]

[ω]

(k)

_

+

Fig. 10 Example of bijections ψ : (λ, μ) → [ν, �] and ϕ : (v, ω) → [τ, �]. Here λ =
(7, 7, 6, 6, 4, 3, 1), ω = (6, 4, 1, 0), λ = (9, 9, 6), μ = (11, 8, 6, 3), and [ν, �] = [τ, �]

For the r.h.s. this is straightforward. Start with partitions λ ∈ P and μ ∈ D, corre-
sponding to the denominator and numerator, respectively. Let [μ] be the corresponding
standard MacMahon diagram with a marked square in each row. Now consider a stan-
dard MacMahon diagram [ν, �] = [λ] ∪ [μ], which gives the desired interpretation
of the r.h.s. Set ψ(λ, μ) = [ν, �] (see Fig. 10).

For the l.h.s, start with a pair of partitions v ∈ P, ω ∈ D′, with a(v) ≤ k, a(ω) ≤
k − 1. Attach to [ω] a row of length k, the term corresponding to t k , and denote by [π ]
the resulting Young diagram. Now consider a standard MacMahon diagram [π, �] of
shape π , with a marked square in each corner, except perhaps for the square (1, k).
Mark the latter only if ω contains part (0). Now let [τ, �] = [π, �] ∪ [v], and define
ϕ(v, ω) = [τ, �]′.

� The maps ϕ, ψ are bijections.

Now check that �(ν) = �(λ) + �(μ), κ[ν, �] = �(μ), and |ν| = |λ| + |μ|. Simi-
larly, �(τ ) = a(π ) = k, κ[τ, �] = �(ω), and |τ | = |v| + |ω| + k. Thus we obtain the
q-binomial theorem.

2.6.2. (◦) Deduce identities 2.2.3 and 2.2.5 from the q-binomial theorem.

2.6.3. (∗) Prove combinatorially the following extension of the q-binomial theorem:

(1 + a)
n∑

r=m

(1 + abt)(1 + abt2) · · · (1 + abtr−1)btr

(1 − bt)(1 − bt2) · · · (1 − btr )

=
n∏

i=1

(1 + abti )

(1 − bti )
−

m−1∏
j=1

(1 + abt j )

(1 − bt j )
.
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2.7. Heine transformation

2.7.1. The classical Heine transformation can be written as follows:

∞∑
k=0

k−1∏
i=0

(1 − ati )(1 − bti )

(1 − t i+1)(1 − ct i )
zk

=
∞∏

r=0

(1 − aztr )(1 − btr )

(1 − ctr+1)(1 − ztr )

∞∑
k=0

k−1∏
i=0

(1 − cb−1t i )(1 − zt i )

(1 − t i+1)(1 − azt i )

This is equivalent to F(a, z, b, c; t) = F(c, b, z, a; t), where

F(a, z, b, c; t) =
∞∑

k=0

k−1∏
i=0

(1 + ati )

(1 − t i+1)

∞∏
m=1

(1 + cbtk+m)

1 − btk+m
zktk .

The proof idea is based on a symmetric combinatorial interpretation of the coefficients
in F(a, z, b, c; t).

2.7.2. Using the bijections 2.6.1, let us first give a combinatorial interpretation to the
coefficients in the two products inside the series F. We obtain:

t k
k−1∏
i=0

(1 + ati )

(1 − t i+1)
=

∑
[λ,�]:a(λ)=k

aκ[λ,�]t |λ|,

where the summation is over all standard MacMahon diagrams [λ, �] with k squares in
the first row. Indeed, use the bijection ϕ′ defined as φ in 2.6.1, but without conjugation
in the last step. Similarly, for the second product we have:

∞∏
m=1

(1 + cbtk+m)

(1 − btk+m)
=

∑
[μ,�]:s(μ)=k+1

b�(μ)cκ[μ,�]t |μ|,

where the summation is over all standard MacMahon diagrams [μ, �] which are either
empty or have at least k + 1 squares in the last row. Indeed, use the bijection ψ , defined
in 2.6.1. Therefore, we have:

F(a, z, b, c; t) :=
∑

(p,l,r,q,n)

f (p, l, r, q; n)a pzlbr cq tn

=
∞∑

k=0

∑
[λ,�]:a(λ)=k

∑
[μ,�]:k<s(μ)

aκ[λ,�]zkb�(μ)cκ[μ,�]t |λ|+|μ|,

Attaching [μ, �] right above [λ, �], we get a diagram [ν, �]. From the equation above,
we see that f (p, k, r, q; n) is equal to the number of standard MacMahon diagrams
[ν, �] with n squares, with an outside corner in (r + 1, k + 1), with p marked squares
in the rows that are ≤ k, with q marked squares in the rows that are >k (see Fig. 11).
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k q
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q

(r+1,k+1)

Fig. 11 Bijection in the proof of Heine transformation

Conjugating [μ, �], we deduce f (p, k, r, q; n) = f (q, r, k, p; n), which completes
the proof of the Heine transformation.

2.7.3. (♦) Convert the above proof into a direct bijection between quadruples of par-
titions, representing coefficients in F(a, z, b, c; t) and F(c, b, z, a; t).

2.7.4. (◦) Deduce the following Heine identity:

1 +
∞∑

k=1

(abc)k
k−1∏
t=0

(1 + b−1qi )(1 + c−1qi )

(1 − aqi )(1 − qi+1)
=

∞∏
i=0

(1 + abqi )(1 + acqi )

(1 − aqi )(1 − abcqi )
.

2.7.5. (◦) Deduce identities 2.3.1 and 2.3.4 from the Heine identity.

2.7.6. (∗∗) Prove combinatorially Ramanujan’s 1ψ1-summation:

∞∑
k=−∞

(1 − a)(1 − aq) · · · (1 − aqn−1)

(1 − b)(1 − bq) · · · (1 − bqn−1)
zk

=
∞∏

n=0

(1 − azqn)(1 − a−1z−1qn+1)(1 − qn+1)(1 − a−1bqn)

(1 − zqn)(1 − a−1bqn)(1 − bqn)(1 − a−1qn+1)
.

3. Euler’s Theorem

3.1. Partitions into distinct parts vs. partitions into odd parts

Recall that Dn denotes the set of partitions into distinct parts. Denote by On the set of
partitions of n into odd parts.

� Euler’s Theorem. |On| = |Dn|.
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The proof is straightforward:

1 +
∞∑

n=1

|On|tn =
∞∏

r=1

1

(1 − t2r−1)
=

∞∏
r=1

(1 − tr )(1 + tr )

(1 − t2r )(1 − t2r−1)

=
∞∏

i=1

(1 + t i ) = 1 +
∞∑

n=1

|Dn|tn.

In this section we present three bijective proofs of Euler’s Theorem and a num-
ber of extensions. Further generalizations including Andrews’ Theorem 8.1.1 will be
presented in Section 8.

3.2. Glaisher’s bijection

3.2.1. Glaisher’s bijection ϕ : On → Dn is defined as follows. Let λ = (1m1 3m3 . . .) ∈
On be a partition with odd parts. For every odd i, let ϕ(λ) contain part i · 2r , if and
only if the integer mi written in binary has 1 at the r-th position.

In the other direction, let φ : Dn → On be defined by an iterative procedure. Start
with λ = (λ1, λ2, . . .) ∈ Dn . Substitute every even part (λi ) with two parts (λi/2).
Repeat until the resulting partition μ has no even parts, and set φ(λ) := μ.

� Maps ϕ : On → Dn and φ : Dn → On are well defined bijections, inverse to
each other: φ = ϕ−1.

3.2.2. (♦) Let Bn ⊂ Dn be the set of all partitions λ � n into distinct parts, such that
λi ≡ 0, 1 or 2 mod 4. Let Qn ⊂ On be the set of all partitions μ � n into odd parts,
such that all parts i ≡ 3 mod 4 appear an even number of times. Finally, let An be the
set of all partitions ν � n, such that νi ≡ 1, 5 or 6 mod 8. Check that Qn = φ(Bn).
Conclude that |Bn| = |An|.

3.2.3. (♦) Glaisher’s Theorem. For any d ≥ 2, prove that the number of partitions
λ � n with no part divisible by d is equal to the number of partitions μ � n with no
part repeated ≥ d times.

3.2.4. (◦) Let pe(n) and po(n) be the number of partitions of n into an even and an odd
number of even parts, respectively. Prove combinatorially that pe(n) − po(n) is equal
to the number of partitions of n into distinct odd parts.

3.2.5. (◦) Vector partitions. Fix an integer k ≥ 1. Consider nonnegative integer vectors
c = (c1, . . . , ck). Define a vector partition of c to be a presentation of c as a sum of
nonnegative integer vectors, regardless of the order. A vector is called odd if it has at
least one odd component. Then the number of vector partitions of c into odd vectors
is equal to the number of vector partitions into distinct (i.e. unequal) vectors. Extend
Glaisher’s bijection to prove this result.
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3.3. Franklin’s Extension

3.3.1. For a partition λ, denote by γO(λ) the number of even part sizes, and by γD(λ)
the number of repeated part sizes. Franklin’s extension of Euler’s Theorem states that
the number of partitions λ � n with γO(λ) = k is equal to the number of partitions
μ � n with γD(μ) = k. When k = 0 we obtain Euler’s Theorem.

As before, let Pn be the set of all partitions of n. Define the following extension
ϕ : Pn → Pn of Glaisher’s bijection. Start with λ ∈ Pn . Suppose λ = π ∪ ν, where π

is a partition into even parts and ν is a partition into odd parts. Divide each part of π

by two, and denote this partition by π/2. Now let ϕ(λ) = ϕ(ν) ∪ π/2 ∪ π/2. Clearly,
ϕ : On → Dn .

� The map ϕ : Pn → Pn defined above is a bijection. Moreover, if ϕ(λ) = μ,
then γO(λ) = γD(μ).

3.3.2. (♦) Find a similar extension of Glaisher’s Theorem 3.2.3.

3.4. Sylvester’s bijection.

3.4.1. Sylvester’s bijection. The following is a different bijective proof of Euler’s The-
orem 3.1. In fact, we will present three different bijections giving the same correspon-
dence.

Sylvester’s bijection ψ : On → Dn is best described by a picture. We arrange all
odd parts symmetrically, folding them as hooks, and then read them diagonally, as
shown on Fig. 12.

For the second bijection ζ : On → Dn , we divide the diagram [λ] into two parts,
along the line j = 1 + 2i . Read the parts above and below as diagrams of partitions
α and β ′, respectively. Now let ζ (λ) = (2 · (α/2)′)′ + β, see Fig. 13.

To exhibit the third bijection, define η : On → Dn as follows. Draw a 2-modular
diagram [λ]2 correspondingλ ∈ On . Draw successive hooks H1, H2, . . . , as in Fig. 14.
Let μ1 be the number of squares in H1, let μ2 be the number of 2-s in H1, let μ3 be the
number of squares in H2, let μ4 be the number of 2-s in H2, etc. Now let η(λ) = μ.

� The maps ψ, ζ, η : On → Dn are bijections giving identical correspondence:
ψ = ζ = η.

Fig. 12 Sylvester’s bijection ψ : (7, 5, 3, 3) → (7, 6, 4, 1)

++

Fig. 13 The second version of Sylvester’s bijection ζ
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Fig. 14 The third version of Sylvester’s bijection η

3.4.2. (♦) Fine’s Theorem. Prove that the number of partitions μ ∈ Dn with a(μ) = k
is equal to the number of partitions λ ∈ On with a(λ) + 2�(λ) = 2k + 1.

3.4.3. (♦) Let O1
n and O3

n be the sets of partitions λ of n into odd parts, such that
the largest part a(λ) = λ1 ≡ 1 and 3 mod 4, respectively. Let D0

n and D1
n be the sets

of partitions λ of n into distinct parts, such that the largest part a(λ) = λ1 is even
and odd, respectively. Apply Fine’s Theorem to show that ψ : O1

n → D0
n,O3

4 → D1
n

when n is even, and ψ : O1
n → D1

n,O3
n → D0

n , when n is odd. Use 5.2.2 to compute
|O1

n| − |O3
n|.

3.4.4. (◦) Sylvester’s Theorem. Let γ (λ) be the number of distinct parts in λ ∈ P . For
every μ ∈ D, let ζ (μ) be the number of contiguous sequences of parts in μ, i.e. the
number sequences of consecutive integers in a partition (μ1, μ2, . . .). Prove that the
number of partitions λ ∈ On with γ (λ) = k is equal to the number of partitions μ ∈ Dn

with ζ (λ) = k, for all n ≥ k ≥ 1.

3.4.5. (◦) Denote by |λ|a the alternating sum of parts of a partition λ : |λ|a = λ1 −
λ2 + λ3 − λ4 + · · · Prove that the number of partitions λ � n into k odd parts is equal
to the number of partitions μ � n into distinct parts with |μ|a = k.

3.4.6. (◦) Let λ ∈ P have type (c, m) if the parts appear, alternately, starting with
the largest part, c times, (m − c) times, c times, (m − c) times, etc. Let 1 ≤ c < m.
Generalize Sylvester’s bijection to prove that the number of partitions of n with parts
≡ c mod m is equal to the number of partitions of n of type (c, m). When c = 1 and
m = 2, this is Euler’s Theorem. Extend Fine’s and Sylvester’s theorems to partitions
of type (c, m).

3.5. Iterated Dyson’s map

Let Dn,r be the set of partitions μ ∈ Dn with rank r (μ) = r . Let Un,2k+1 be the set of
partitions λ ∈ On , such that the largest part a(λ) = 2k + 1. The following identity is
a refinement of Euler’s Theorem:

|Un,2r+1| = |Dn,2r+1| + |Dn,2r |.

Recall the construction of Dyson’s map ψr : Hn,r+1 → Gn+r,r−1 defined in
2.5.1. Let λ = (λ1, λ2, . . . , λ�) be a partition. Consider a sequence of partitions
ν1, ν2, . . . , νl , such that ν� = (λ�), and νi is obtained by applying Dyson’s map ψλi
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Fig. 15 The iterated Dyson’s map ζ : λ → μ, where λ = (5, 5, 3, 3, 1) ∈ U17.5 and μ = (8, 6, 2, 1) ∈
D17,4

to νi+1. Now let μ = ν1. We shall call new map ξ : λ → μ the iterated Dyson’s map.
See Fig. 15 for an example.

� The map ξ : On → Dn is a bijection. Moreover, ξ (Un,2r+1) = Dn,2r+1 ∪ Dn,2r .

4. Partition Theorems of Lebesgue, Göllnitz and Schur

4.1. Lebesgue identity

The following result is called the Lebesgue identity:

∞∑
r=1

t(
r+1

2 ) (1 + zt)(1 + zt2) · · · (1 + ztr )

(1 − t)(1 − t2) · · · (1 − tr )
=

∞∏
i=1

(1 + zt2i )(1 + t i ).

Note that when z = 0, we obtain Euler’s identity 2.3.4. We present two bijective
proofs, both of which introduce different intermediate set of partitions. The resulting
correspondences are also different.

First, let us restate the identity in combinatorial language. Recall that for a partition
λ, we denote a(λ) = λ1 and �(λ) = λ′

1. Let Vn,k be the set of pairs of partitions (λ, μ),
such that λ, μ ∈ D, |λ| + |μ| = n, �(μ) = k, and a(μ) ≤ �(λ). Let En,k be the set of
pairs of partitions (σ, τ ), such that |σ | + |τ | = n, �(σ ) = k, and σ is a partition into
even parts.

� The Lebesgue identity is equivalent to the following partition theorem:

|Vn,k | = |En,k |, for all n, k ≥ 0.

� Observe that adding Sylvester’s triangle as in the proof of Euler’s identity 2.3.4 com-

bines t(
r+1

2 ) and the denominator on the l.h.s. into a generating function for partitions λ

into distinct parts, with �(λ) = r . The product in the numerator is a generating function
for partitions μ into distinct parts with a(μ) ≤ r . Summing over all r ≤ k = �(μ), we
see that the l.h.s. is equal to

∑
n,k |Vn,k |tnzk . For the r.h.s. of the identity, the result is

straightforward. �

4.2. First proof of the Lebesgue identity

4.2.1. Bessenrodt’s bijection. We start by introducing an intermediate set of partitions.
Let Rn,k be the set of all partitions π � n, such that π has exactly k even parts, where
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Fig. 16 Example of the bijection �

these even parts are not repeated. We shall prove that

|Vn,k | = |Rn,k | = |En,k |.

The second equality is straightforward. Start with (σ, τ ) ∈ En,k . We have τ ∈ Dm , for
some m ≤ n. By Euler’s Theorem 3.1, |Dm | = |Om |. Now let ω = ψ−1(τ ), where
ψ : Om → Dm is Sylvester’s bijection 3.4.1. Join the parts of ω and σ together, to
form a partition π . Note that π ∈ Rn,k as desired.

For the first equality, we shall construct a map � : Rn,k → Vn,k , by using 2-modular
diagrams of partitions. Start with the 2-modular diagram [π ]2 of a partition π ∈ Rn,k .
Mark the last squares in each row whenever it’s a 2. Since even parts are not repeated
in π , no two marked squares lie in the same column or row. For every marked square
below the main diagonal i = j , remove the row of 2-s which contains it. For every
marked square on or above the main diagonal i = j , remove the column of 2-s which
is above it, replacing the marked square with a 1, and attaching one square with a 1 to
the column (see Fig. 16). Denote by [γ ]2 the remaining 2-modular diagram. Observe
that γ ∈ O. Now let λ = ψ(γ ) ∈ D.

Now conjugate all the removed columns and join them with the removed rows in
a 2-modular diagram, which we denote by [μ]2. Define by �(π ) = (λ, μ). Note that
λ, μ ∈ D, |λ| + |μ| = |π | = n, and �(μ) is the number k of even parts in π . Finally,
the geometry of the construction guarantees that the length of each removed row or
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column is at most the size of the Durfee square δr in a diagram [π ]2. This translates
into a(μ) ≤ �(λ), and implies that (λ, μ) ∈ Vn,k .

� The map � : Rn,k → Vn,k is a bijection.

4.2.2. (♦) An example of the bijection � : Rn,k → Vn,k is given in Fig. 16. The
2-modular diagram [π ]2 of the partition π = (22, 21, 19, 18, 15, 10, 92, 7, 4, 2) ∈
R136,5 is mapped into [γ ]2 and [μ]2, where γ = (192, 172, 15, 92, 7), μ =
(10, 7, 4, 2, 1). The last step, corresponding to Sylvester’s bijection ψ , is not drawn
but the corresponding hooks are indicated on [γ ]2 by dashed lines (cf. Fig. 14).
Now λ = ψ(γ ) = (17, 16, 15, 14, 12, 11, 10, 8, 6, 3), and (λ, μ) = �(π ). Note that
the Durfee square δ5 ⊂ [γ ]2 has 2 in its lower right corner (it always coincides with
the corner of the last hook). This corresponds to r = �(λ) = 10, and a(μ) = 10 ≤ r .

4.2.3. (♦) Define a natural extension of Sylvester’s statistic ζ (λ) to this case. Find the
corresponding partition identity.

4.2.4. (◦) Generalize the above construction to partitions of type (c, m).

4.3. Göllnitz Theorem

4.3.1. The following result for partitions is not directly related to Euler Theorem, but
has a similar flavor. The bijective proof will also be helpful in the next section in
motivating the second proof of the Lebesgue identity.

Let An be the set of partitions λ � n into parts ≡ 1, 5 or 6 mod 8. Let Hn be the set
of partitions μ � n into parts which differ by at least 2, and such that odd parts differ
by at least 4.

� Göllnitz Theorem. |An| = |Hn|.
Denote by Bn ⊂ Dn set of all partitions λ � n into distinct parts, such that λi ≡ 0, 1

or 2 mod 4. Recall that |An| = |Bn|, as described in 3.2.2. Thus it remains to show
that |Bn| = |Hn|.

4.3.2. Bressoud’s bijection. We construct a bijection ξ : Bn → Hn , again by using
2-modular diagrams and standard MacMahon diagrams.

Start with a partition λ ∈ Bn . Let k be the number of parts ≡ 1 mod 4 in λ. Map
it into a 2-modular diagram [λ]2. Map [λ]2 into a MacMahon diagram [ν, �], which
has exactly k marked squares. Split [ν, �] into two Young diagrams [α], [β] and a
standard MacMahon diagram [γ, �]. Namely, let [γ, �] contain all rows with marked
squares (they are shaded in Fig. 17), and let [α] and [β] consist of parts > k and ≤ k,
respectively (and no marked squares).

Now let [v, �] = [β]′ + [γ, �]. Clearly, �(v) = k. Attach [v, �] right below [α]
and remove Sylvester’s triangle [ρm, �], where m = l(α) + k − 1 = l(α + v). This
is possible indeed since the smallest of [α] is > k. Rearrange the remaining m rows
in a nonincreasing order, and add back to [ρm, �]. Convert the resulting standard
MacMahon diagram [ω, �] into a 2-modular diagram, and then to a Young diagram
[μ]. Let μ = ξ (λ).
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[α]

[β]

[γ]

[γ] [υ]

[α]

[υ]

[β]

[ρ ]

_

_

_

=[ω,  ]

[ν,  ]

Fig. 17 Intermediate steps of a bijection ξ : λ → μ, where λ = (28, 22, 17, 16, 14, 13, 10, 8, 6, 5, 2, 1) ∈
B142 and μ = (33, 27, 24, 18, 15, 10, 8, 5, 2) ∈ H142, with k = 4

� The map ξ defined above is a bijection between Bn and Hn .

� First, observe that ξ is well defined. Indeed, in the standard MacMahon diagram
[γ, �] all rows are marked and have distinct odd lengths. This is preserved in [ω, �].
Thus, the standard MacMahon diagram [ω, �] has all parts of distinct length, and no
two rows with marked squares are adjacent. This translates into μ ∈ Hn .

For the inverse map, start with a Young diagram [μ], and convert it into a MacMahon
diagram [ω, �]. Remove Sylvester’s triangle ρm , where m = �(μ) − 1. Reorder the
remaining rows, so that all k rows with marked squares are on the bottom. Split
the resulting diagram into [α] and [v, �]. Remove columns from [v, �], depending
on the parity of the distance between adjacent marked squares, to obtain [γ, �].
Collect the removed columns of distinct length ≤ k into a Young diagram [α]′. Now
let [ν, �] = [α] ∪ [β] ∪ [γ, �]. Now convert the MacMahon diagram [ν, �] into a
partition λ. The rest of the proof is straightforward. �
4.3.3. (♦) Check that the number k of odd parts in λ is equal to the number of odd
parts in μ = ξ (λ).

4.3.4. (♦) Prove that the number of partitions λ � n into parts ≡ 2, 3 or 7 mod 8 is
equal to the number of partitions μ � n into parts which differ by at least 2, such that
the odd parts differ by at least 4, and the smallest part is at least 2.
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4.3.5. Bressoud’s Theorem. (♦) Let 1 ≤ r < k. Prove that the number of partitions
λ � n into distinct parts ≡ 0, r , or k mod 2k is equal to the number of partitions μ � n
into parts ≡ 0 or r mod k, which differ by at least k, and such that parts ≡ r mod 2k
differ by at least 4.

Hint: Translate both sets of partitions into the language of k-modular diagrams,
then into standard MacMahon diagrams, and use the same bijection.

4.4. Second proof of the Lebesgue identity

4.4.1. Alladi–Gordon’s bijection. We say that the i-th row in a diagram [λ] has a gap,
if λi − λi+1 ≥ 2. Let Gn,k be the set of all MacMahon diagrams with n squares, and k
marked squares, such that all rows have distinct length, and every row with a marked
square has a gap.

We shall prove that

|Vn,k | = |Gn,k | = |En,k |,

which implies the Lebesgue identity. For this, construct two bijections ζ : Vn,k → Gn,k ,
and κ : En,k → Gn,k .

The first bijection is straightforward. Start with (λ, μ) ∈ Vn,k . Mark the last square
in each of the k rows in [μ] to obtain a standard MacMahon diagram [μ] with k marked
squares. Now let [ν, �] = [λ] + [μ, �]′, as in Fig. 18. Finally, let ζ (λ, μ) = [ν, �].

As for the second bijection, follow steps similar to that in 4.3.2. Start with (σ, τ ) ∈
En,k . Mark the last square in each of the k rows in [σ ] (all of even length) to obtain a
standard MacMahon diagram [σ ] with k marked squares. Split τ = α ∪ β into parts >

k and ≤ k, respectively. Consider [σ ] + [β]′ and attach it right below [α]. Now remove
Sylvester’s triangle ρk , rearrange the rows into nonincreasing order, and reassemble
them into a standard MacMahon diagram [ν, �]. Let κ(σ, τ ) = [ν, �]. In [ν, �], all
rows have distinct length, and every row with a marked square (there are exactly k of
them) has a gap.

� The maps ζ : Vn,k → Gn,k and κ : En,k → Gn,k defined above, are bijections.

4.4.2. (∗∗) Find a combinatorial proof of the following identity:

1 +
∞∑

n=1

qn2 (1 + q)(1 + q2) · · · (1 + q2n+1)

(1 − q)2(1 − q2)2 · · · (1 − q2n)2
=

∞∏
n=1

1 + q2n−1

1 − q2n
,

[λ]  [μ] [ν,  ]

Fig. 18 Example of a bijection ζ : V34,3 → G34,3
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 [σ]

[α]

[β][σ]

[τ]=[α]   [β]U

[ν,  ]

Fig. 19 Example of a bijection κ : V33,3 → G33,3

4.5. Schur’s Partition Theorem

4.5.1. Let An be the set of partitions of n into parts ≡ 1 or 5 mod 6. Let Bn be the set
of partitions of n into distinct parts ≡ ±1 mod 3. Finally, let Sn be the set of partitions
of n with minimal difference 3 between parts, and no two parts which are consecutive
multiples of 3. Schur’s Partition Theorem states that

|An| = |Bn| = |Sn|.
While the first equality is elementary and can be proved in a manner similar to Euler’s
Theorem 5.1.1 (see also 8.1.3), the second equality is more involved and will be proved
here by an explicit bijection ϕ : Bn → Sn .

Start with a partition λ ∈ Bn . Consider a 3-modular diagram [λ]3 (see 2.1.4). By
the definition of Bn , all rows in [λ]3 are distinct and end with a 1 or 2 square.
Working from the bottom to the top row, arrange rows into pairs and single rows
by the following rules. Only rows which differ by 1 or 2 can form a pair. If this
holds, and λi is not paired yet, pair the rows λi−1 and λi if either i = �(λ), or
λi − λi+1 ≥ 3, or the previous two rows λi+1 and λi+2 form a pair. Now add paired
row to each other to form a single 3-modular diagram. Now remove Sylvester’s trian-
gle (see 2.3.4), rearrange the rows in nonincreasing order and add Sylvester’s triangle
back again. Denote the resulting 3-modular diagram by [μ]3, and let ϕ(λ) = μ (see
Fig. 20).
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3

3

[λ]
3

[μ]
3

Fig. 20 An example of bijection ϕ : [λ]3 → [μ]3, defined above. Here λ = (35, 22, 20, 19, 17, 13, 10,

8, 7, 2) ∈ B153, and μ = (45, 39, 29, 21, 10, 7, 2) ∈ S153

� The map ϕ defined above is a bijection between Bn and Sn .

4.5.2. Bressoud’s generalization. (♦) Fix integers r and m, such that r < m/2. Then
the number of partitions of n into distinct parts ≡ ±r mod m is equal to the num-
ber of partitions of n into parts ≡ 0, ±r mod m, with minimal difference m be-
tween parts, and no two parts are consecutive multiples of m. Prove this theorem
by converting the 3-modular diagrams, used in the bijection above, into m-modular
ones.

4.5.3. (◦◦) Denote by En the set of all partitions λ = (λ1, λ2, . . .) � n, such that

λi − λi+1 ≥
⎧⎨⎩ 5, if λi ≡ 0 mod 3,

3, if λi ≡ 1 mod 3,

2, if λi ≡ 2 mod 3.

Prove bijectively that |En| = |Sn|.
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5. Euler’s Pentagonal Theorem

5.1. The identity.

5.1.1. Euler’s Pentagonal Theorem is the following identity:

∞∏
i=1

(1 − t i ) =
∞∑

m=−∞
(−1)m−1t

m(3m−1)
2 .

The integers m(3m ± 1)/2 are called Pentagonal numbers following the ancient Greek
tradition.

We present two bijective proofs of the identity in this section. Jacobi’s triple product
identity, generalizing Euler’s Pentagonal Theorem is presented in the next section.

5.1.2. (♦) Deduce from 5.1.1 Euler’s recurrence relation:

p(n) = p(n − 1) + p(n − 2) − p(n − 5) − p(n − 7) + p(n − 12) + p(n − 15)

− · · · + (−1)m

(
n − m(3m − 1)

2

)
+

(
n − m(3m + 1)

2

)
.

This formula was used by Euler to tabulate values of p(n). Using asymptotic formula
9.6.1, estimate the complexity of Euler’s algorithm for computing the first n values
p(1), p(2), . . . , p(n).

5.2. Franklin’s involution

5.2.1. LetDn = D+
n ∪ D−

n be the set of partitions into distinct parts 2.3.4, andD+
n ,D−

n
be the subsets with an even and an odd number of parts, respectively. Let F be the
set of pentagonal Young diagrams as in Fig. 21. Let Fn = F ∩ Dn . Clearly, |Fn| = 0
unless n = m(3m ± 1)/2, in which case |Fn| = 1. Thus Euler’s Pentagonal Theorem
5.1.1 is equivalent to the identity

|D+
n | − |D−

n | = ±|Fn|,

where the sign is determined by the number of parts of a unique partition in Fn .

m

m

m

m+1

2m2m-1

Fig. 21 Young diagrams [2m − 1, 2m − 2, · · · m + 1, m] and [2m, 2m − 1, . . . , m + 2, m + 1]
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Franklin’s involution α : Dn → Dn gives a bijective proof of Euler’s Pentagonal
Theorem. It is defined as follows. First, compare the sizes of horizontal and di-
agonal lines of squares in Young diagram [λ] : (�, 1), (�, 2), . . . , (�, λ�) ∈ [λ], and
(1, k), (2, k − 1), . . . ∈ [λ], where � = �(λ), k = a(λ). Let s = s(λ) and g = g(λ), re-
spectively, be the lengths of these lines. If s > g, move the diagonal line below the
horizontal line. Otherwise, (if s ≤ g), move the horizontal line to the right of the
diagonal. If s = g, or s = g + 1, and the lines have a common square, stay put.

� The above construction gives a sign-reversing involution α on Dn with the set Fn

as the only possible fixed point.

� Observe that unless we are at a fixed point, the involution changes the number of
parts in a partition by one. Thus, α is sign-reversing. Clearly, the involution is well
defined and has fixed points only when horizontal and diagonal lines intersect at a
point which is to be moved. Thus the set of fixed points is exactly Fn . �

5.2.2. (♦) Let D0
n and D1

n be the sets of partitions λ of n into distinct parts, such that
the largest part a(λ) is even and odd, respectively. Check that Franklin’s involution
α : λ → μ satisfies a(μ) = a(λ) ± 1, unless λ ∈ Fn . Conclude that

|D0
n| − |D1

n| =

⎧⎪⎨⎪⎩
1, if n = k(3k + 1)/2,

−1, if n = k(3k − 1)/2,

0, otherwise.

5.2.3. (◦) Modify Franklin’s involution to prove the following version of 5.1.1:

∞∏
i=2

(1 − t i ) =
∞∑

m=0

(−1)m−1t
m(3m+1)

2 (1 + t + t2 + · · · + t2m).

5.2.4. (◦) Extend Franklin’s involution to obtain the following identity, refining Euler’s
Pentagonal Theorem:

1 +
m∑

k=1

(−1)k
(

t
k(3k−1)

2 + t
k(3k+1)

2

)
=

∑
0≤r≤m

(−1)i trm+(r+1
2 )

∏
r<i≤m

(1 − t i ).

5.2.5. (∗) Do the same for the following identity:

3m∏
i=1

(1 − t i ) = 1 +
m∑

k=1

(−1)k
(

t
k(3k−1)

2 + t
k(3k+1)

2

)

×
k∏

j=1

(
1 − t3m−3k+3 j

) m−k∏
r=1

(
1 − t3m+3k+3r

)
.
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5.2.6. (◦◦) Use Franklin’s involution to prove the following identity:

∞∑
k=1

(−1)k
[
(3k − 1)t

k(3k−1)
2 + (3k)t

k(3k+1)
2

]

=
∞∑

n=0

[ ∞∏
i=1

1

(1 − t i )
−

n∏
i=1

1

(1 − t i )

]
−

∞∏
i=1

1

(1 − t i )

∞∑
j=1

t j

(1 − t j )
.

5.2.7. (∗∗) Let D�
n be the set of partitions λ ∈ Dn , with the smallest part s(λ) being

odd. Find an explicit involution to show that |D�
n | is odd if and only if n is a square.

5.2.8. (∗∗) Let Qi
n denote the set of partitions λ, such that λ, λ′ ∈ On , and the number

of parts �(λ) ≡ i mod 4. Prove combinatorially that

|Q1
n| − |Q3

n| =
{

(−1)k, if n = 12k2 + 8k + 1 or n = 12k2 + 16k + 5,

0, otherwise.

5.3. Sylvester’s identity

5.3.1. Consider Sylvester’s identity

∞∑
n=0

(−1)nt
n(3n+1)

2

(
1 − xt2n+1

) n∏
i=1

1

(1 − t i )

∞∏
i=n+1

1

(1 − xtn)
= 1.

Multiplying by
∏∞

n=1(1 − xtn), and setting z = −x , we obtain:

∞∑
n=0

(
znt

n(3n+1)
2 + z(n+1)t

(n+1)(3(n+1)−1)
2

) n∏
i=1

(1 + zt i )

(1 − t i )
=

∞∏
i=1

(1 + zt i ).

Note that when z = −1 we obtain Euler’s Pentagonal Theorem 5.1.1. On the other
hand, this identity can be compared with Euler’s identity in 2.3.1. The following
bijective proof is based on a modification of the Durfee squares and is similar to that
in 2.3.1.

Denote by θm, θ ′
m pentagonal partitions, as in Fig. 21. Suppose λ ∈ Dn is a partition

with distinct parts, and δm be the Durfee square in [λ]. There are two possibilities to
consider in this case.

If λm = m, consider [λ] − [θm], which is a disjoint union of two diagrams [μ] and
[ν], such that [μ] has at most (m − 1) parts, while [ν] has distinct parts of size at most
(m − 1) (see Fig. 23). Take ϕ(λ) = (μ, ν, θm).

Similarly, if λm > m, consider [λ] − [θ ′
m], which is a disjoint union of two diagrams

[μ] and [ν], such that [μ] has at most m parts, while [ν] has distinct parts of size at
most m. Take ϕ(λ) = (μ, ν, θ ′

m).
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Fig. 22 Young diagram [λ] = [9, 8, 7, 6, 4, 3] with horizontal and diagonal lines of length s(λ) = 3 and
g(λ) = 4, respectively. An example of Franklin’s involution

Fig. 23 Young diagrams [11, 10, 8, 4, 3, 2] and [11, 10, 8, 6, 3, 2], which contain diagrams [θ4] and [θ ′
4],

respectively

� The map ϕ defined above is a bijection which proves Sylvester’s identity.

5.3.2. (♦) Set z = −1 in Sylvester’s identity. The two products on the 1.h.s. cancel.
Instead of cancelling them analytically, use Vahlen’s involution 2.3.7. Now, starting
with partitions λ ∈ Dn corresponding to the r.h.s., obtain ϕ(λ) = (μ, ν, θm) and cancel
triples with nonempty μ and ν. Check that the resulting involution is identical to
Franklin’s involution 5.2.1.

5.4. Bijective proof of Euler’s recurrence relation

5.4.1. Recall Euler’s recurrence relation 5.1.2:

p(n)= p(n − 1)+ p(n − 2) − p(n − 5) − p(n − 7) + p(n − 12) + p(n − 15) − · · ·

We present an explicit bijection proving it in the following form:

γ :
⋃

m even

Pn−m(3m−1)/2 ←→
⋃

modd

Pn−m(3m−1)/2,

where m ∈ Z on both sides is allowed to be negative, and the map γ is defined by the
following rule:

for λ ∈ Pn−m(3m−1)/2, γ (λ) =
{

ψ−3m−1(λ), if r (λ) + 3m ≤ 0,

ψ−1
−3m+2(λ), if r (λ) + 3m > 0,

where ψr is Dyson’s map 2.5.1.
In Fig. 24 we exhibit a pentagonal number by one of the diagrams as in Fig. 21. So

when m changes, we show how where the change comes from. By definition, γ is a
sign-reversing involution.
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γ

Fig. 24 Bijection γ proving Euler’s recurrence relation

� The map γ defined above is a bijection.

5.4.2. (♦) Recall the following identity in 2.5.4: P(t) = 1 + G0(t) + G1(t), where

Gr (t) =
∞∑

m=1

(−1)m−1t
m(3m−1)

2
+rm P(t), and P(t) =

∞∏
i=1

1

(1 − t i )
.

Deduce from here Euler’s Pentagonal Theorem.

5.4.3. (♦) Combine the two involutions in 2.5.5 for r = 0 and r = 1 to give an involu-
tion proving Euler’s recurrence relation. Check that this involution is identical to that
in 5.4.1.

5.5. Gauss identity

5.5.1. The following classical Gauss identity has an involutive proof:

∞∏
m=1

(1 − tm)

(1 + tm)
=

∞∑
r=−∞

(−1)r tr2

.

First, interpret the coefficient of tn on the l.h.s. as the sum of (−1)�(λ), over all standard
MacMahon diagrams [λ, �] of shape λ � n. We shall define a signreversing involution
on [λ, �] with no fixed points unless n is a square.

In a Young diagram [λ] define a horizontal line and a vertical line to be the bottom
row and the rightmost column. As before, let s = s(λ) be the length of the horizontal
line. Similarly, let f = f (λ) = ma(λ) be the length, and let q = q[λ, �] be the number
of unmarked squares of the vertical line in [λ]. We say that a column (row) is marked
if it contains a marked square. By the definition of a standard MacMahon diagram,
f = q + 1 if the vertical line is a marked column, and f = q otherwise.

Now, if f < s, or q < f = s, attach a row of length f to the horizontal line; make
it marked if the vertical line was unmarked, or vice versa (see Fig. 25). Conversely,
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α
α

Fig. 25 Two examples of the involution α

if s < f , or s = q = f , attach a column of length s to the vertical line and make it
marked if the horizontal line was unmarked, or vice versa. Denote by α the involution
we obtain.

There are four exceptional cases when α is undefined: when [λ, �] is an r × (r + 1)
rectangle with no marked squares, an (r + 1) × r rectangle with one marked square,
and an r × r rectangle with or without a marked square. The first two cases cancel
each other, while the last two give the terms on the r.h.s.

� The map α defined above gives a sign-reversing involution with square shaped
standard MacMahon diagrams as fixed points.

5.5.2. (♦) Deduce from the proof:

1 − 2
∞∑

m=1

(1 − zt)(1 − zt2) · · · (1 − ztm−1)zm+1tm

(1 + zt)(1 + zt2) · · · (1 + ztm)
= 1 − 2

∞∑
r=1

z2r (−1)r tr2

5.5.3. (◦) Modify the previous argument to prove another Gauss identity:

∞∏
n=0

(1 − t2m)

(1 − t2m−1)
=

∞∑
n=0

t
n(n+1)

2 .

5.5.4. (◦) Deduce both Gauss identities above and identity 5.5.2 from the Rogers-Fine
identity 2.3.3.

6. Jacobi’s triple product identity

6.1. Variations on the theme

6.1.1. The following summation is known as the Jacobi identity or the triple product
identity:

∞∑
n=−∞

znqn2 =
∞∏

k=1

(1 − q2k)(1 + zq2k−1)(1 + z−1q2k−1).
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6.1.2. (♦) Deduce Euler’s Pentagonal Theorem from the Jacobi identity.

6.1.3. (♦) Deduce Gauss identities 5.5.1, 5.5.3 from the Jacobi identity.

6.1.4. (◦) Deduce the following Gauss identity:

∞∏
i=1

(1 − t i )3 =
∞∑

n=0

(−1)n(2n + 1)t
n(n+1)

2 ,

6.1.5. (◦) Vahlen’s Theorem. Let ε(m) be the integer i ∈ {−1, 0, 1}, such that m ≡
i mod 3. Let ε(λ) = ε(λ1) + ε(λ2) + · · · ∈ Z. Define On,k = {(λ1, λ2, . . .) ∈ On :
ε(λ) = k}. Then for all k ∈ Z:

∑
λ∈On,k

(−1)�(λ) =
{

(−1)k, if n = k(3k − 1)

2
0, otherwise.

6.1.6. (∗∗) Prove combinatorially the quintuple product identity:

∞∑
n=−∞

q
n(3n−1)

2 z3n(1 + zqn)

=
∞∏

n=0

(1 + z−1qn+1)(1 + zqn)(1 − z−2q2n+1)(1 − z2q2n+1)(1 − qn+1).

6.1.7. (∗∗) Find a combinatorial proof of the following Ramanujan’s identity:

1 +
∞∑

n=1

qn

(1 − aq)(1 − aq2) · · · (1 − aqn)(1 − bq)(1 − bq2) · · · (1 − bqn)

= (1 − a−1)

(
1 +

∞∑
n=1

(−1)nqn(n+1)/2bna−n

(1 − bq)(1 − bq2) . . . (1 − bqn)

)

+ a−1
∞∑

n=0

(−1)nqn(n+1)/2bna−n
∞∏

k=1

1

(1 − aqk)(1 − bqk)
.

6.2. Direct bijection

6.2.1. We start with the following equivalent form of the Jacobi identity:

∞∑
k=−∞

skt
k(k+1)

2

∞∏
i=1

1

1 − t i
=

∞∏
i=1

(1 + st i )
∞∏
j=0

(1 + s−1t j ).
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+
+

[λ]

[ν]
[μ]

Fig. 26 The case k = 3, n = 35. The bijection ϕ : λ → (μ, ν), where λ = (5243321) � 29 = 35 −(4
2

)
, μ = (8, 7, 5, 4, 3, 1), ν = (4, 2, 1). Note that �(μ) − �(ν) − k = 0

The coefficient of sr tn on the l.h.s. can be interpreted as the number of partitions in
Pn−k(k+1)/2. On the r.h.s. we have |Wn,k |, where

Wn,k = {(μ, ν) : μ ∈ D′, ν ∈ D, |μ| + |ν| = n, �(μ) − �(ν) = k}.

We define a map ϕ = ϕn,k : Pn−k(k+1)/2 → Wn,k as in Fig. 26. We start with λ ∈
Pn−k(k+1)/2 and the integer k. First, arrange

(k+1
2

)
squares into a rotated Sylvester’s

triangle, and attach it sideways to diagram [λ]. When k < 0, attach the triangle on the
other side of [λ]. Then split the obtained diagram along the i − j = k diagonal, and
read columns below the diagonal, and rows on or above the diagonal. This gives us
two partitions: μ into distinct parts, and ν into nonnegative distinct parts.

� The map ϕ defined above is a bijection between Pn−k(k+1)/2 and Wn,k .

Note that when k = 0, the above bijection ϕ give Frobenius coordinates 2.3.5.

6.2.2. Let us present here another direct bijection to prove the Jacobi identity in es-
sentially the same form as in 6.2.1. In fact, we present here two different bijections
defining the same correspondence.

The first bijection is essentially the same as the bijection φ in 6.2.1, with a substi-
tution t = q2 and s = z/q:

∞∑
k=−∞

zkqk2
∞∏

r=1

1

1 − q2r
=

∞∏
i=1

(1 + zq2i−1)
∞∏

i=1

(1 + z−1q2i−1).

Define D◦ = D ∩ O to be the set of partitions into distinct odd parts. Let Vn,k =
{(μ, ν) : μ, ν ∈ D◦, |μ| + |ν| = n, �(ν) − �(μ) = k}. We present map φ = φn,k :
P(n−k2)/2 → Vn,k in Fig. 27. Here the squares of the intermediate diagrams are di-
vided into two triangles, to account for the length of the resulting partitions being
odd.

The second bijection is rather unusual, in a sense that we allow diagrams to overlap to
our advantage. We shall use Sylvester’s idea for representing partitions with odd parts
as a stack of hooks (see 3.4.1, Fig. 12.) Start with a partition λ = (λ1, λ2, . . .) into even
parts and convert it into a partition λ/2 = (λ1/2, λ2/2, . . .), and its conjugate (λ/2)′.
Now overlap their Young diagrams so that a k-square fits in the upper left corner. View
the resulting arrangement of squares (counted with multiplicity) as a superimposed
picture of two stacks of hooks, corresponding to partitions μ, ν ∈ D◦. Denote this
map by η.
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Fig. 27 The case k = 2, n = 78. Bijections φ, η : λ → (μ, ν), where λ = (14, 123, 10, 6, 24) = 2 ·
(7, 63, 5, 3, 14) � 74 = 78 − 22, μ = (17, 13, 11, 9, 5), ν = (15, 5, 3). Note that �(μ) − �(ν) − k = 0

� The maps φ, and η are identical bijections between P(n−k2)/2 and Vn,k .

6.2.3. (♦) Deduce from the proof the following MacMahon’s identity:

m∏
i=1

(1 + zq2i−1)
n∏

j=1

(1 + z−1q2 j−1) =
m∑

k=−n

zkqk2

(
m + n
k + n

)
q2

.

Check that as m, n → ∞ we obtain the Jacobi identity.

6.3. Involutive proof

We present a sign-reversing involution proving the Jacobi identity in the following
form:

∞∏
n=1

(1 − unvn−1)(1 − un−1vn)(1 − unvn) = 1 +
∞∑

k=1

(−1)n
(

u(k+1
2 )v(k

2) + u(k
2)v(k+1

2 )
)

.

Setting q2 = uv, z = −u/v, we obtain the Jacobi identity as in 6.1.1.
Let �−, �0, and �+ be the sets of pairs of partitions {(λ, λ−)}, {(λ, λ)}, and

{(λ−, λ)}, respectively, where λ = (λ1, λ2, . . .) ∈ D, and λ− = (λ1 − 1, λ2 − 1, . . .).
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We use the notation (ν, ν+) for elements of �+. Let � = �− × �0 × �+, and let

Am,n := {M =
(

λ, μ, ν

λ−, μ, ν+

)
∈ � : |λ| + |μ| + |ν| = m, |λ−| + |μ| + |ν+| = n}

be the set of triples of pairs of partitions. The sign of such a triple is defined by

ε(M) = ε

(
λ, μ, ν

λ−, μ, ν+

)
:= (−1)�(λ)+�(μ)+�(ν+) ∈ {±1}.

Now the Jacobi identity is reduced to the following summation:

∑
M∈Am,n

ε(M) =
⎧⎨⎩ (−1)k, if m =

(
k + 1

2

)
, n=

(
k
2

)
, or m =

(
k
2

)
, n=

(
k + 1

2

)
,

0, otherwise.

Note that the sum on the l.h.s. is symmetric, so it suffices to calculate it for m ≥ n. In
this case we shall cancel all terms except for Fk = (

ρk+1,0,0
ρk ,0,0

)
, where m =(k+1

2

)
, n =(k

2

)
, and ρr = (r, r − 1, . . . , 2, 1) for all r > 0. We say that λ is triangular, if λ = ρk

for some k > 0.
The proof follows the same idea as Franklin’s proof 5.2.1. Let s(λ) be the length of

the horizontal line in [λ], and let g(λ) be the length of the diagonal line defined as in
5.2.1. Clearly, g(λ−) = g(λ) unless λ is triangular.

Let M = (
λ,μ,ν

λ−,μ,ν+
) ∈ Am,n , and m ≥ n. Consider two cases: g(λ) ≥ s(μ), and

g(λ) < s(μ), with λ not triangular. Move the diagonal line from [λ] to the horizontal
line in [μ], or vice versa; and the same for [λ−] and [μ].

Now suppose λ = ρk and k = g(λ) < s(μ). Consider another two cases: s(μ) >

k + s(ν), and s(μ) ≤ k + s(ν), with ν �= ∅. Move the largest part of [λ] and the hor-
izontal line in [ν] to combine into the horizontal line in [μ], or vice versa; repeat the
same for [λ−] and [ν+].

We demonstrate the map ϕ defined above in both cases in Fig. 28, where we present
only partitions (λ, μ, ν), omitting the matching triple (λ−, μ, ν+). Note that ϕ changes
parity in �(λ) + �(μ) + �(ν).

� The map ϕ is a sign-reversing involution on Am,n, m ≥ n, with no fixed points,
except when m = (k+1

2

)
, n = (k

2

)
, and Fk is a unique fixed point.

This completes the involutive proof of the Jacobi identity.
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Fig. 28 In the first case, we have:

ϕ :

(
(7, 6, 5, 3, 2), (6, 4), (4, 1)

(6, 5, 4, 2, 1), (6, 4), (5, 2)

)
→

(
(6, 5, 4, 3, 2), (6, 4, 3), (4, 1)

(5, 4, 3, 2, 1), (6, 4, 3), (5, 2)

)
In the second case, we have:

ϕ :

(
(4, 3, 2, 1), (9, 8), (6, 5, 3)

(3, 2, 1), (9, 8), (7, 6, 4)

)
→

(
(3, 2, 1), (9, 8, 7), (6, 5)

(2, 1), (9, 8, 7), (7, 6)

)

7. Rogers-Ramanujan identities

7.1. Combinatorial interpretations

7.1.1. The classical Rogers-Ramanujan identities are:

(�) 1 +
∞∑

k=1

t k2

(1 − t)(1 − t2) · · · (1 − t k)
=

∞∏
i=0

1

(1 − t5i+1)(1 − t5i+4)
,

(��) 1 +
∞∑

k=1

t k(k+1)

(1 − t)(1 − t2) · · · (1 − t k)
=

∞∏
i=0

1

(1 − t5i+2)(1 − t5i+3)
.

The two identities are similar in nature, so we concentrate only on (�).
Let us start by giving combinatorial interpretations to the coefficients of tn in (�).

The r.h.s. is clear: this is the number of partitions of n into parts ≡ ±1 mod 5. We
denote the set of such partitions by An .

Let Bn be the number of partitions of n into parts which differ by at least 2. Let Cn

be the number of partitions λ � n such that s(λ) ≥ �(λ). Then the coefficient of tn on
the l.h.s. in (�) is equal to |Bn| = |Cn|.

7.1.2. (♦) Use the Durfee square 2.3.1 to obtain the generating function for Cn and
compare it with the l.h.s. of (�). Similarly, use the modified Sylvester’s triangle 2.3.4
to obtain the generating function for Bn and compare it with the l.h.s. of (�). Finally,
find a direct bijection π : Bn → Cn .

7.1.3. (♦) Obtain similar combinatorial interpretations for (��).

7.1.4. (◦) Consider a Young diagram [λ] and its Durfee square [δr ]. Consider the lower
of the two Young diagrams in [λ]�[δr ]. Repeatedly take the Durfee square until an
empty diagram is obtained. Let Cn,k be the set of partitions λ � n with at most k − 1
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successive Durfee squares. Let An,k be the set of partitions into parts ≡ ±k mod
2k + 1. Write the generating functions for |Cn,k | and |An,k |. Their equality is called
Gordon’s identity.

7.2. Schur’s proof of Rogers-Ramanujan’s identities

7.2.1. (♦) Apply the Jacobi identity 6.1.1 to rewrite the r.h.s. of (�):

∞∏
r=0

1

(1 − t5r+1)(1 − t5r+4)
=

∞∑
m=−∞

(−1)mt
m(5m−1)

2

∞∏
i=1

1

(1 − t i )
.

7.2.2. Schur’s Involution. From the above observation, rewrite (�) in the following
equivalent form:

∞∏
i=1

(1 − t i )

(
1 +

∞∑
k=1

t k2

(1 − t)(1 − t2) · · · (1 − t k)

)
=

∞∑
m=−∞

(−1)mt
m(5m−1)

2 .

We shall prove this identity by an explicit sign-reversing involution, by combining
elements of Vahlen’s involution 2.3.7 and Franklin’s involution 5.2.1. The construction
we present is called Schur’s Involution.

We give a combinatorial interpretation of the coefficient of tn on both sides of the
equation above. For the l.h.s. we have a set of pairs λ ∈ D and μ ∈ B, where D is
a set of partitions into distinct parts, and B = ∪Bn is a set of partitions μ with no
equal or consecutive parts (see 7.1.1 above). Let R = D × B, and let Rn consist of
pairs (λ, μ) ∈ R, such that |λ| + |μ| = n. The sign of a pair (λ, μ) is a parity of �(λ).
We define an involution α : Rn → Rn which is sign-reversing except for the fixed
points, defined as in Fig. 29. Observe that these fixed points give a combinatorial
interpretation for the r.h.s. of the equation above.

Start with (λ, μ) ∈ Rn ⊂ D × B. First, compare a(λ) and a(μ). If a(λ) ≥ a(μ) + 2,
move part λ1 to μ. If a(λ) < a(μ), move part μ1 to λ. There remain the cases a(λ) =
a(μ) and a(λ) = a(μ) + 1. Denote these cases by R1

n and R2
n , respectively.

As in 5.2.1, let s(λ) be the length of the horizontal line in [λ], let g(λ) be the length of
the diagonal line, and let u(μ) be the length of the tangential line defined as in Fig. 30.
Start with (λ, μ) ∈ R1

n , and suppose this is not a fixed point. If s(λ) ≤ g(λ), u(μ),
remove the horizontal line and attach it to the diagonal line. Conversely, if (λ, μ) ∈ R2

n
is not a fixed point, and g(λ) < s(λ), g(λ) ≤ u(μ), remove the diagonal line and attach
it to the horizontal line (see Fig. 31).

m

2m-12m-1 2m 2m-1

m

Fig. 29 Fixed points of Schur’s involution α : Rn → Rn
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μ

{

u(  )μ

λ

s(  )λ

g(  )λ

Fig. 30 For a pair of partitions (λ, μ) ∈ R as above, we have s(λ) = 3, g(λ) = 5, u(μ) = 4

μ

α

λ

λ

a

μ

g

a+1

a

a

s

αλ

μ

λ

μ

a a-1

a a

s

u

{

λ
μ

λ
μ

α

g

a
a

a
a-1 {

u

Fig. 31 Three cases of Schur’s involution α
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Suppose (λ, μ) ∈ R2
n with s(λ) ≤ g(λ), u(μ). Then remove the horizontal line and

attach it to the tangential line. Conversely, if (λ, μ) ∈ R1
n and u(μ) < s(λ), u(μ) ≤

g(λ), then remove the tangential line and attach it to the horizontal line (see Fig. 31).
Finally, if (λ, μ) ∈ R1

n and g(λ) < s(λ), u(μ), then remove the largest part a(μ)
and the diagonal line, and attach them to the largest part a(λ) and the tangential
line, respectively. Conversely, if (λ, μ) ∈ R2

n and u(λ) < s(λ), u(μ), then remove the
largest part a(λ) and the tangential line, and attach them to the largest part a(μ) and
the diagonal line, respectively (see Fig. 31).

� The map α : Rn → Rn defined above is a sign-reversing involution.

� First, observe that α is defined for all (λ, μ) except for fixed points. Also, α−1 = α

by construction, in each of the four cases considered. Finally, the number of parts �(λ)
always changes by 1, so α is sign-reversing. �

7.2.3. (◦) Define polynomials Am(q) and Bm(q) as follows:

Am = Am−1 + qm Am−2, A0 = 1, A1 = 1 + q,

Bm = Bm−1 + qm Bm−2, B0 = 1, B1 = 1.

Prove by induction that

Am(q) =
∑

r

(−1)r qr (5r−3)/2

(
m − 1

�m+1−5r
2

�
)

q

,

Bm(q) =
∑

r

(−1)r qr (5r+1)/2

(
m − 1

�m−1−5r
2

�
)

q

,

where summation is over all r for which the q-binomial coefficient are defined (see
2.2.5). Compute Schur’s limits:

A∞(q) =
∞∏

i=0

1

(1 − q5i+1)(1 − q5i+4)
, B∞(q) =

∞∏
i=0

1

(1 − q5i+2)(1 − q5i+3)
.

7.2.4. (◦◦) Let Am(t), Bm(t) be as in 7.2.3. Modify Schur’s involution 7.2.2 to prove
the following generalization of Rogers-Ramanujan’s identities:

1 +
∞∑

k=1

t k(k+m)

(1 − t)(1 − t2) · · · (1 − t k)

= (−1)mt−(m
2) Bm−2(t)

∞∏
i=0

1

(1 − t5i+1)(1 − t5i+4)

−(−1)mt−(m
2) Am−2(t)

∞∏
i=0

1

(1 − t5i+2)(1 − t5i+3).
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7.2.5. (∗∗) Find a combinatorial proof of the Farkas-Kra identity:

∞∏
i=1

(1 + t2i−1) = A∞(t)A∞(t4) + t B∞(t)B∞(t4).

7.2.6. (◦◦) Recall Euler’s recurrence relation 5.1.2 and its bijective proof 5.4.1. Modify
Dyson’s map to obtain a similar proof of the recurrence relation for the numbers |Cn|,
corresponding to the following equivalent form of (�):

1 +
∞∑

k=1

t k2

(1 − t)(1 − t2) · · · (1 − t k)
=

∞∑
m=−∞

(−1)mt
m(5m−1)

2

∞∏
i=1

1

(1 − t i )
.

7.3. Ramanujan’s continued fraction

7.3.1. Define

F(x, q) = 1 +
∞∑

k=1

xkqk2

(1 − q)(1 − q2) · · · (1 − qk)
,

and let c(x, q) = F(x, q)/F(xq, q). Observe that F(x, q) = F(xq, q) + xq F
(xq2, q), and therefore

c(x, q) = 1 + xq

F(xq, q)/F(xq2, q)
= 1 + xq

c(xq, q)
.

This immediately gives the Ramanujan’s continued fraction:

c(x, q) = 1+ xq

1+ xq2

1+ xq3

1+ xq4

1+ · · ·
When x = 1, we have c(1, q) = F(1, q)/F(q, q). Now identities (�) and (��) imply
the famous Ramanujan’s formula:

1 + q

1 + q2

1 + q3

1 + q4

1 + · · ·

=
∞∏

i=0

(1 − q5i+2)(1 − q5i+3)

(1 − q5i+1)(1 − q5i+4)
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7.3.2. (◦) Let f (z, t) = 1/c(−z, t). Define Dyck words to be 0–1 sequences with an
equal number of 0’s and 1’s and such that the k-th 0 always precedes the k-th 1. Denote
the set of such words by W , and let �(ω) be half the length of the word. Define a(ω) to
be the number of 0-1 pairs in a word such that 1 precedes 0. Note that 0 ≤ a(ω) ≤ (n

2

)
,

for all �(ω) = n. Use the recurrence relation for c(z, t) to show that

f (z, t) =
∑
ω∈W

z�(ω)t(
n
2)−a(ω).

7.3.3. (◦◦) Find a (infinite) subset W◦ ⊂ W of Dyck words, such that

c(−z, t) =
∏

ω∈W◦

(
1 − z�(ω)t(

n
2)−a(ω)

)
.

8. Involution principle and partition identities

8.1. Equivalent partition bricks

8.1.1. Andrews’ Theorem. Fix a sequence a = (a1, a2, . . .), where ai ∈ P ∪ {∞}. Let
supp(a) be the set of all i ∈ P such that ai < ∞. We say that two such sequences a
and b = (b1, b2, . . .) are equivalent, denoted a∼b, if there exists a one-to-one corre-
spondence π : supp(a) → supp(b) such that i · ai = j · b j , for all j = π (i).

Let An and Bn be the sets of partitions λ = (1m1 2m2 . . .) � n such that mi < ai and
m j < b j , respectively. We refer to A = ∪nAn and B = ∪nBn as equivalent partition
bricks.

� Andrews’ Theorem. If a∼b, then |An| = |Bn|, for all n > 0.

� 1+
∞∑

n=1

|An|tn =
∞∏

i=1

1 − t iai

1 − t i
=

∞∏
j=1

1 − t jb j

1 − t j
= 1+

∞∑
n=1

|Bn|tn, where t∞ = 0. �

8.1.2. (♦) Let a = (2, 2, . . .), b = (∞, 1, ∞, 1, . . .), π : i → 2i . Then An = Dn and
Bn = On . In this case Andrews’ Theorem becomes Euler’s Theorem 3.1.

8.1.3. (♦) Let An be the set of partitions of n into parts ≡ 1 or 5 mod 6. Let Bn be the
set of partitions of n into distinct parts ≡ ±1 mod 3. Let Cn be the set of partitions of n
into odd parts none appearing more than twice. Deduce from Andrews’ Theorem the
equality |An| = |Bn| = |Cn|.

8.1.4. (◦) Let γA : P → N be a statistic defined by γA(λ) = |{i : mi (λ) ≥ ai }|. Define
γB analogously. Prove that statistics γA and γB are equidistributed on Pn . Compare
this result with Franklin’s extension 3.3.1.
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8.2. O’Hara’s Algorithm

8.2.1. We present here O’Hara’s Algorithm, which defines a bijection ϕ : An → Bn .
Start with λ ∈ An . Set μ := λ. While μ contains any part (j) at least b j times (i.e.

m j (μ) ≥ b j ), remove b j copies of part (j) from μ, add ai copies of the part (i) to μ,
where i = π−1( j). Repeat until μ ∈ Bn .

� The map ϕ : An → Bn is a well defined bijection, independent of the order of
parts removed in the algorithm.

8.2.2. (♦) Show that in Example 8.1.2, the bijection ϕ : Dn → On coincides with the
map φ : Dn → On in 3.2.1, the inverse to the Glaisher’s bijection.

8.2.3. (♦) Use O’Hara’s Algorithm to give a bijective proof of the equalities in 8.1.3.
Convert these into explicit ‘à la Glaisher’ bijections between the sets.

8.2.4. (◦) Let a = (a1, a2), b = (b1, b2), π = (2, 1) ∈ S2. Define the speedy version
of O’Hara’s Algorithm by combining identical iterations into one. Find a connection
to Euclid’s Algorithm and continued fractions. Conclude that the new version takes
O(log M) steps, where M = max{ai , b j }.

8.2.5. (∗) Let m be fixed, a = (a1, . . . , am), b = (b1, . . . , bm), π ∈ Sm . Prove that the
speedy version of O’Hara’s Algorithm requires O(log M) steps.

8.3. Geometric version

8.3.1. Let a = (a1, . . . , am), b = (b1, . . . , bm), and w = (w1, . . . , wm), where
ai , b j , wi ∈ R+. For the rest of this section, let [m] = {1, 2, . . . , m}. We write a ∼ω b
if there exists a bijection π : [m] → [m], such that aiwi = b jw j for all j = π (i).

Let V = Rm , and consider a linear function ω ∈ V ∗, defined by ω(x1, . . . , xm) :=
w1x1 + · · · + wm xm . Consider two ω-equivalent bricks:

A = {(x1, . . . , xm) ∈ V : 0 ≤ xi ≤ ai , i ∈ [m]},
B = {(x1, . . . , xm) ∈ V : 0 ≤ x j ≤ b j , j ∈ [m]},

and let Ac = A ∩ {x ∈ V : ω(x) = c},Bc = B ∩ {x ∈ V : ω(x) = c}, where c ∈ R+.

� If a ∼ωb, then vol (Ac) = vol (Bc) for all c > 0.

8.3.2. (◦) Let e(Q) denote the number of integer points in the convex polytope Q, and
let N · Q be the polytope Q extended by a factor of N in all directions. The Ehrhart
polynomial fQ(t) is defined by fQ(N ) = e(N · Q), for all N ∈ N. Extend the above
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result to an equality of Ehrhart polynomials of the polytopes Ac and Bc. Deduce
Andrews’ Theorem 8.1.1 in this case.

8.3.3. (◦) Extend O’Hara’s Algorithm 8.2.1 to a map ϕ : A → B. Prove that ϕ is a
piece-wise linear and volume preserving map, such that ω(x) = ω(ϕ(x)). Observe that
ϕ is a parallel translation almost everywhere. Give another proof of 8.3.2.

8.4. General involution principle

8.4.1. Garsia–Milne Theorem. Let A = A+ � A− and B = B+ � B− be two sets with
two subsets. Suppose α : A → A and β : B → B be two involutions with fixed points
Fα ⊂ A+ and Fβ ⊂ B+, such that α : A+\Fα → A− and β : B+\Fβ → B− are bi-
jections. Such involutions are called sign-reversing. Finally, suppose ψ : A → B is a
bijection which maps A+ into B+, and A− into B−. Clearly, |Fα| = |A+| − |A−| =
|B+| − |B−| = |Fβ |.

The involution principle defines the following map ϕ : Fα → Fβ . Start at
a ∈ Fα ⊂ A+. If b := ψ(a) ∈ Fβ ⊂ B+, let φ(a) = b. Otherwise, consider b′ =
β(ψ(α(ψ−1(b)))) ∈ B+. Again, if b′ ∈ Fβ , let ϕ(a) = b′. Otherwise, let b′′ :=
β(ψ(α(ψ−1(b′)))) ∈ B+. and repeat.

� Garsia-Milne Theorem. The map ϕ : Fα → Fβ is a bijection.

8.4.2. (♦) Let D∞ = 〈α, β〉/(α2 = β2 = 1) be an infinite dihedral group, D∞ = Z2 ∗
Z2 � Z2 � Z. Let ρ : D∞ → SN be a permutation representation of D∞ on [N]. Show
that orbits of the action of D∞ give a perfect matching on a set F = [N ]D∞ of fixed
points of the action of D∞ on [N]. Deduce the Garsia–Milne Theorem.

8.4.3. (♦) Recall Franklin’s involution 5.2.1 and Vahlen’s involution 2.3.7. Apply the
involution principle to obtain an involutive proof of Euler’s recurrence relation 5.1.2.
Compare the resulting involution with 5.4.1.

8.4.4. (♦) Recall Schur’s involution 7.2.2 and direct bijective proof of Jacobi identity
6.2.1. Combine the two with Vahlen’s involution to obtain an involution principle
bijective proof of the Rogers-Ramanujan’s identity (�) in 7.1.1.

8.4.5. (∗∗) Prove that in the worst case the number of steps in the resulting bijection
ϕ : An → Bn (in the notation of 7.1.1) is > exp(nα), for some α > 0. Compare this
with the total number of partitions |An|.

8.4.6. (◦) Let p be a prime ≡ 1 mod 4. Euler proved that p = x2 + 4y2 for some
integers x and y. Consider a set of triples A = {(x, y, z) ∈ Z3 : x2 + 4yz = p}. Note
that |A| ≥ 1 since a = (1, 1,

p−1
4

) ∈ A. Define two involutions on A : α(x, y, z) =
(x, z, y), and

β(x, y, z) =

⎧⎪⎨⎪⎩
(x + 2z, z, y − x − z), if x < y − z,

(2y − x, y, x − y + z), if y − z < x < 2y,

(x − 2y, x − y + z, y), if x > 2y.
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Note that a is a unique fixed point of the involution β. Deduce from here Euler’s result
and present an algorithm for finding a solution algorithmically.

8.4.7. (∗∗) Estimate the complexity of the above algorithm

8.5. Remmel’s bijection

We present here a bijective proof of Andrews’ Theorem 8.1.1 by means of the involu-
tion principle. The idea is to multiply by the common denominator both sides of the
identity in the proof of Andrews’ Theorem, and then cancel terms accordingly.

We use the notation of 8.1. For simplicity, assume that supp(a) = supp(b) = [m],
i.e. a = (a1, . . . , am) and b = (b1, . . . , bm), with ai , b j < ∞. Thenπ ∈ Sm , with ai i =
bπ (i)π (i). In this case we have:

A = {(1c1 . . . mcm ) : 0 ≤ ci < ai , for all i ∈ [m]},
B = {(1c1 . . . mcm ) : 0 ≤ c j < b j , for all j ∈ [m]},

Let P be the set of all partitions λ, and let X = P × 2[m]. Define

X+ = {(λ, S) : λ ∈ P, S ⊂ [m], and |S| is odd}, and let X− = X−\X+.

Finally, let Fα = A × {∅} ⊂ X and Fβ = B × {∅} ⊂ X . We shall define two sign-
reversing involutions α, β on χ , with Fα = Fβ as their fixed points.

Consider (λ, S) ∈ X , where λ = (1c1 , . . . , mcm ), S ∈ [m]. Take the smallest i ∈
[m], such that either i ∈ S, or ci ≥ ai , or both. Now let

α(λ, S) =
{

((1c1 , . . . , i ci +ai , . . . , mcm ), S\{i}), if i ∈ S,

((1c1 , . . . , i ci +ai , . . . , mcm ), S ∪ {i}), if i �= S, ci ≥ ai

Define β = β(μ, S) analogously. Now use the involution principle to construct a
bijection ϕ : Fα → Fβ , and thus gives Remmel’s bijection ϕ′ : A → B.

� Remmel’s bijection. The above construction gives a bijection ϕ′ : An → Bn . This
bijection coincides with the map ϕ : An → Bn defined by O’Hara’s Algorithm
8.2.1.

8.6. Cohen–Remmel Theorem

8.6.1. We now consider a different setup for partition identities. Let R = Nm be the free
abelian semigroup. Fix a semigroup homomorphism ω : R → N, defined by ω(a) =
a1w1 + · · · + amwm , where a = (a1, . . . , am). We also assume that wi > 0. For every
C ⊂ R, let Cn = C ∩ {a ∈ R : ω(a) = n}. We call ω the weight function.

For elements a = (a1, . . . , am), a′ = (a′
1, . . . a′

m), . . ., define

lcm(a, a′, . . .) = (max{a1, a′
1, . . .}, . . . , max{am, a′

m, . . .})
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Let A = {a1, . . . , ar }, B = {b1, . . . , br } ⊂ Nm be two subsets of an integer lattice.
We say that A and B are lcmω-equivalent, denoted A ∼ω B, if for all I = {i1, i2, . . .} ⊆
[r ], we have

ω(lcm(ai1
, ai2

, . . .)) = ω(lcm(bi1
, bi2

, . . .)).

Consider two lattice ideals A = N〈a1, . . . , ar 〉,B = N〈b1, . . . , br 〉, and let A′ =
R\A, B′ = R − B.

� Cohen–Remmel Theorem. If A ∼ω B, then A′
n = B′

n .

� Let G ′(t), H ′(t) denote the generating series for the ω-statistic on A′ and B′:

G ′(t) =
∑

n

|A′
n|tn =

∑
c∈A′

tω(c), H ′(t) =
∑

n

|B′
n|tn =

∑
c∈B′

tω(c).

Also, let

W (t) :=
∑

n

|Rn|tn =
∑
c∈R

tω(c) =
∏

i

1

1 − twi
.

For every subset I = {i1, i2, . . .} ⊂ [r ], consider the intersection of the dual lattice
ideals (also called filters): MI = N〈ai1

〉 ∩ N〈ai2
〉 ∩ . . . , and the generating series for

the weight function: PI (t) = ∑
c∈MI

tω(c). Also, let AI = {ai1
, ai2

, . . .}, and lcm(AI ) =
lcm(ai1

, ai2
, . . .). For the lattice subset B, define the dual lattice ideal NI , generating

series for the weight function QI (t), and lcm(BI ), analogously. From A ∼ω B, we
have:

PI (t) = tω(lcm(AI ))W (t) = tω(lcm(BI ))W (t) = QI (t).

The inclusion-exclusion principle gives:

G ′(t) =
∑
I⊂[r ]

(−1)|I | PI (t) =
∑
I⊂[r ]

(−1)|I | QI (t) = H ′(t).

�

8.6.2. (♦) Fix wi = i , so that ω(c1, c2, . . .) = c1 · 1 + c2 · 2 + · · · Let a1 =
(a1, 0, 0, . . . , 0), a2 = (0, a2, 0, . . . , 0), . . . Then A′,B′ correspond to equivalent
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partition bricks A,B, as in the notation of 8.1. Thus the Cohen-Remmel Theorem
implies Andrews Theorem 8.1.1.

8.6.3. (♦) Deduce Glaisher’s Theorem 3.2.3 from Cohen–Remmel Theorem.

8.6.4. (◦) Prove that A ∼ω B implies that the lcm-lattices LA = {lcm(AI ), I ⊂ [r ]}
and LB = {lcm(BI ), I ⊂ [r ]} are isomorphic.

8.6.5. (◦) Generalize Remmel’s bijection 8.5 to prove the Cohen–Remmel Theorem.
Find an example of when different orderings on [m] produce different bijections.

8.6.6. (◦) Define analogs of statistics γA, γB from 8.1.4. Extend the Cohen–Remmel
Theorem to general values of these statistics.

8.7. Gordon’s bijection

8.7.1. We present a bijective proof of the Cohen-Remmel Theorem 8.6.1. The idea
behind Gordon’s bijection is to generalize the use of the inclusion-exclusion principle
from the proof of the Cohen–Remmel Theorem.

In the notation of 8.6, for every I = {i1, i2, . . .} ⊂ [r ], consider dual lattice ideals
AI = N〈ai1

, ai2
, . . .〉 and A•

I = AJ ∩ MI ⊂ MI , where J = [r ]\I . Finally, consider
an ideal A′

I = MI \A•
I . Clearly, R = ⊕I⊂[r ]A′

I Similarly, define dual lattice ideals
BI ,B•

I , and an ideal B′
I . Clearly, A′ = A′

∅ and B′ = B′
∅.

We shall construct by induction on |I | ≤ r a family of bijections �I : A′
I → B′

I ,
which preserve the statistic ω. By the inductive assumption, it suffices to construct
only a bijection � := �∅ : A′ → B′.

For every I ⊂ [r ] we have obvious bijections �I : MI → NI , defined by

�I : c → c − lcm(AI ) + lcm(BI ).

In particular, � := �∅ is an identity map.
For r = 1, we have A= {a}, RA = R(xa). In this case we have two maps � = �∅

and �1 := �{1}. Consider the following version of the involution principle 8.4. Start at
f = c ∈ N ′ and consider g1 = �( f ). If g1 ∈ N ′

B, let �( f ) = g1. Otherwise, consider
g2 = �(�−1

1 (g1)). Again, if g2 ∈ N ′
B, let �( f ) = g2; otherwise, repeat.

In the general case r ≥ 2 proceed analogously. Start at f = c ∈ N ′ and consider
g1 = �( f ). Take a unique I ⊂ [r ] such that g1 ∈ N ′

I I/I = θ , define �( f ) = g1.
Otherwise, |I | ≥ 1 and the maps �I are defined by the inductive assumption. Now let
g2 = �(�−1

I (g1)) and repeat the procedure.

� If A ∼ω B, then the map � : A′ → B′ defined above is a weight preserving
bijection.
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Fig. 32 A plane partition A (zero entries are omitted) and a reverse plane partition B of shape (5, 4, 4, 2).
Here |A| = 95 and |B| = 55. Two pictures on the right show the hook length h(2, 2) = 6 in [5, 5, 4, 2], and
hook lengths in [55]

8.7.2. (♦) Following Example 8.6.2, consider a special case when the Cohen–Remmel
Theorem reduces to Andrews’ Theorem. Prove that the bijection ϕ given by O’Hara’s
Algorithm 8.2.1 coincides with Gordon’s bijection � in this case.

8.7.3. (◦) Extend the Cohen-Remmel Theorem 8.6.1 to a geometric setting. Generalize
Gordon’s bijection to this case and prove the equality of the Ehrhart polynomials.

9. Miscellanea

9.1. Plane partitions

9.1.1. MacMahon’s Theorem. A plane partition is a two-dimensional array of nonneg-
ative integers A = (λi, j ), such that λi, j ≥ λi, j+1, λi+1, j for all (i, j) ∈ Z2

≥1. Denote by
M the set of all plane partitions. Define |A| = ∑

i, j λi, j . Traditionally, plane partitions
are represented by a function λi, j written in squares (i, j) (see Fig. 32).

The following formula is the classical MacMahon’s Theorem:

∑
A∈M

t |A| =
∞∏

r=1

1

(1 − tr )r
.

Define the support by supp(A) = {(i, j) ∈ Z2 : λi, j > 0}. Let Mk be the set of plane
partitions A ∈ M, such that supp(A) ⊂ {(i, j) : 1 ≤ i, j ≤ k}. The following formula
is an extension of MacMahon’s theorem:

∑
A∈Mk

t |A| =
k∏

r=1

1

(1 − tr )r

k−1∏
i=1

1

(1 − t k+i )k−i
.

Indeed, letting k → ∞ gives the formula above.

9.1.2. Stanley’s hook content formula. A reverse plane partition of shape μ is an
integer nonnegative function f (i, j) on the squares (i, j) ∈ [μ] such that f (i, j) ≤
f (i + 1, j) and f (i, j) ≤ f (i, j + 1) whenever both squares are in [μ]. Define |B| =∑

(i, j)∈[μ] f (i, j). Denote by R(μ) the set of reverse plane partitions B = { f (i, j)} of
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Fig. 33 An example of bijection ξμ : B → C , for μ, = (33). Here |B| = ‖C‖ = 44

shape μ. The following result is called Stanley’s hook content formula:

∑
B∈R(μ)

t |B| =
∏

(i, j)∈[μ]

1

1 − th(i, j)
,

where h(i, j) = μi + μ′
j − i − j + 1 is the hook length, defined as the number of

squares in [μ] to the right or below (i, j), including (i, j) (see Fig. 32). When [μ] = [kk]
is a k-square, reverse plane partitions are centrally symmetric to (usual) plane parti-
tions in Mk , and Stanley’s formula coincides with the extension of the MacMahon’s
Theorem as above (see hook lengths in [55] in Fig. 32).

9.1.3. Bijective proof. We present here a bijective proof of Stanley’s formula by in-
duction on |μ|. Consider a set C(μ) of nonnegative integer functions C = {g(i, j) :
(i, j) ∈ [μ]}, and define ‖C‖ := ∑

(i, j)∈[μ] h(i, j)g(i, j). We present a bijection ξμ :
R(μ) → C(μ), such that |B| = ‖C‖ for all C = ξμ(B). The base of induction, when
|μ| = 1, is trivial.

Now start with a plane partition B of shape μ defined by a function f on [μ].
Let (p, q) be a corner in [μ], and [ν] = [μ] − (p, q). By induction, assume that
ξν is already defined. Let c = p − q . Let us change the value of f on all squares
(i, j) �= (p, q) on the diagonal i − j = c by the following rule:

f ′(i, j) = max{ f (i − 1, j), f (i, j − 1)}+min{ f (i + 1, j), f (i, j + 1)}− f (i, j),
where we assume that f (i, j) = 0 whenever i < 0 or j < 0. Let f ′(i, j) = f (i, j)
if i − j �= c. Now define {g(i, j) : (i, j) ∈ ν} = ξν({ f ′(i, j)}), and let
g(p, q) = f (p, q) − max{ f (p − 1, q), f (p, q − 1} (see Fig. 33).

� The map ξμ : R(μ) → C(μ) defined above is a bijection, such that |B| = ‖C‖
for all C = ξμ(B).

9.1.4. (♦) A priori, the bijection ξμ may depend on the order of squares removed in
the induction steps. Prove that ξμ is, in fact, independent of that order.

9.1.5. (◦) Let A = (λi, j ) ∈ M be a plane partition. Define tr(A) = λ1,1 + λ2,2 + · · ·
Deduce from the proof a refinement of MacMahon’s Theorem:

∑
A∈M

t |A|ztr(A) =
∞∏

r=1

1

(1 − ztr )(1 − tr )r−1
.
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9.1.6. (◦) Show that ξμ is a continuous, piecewise linear, volume-preserving map from
a cone of real reverse plane partitions of shape μ to a cone of nonnegative real functions
on [μ]. Extend the theorem to an equality of Ehrhart polynomials of convex polytopes.

9.1.7. (◦◦◦) Let B(m, n, �) be the number of plane partitions {λi, j } with

supp{λi, j } ⊂ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, and λi, j ≤ �.

Prove combinatorially:

B(m, n, �) =
m∏

i=1

n∏
j=1

�∏
k=1

i + j + k − 1

i + j + k − 2
.

9.2. Bipartitions

9.2.1. Carlitz’s Theorem. We say that (μ1, ν1), (μ2, ν2), . . . , (μ�, ν�) is a bipartition
of (m, n) if μi , νi are nonnegative integers, |μ| = m, |ν| = n, and

min{μi , νi } ≥ max{μi+1, νi+1}.

Here we assume also that (μi , νi ) �= (0, 0), except when (m, n) = (0, 0). Clearly, the
min–max condition implies that both μ and ν are integer partitions.

Denote by Bn,n the set of all bipartitions of (m, n). The following result is called
Carlitz’s Theorem:

∑
(m,n)

|Bm,n|xm yn =
∞∏

i=1

1

(1 − xi yi−1)(1 − xi−1 yi )(1 − x2i y2i )
.

In other words, bipartitions are in bijection with all decompositions of a vector (m, n)
into sum of vectors (i, i − 1), (i − 1, i) and (2i, 2i), with no regard to the order. Denote
by Wm,n the set of such vector decompositions. Define a map ϕ : Bm,n → Wm,n as
follows.

Start with (μ, ν) ∈ Bm,n . Consider a sequence (μ′
1, ν

′
1), (μ′

2, ν
′
2), . . . Observe that

the min–max condition now translates into |μi − νi | ≤ 1, for all i ≥ 1, and therefore
(μ′, ν ′) has a natural decomposition into vectors (i, i − 1), (i − 1, i), and (i, i). Now
split each vector of type (2r − 1, 2r − 1) into two vectors (r − 1, r ) and (r, r − 1),
and leave all other vectors intact. Let ϕ(μ, ν) ∈ Wm,n be the resulting vector decom-
position.

� The map ϕ : Bm,n → Wm,n defined above is a bijection.

� Note that (μ′, ν ′) can contain either (i, i − 1) or (i − 1, i), but not both. Therefore,
to define ϕ−1 one needs first to couple all pairs of vectors (i, i − 1) and (i − 1, i)
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into one vector (2i − 1, 2i − 1). Now collect all the remaining vectors into a pair of
partitions, and take their conjugates. The rest of the proof is straightforward.

9.2.2. (♦) Let B�
m,n be the set of (μ, ν) ∈ Bm,n , such that �(μ), �(ν) ≤ �. Prove the

following refinement of Carlitz’s Theorem:

∑
(m,n)

|B�
m,n|xm yn =

∞∏
i=1

(1 − x2i−1 y2i−1)

(1 − xi yi−1)(1 − xi−1 yi )(1 − xi yi )
.

9.2.3. (◦) Fix an integer r ≥ 1, and let

smax{x1, . . . , xr } = (x1 + · · · + xr ) − (r − 1) min{x1, . . . , xr }.

Define r-partitions (μ(1), . . . , μ(r )) of (m1, . . . , mr ) by the conditions μ(k) = mk for
1 ≤ k ≤ r , and min{μ(1)

i , . . . , μ
(r )
i } ≥ smax{μ(1)

i , . . . , μ
(r )
i } for all i. Compute the

r-variable generating function for the number of r-partitions.

9.3. Partitions and integral points in cones

9.3.1. The setup. Suppose a set of partitions can be defined as a set of integral points in a
cone in a (finite dimensional) vector space Rd . The cone C is called unimodular if it has
d supporting rays spanned by integral vectors v1, . . . , vd , such that det(v1, . . . , vd ) =
±1. This implies that all integral points in C ∩ Zd have a form α1v1 + · · · + αdvd ,
where αi ∈ N. Now, given two such cones C and C ′ as above, one can obtain a bijection
between the integral points in the cones by a unimodular map defined on a basis
ϕ : v′

i → vi .
Usually, the set of partitions is given as a cone in an infinite dimensional vector

space. In that case one has to define an increasing subsequence of finite dimensional
vector spaces which converges to the desired partition space. Also, the vector space is
usually provided with a weight function which has to be preserved under the bijection.
The details are easy to understand in the following examples.

9.3.2. (♦) LetTn be the set of integer triples (a, b, c), such that 0 ≤ a ≤ b ≤ c ≤ a + b,
and the perimeter a + b + c = n. These triples are called integer triangles. Let us
prove that |Tn| is equal to the number of partitions of n into parts 2, 3, and 4, an
therefore

∞∑
n=0

|Tn|tn = 1

(1 − t2)(1 − t3)(1 − t4)
.

Indeed, the corresponding cone C is spanned by vectors (0, 1, 1), (1, 1, 1), and (1, 1, 2)
which have perimeter 2, 3, and 4, respectively. Similarly, partitions λ = (2x 3y4z)
are spanned by (1, 0, 0), (0, 1, 0), and (0, 0, 1), which are partitions of 2, 3, and 4,
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respectively. Check that both cones are unimodular and that the corresponding map is
given by ϕ : λ = (2x 3y4z) → (x + y, x + y + z, x + y + 2z) ∈ Tn , for all λ � n.

9.3.3. (♦) Fix an integer r ≥ 1. Consider a set Hn of partitions λ = (λ1, λ2, . . .) � n,
such that λi ≥ rλi+1. Let us prove that |Hn| is equal to the number of partitions on n
into parts bi = (r i − 1)/(r − 1).

First, restrict the problem to a finite dimensional vector space by considering only
partitions with �(λ) ≤ k. Prove that the corresponding unimodular cone is spanned by
vectors vi = (r i−1, r1−2, . . . , r, 1, 0, . . . , 0). Define an obvious map ϕ : vi → (bi ) and
check that the resulting linear map defines a bijection between {λ ∈ Hn : �(λ) ≤ k}
and partitions into parts bi , 1 ≤ i ≤ k. Letting k → ∞, obtain the result.

9.3.4. (◦) Modify the previous example to partitions λ = (λ1, λ2, . . .) which satisfy
Fibonacci conditions: λi ≥ λi+1 + λi+2.

9.3.5. (♦) Consider a set Hn of partitions λ = (λ1, λ2, λ3, . . .) � n with nonegative
second differences !2(λ) ≥ 0, i.e., such that λi − 2λi+1 + λi+2 ≥ 0. Let us prove that
|Hn| is equal to the number of partitions on n into parts bi = (i

2

)
.

First, restrict the problem to a finite dimensional vector space by considering only
partitions with �(λ) ≤ k. Prove that the corresponding unimodular cone is spanned
by vectors v0 = (1, . . . , 1) and vi = (i − 1, i − 2, . . . , 2, 1, 0, . . . , 0), for 1 ≤ i < k.
Define an obvious map ϕ : vi → (bi ), v0 → (k). Conclude that the number of parti-
tions λ ∈ Hn with at most k parts is equal to the number of partitions into parts k and
bi , 1 ≤ i < k. Letting k → ∞, obtain the result.

9.3.6. (◦) Generalize the previous example to partitions with nonnegative r-th differ-
ences.

9.3.7. (◦◦) Let Ln,k be the set of lecture hall partitions λ � n, �(λ) ≤ k, which are
defined by conditions:

λ1

n
≥ λ2

n − 1
≥ · · · ≥ λn

1
≥ 0.

Prove that

1 +
∞∑

n=1

|Ln,k |tn = 1

(1 − t)(1 − t3) · · · (1 − t2k−1)
.

9.4. Euler’s recurrence for the sum of the divisors

9.4.1. Let ζ (n) = ∑
d|n d be the sum of the divisors of n. Note that ζ (pk) = pk+1−1

p−1
, if

p is a prime. Also, ζ (mn) = ζ (m)ζ (n), if gcd(m, n) = 1.
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� For every n > 0, we have:

ζ (n) − ζ (n − 1) − ζ (n − 2) + ζ (n − 5) + ζ (n − 7) − · · ·

+ (−1)rζ

(
n − r (3r ± 1)

2

)
+ · · ·

=
{

(−1)k−1n, i f n = k(3k ± 1)

2
0, otherwise.

The above result is called Euler’s identity. While it can be easily deduced analyt-
ically from Euler’s Pentagonal Theorem 5.1.1, the following proof is a nice example
of “constructive arguments” in additive number theory.

� The proof is based on a double counting argument, and involves a sign-reversing
involution. We start by defining a set

�n = {(λ, c, d) : λ ∈ D, c, d ≥ 1, |λ| + cd = n},

where D is a set of partitions with distinct parts. Now let Sn = ∑
(λ,c,d)∈�n

(−1)�(λ)d.
We will show that Sn is equal to both sides of Euler’s identity above.

For the left hand side, from the proof of 5.1.1, we have:

Sn =
n∑

m=1

∑
(λ,c,d)∈�n :cd=m

(−1)�(λ)d =
n∑

m=1

( ∑
λ∈On−m

(−1)�(λ)

) ∑
d|m

d

=
n∑

m=1

ζ (m) ·
{

(−1)r , if n − m = r (3r ± 1)/2
0, otherwise

=
∑

r

(−1)rζ

(
n − r (3r − 1)

2

)
+ (−1)rζ

(
n − r (3r + 1)

2

)
.

For the right hand side, by definition of An , we have:

Sn =
∑

(λ,c,d): md (λ)>0

(−1)�(λ)d +
∑

(λ,c,d): md (λ)=0,c>1

(−1)�(λ)d

+
∑

(λ,1,d): md (λ)=0

(−1)�(λ)d,

where md (λ) is a multiplicity of part d in λ ∈ D. Now, adding part d to λ maps triples
(λ, c, d) with no part d in λ and c > 1 into triples (μ, c, d) with partition μ containing
part d. Since �(μ) = �(λ) + 1, this cancels the first two sums. For the third sum,
consider again adding part d to λ. This gives a partition μ = (μ1, μ2, . . .) ∈ Dn , from
which one can subtract any of the parts. We obtain:∑

(λ,1,d)∈�n : md (λ)=0

(−1)�(λ)d = −
∑
μ∈Dn

(−1)�(μ)(μ1 + μ2 + · · ·) = −n
∑
μ∈Dn

(−1)�(μ).
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Now, from 5.1.1 this sum is equal to the right hand side in Euler’s identity. This
completes the proof.

�

9.4.2. (◦) Prove in a similar manner the following identity:

ζ (n) − 3ζ (n − 1) + 5ζ (n−3)−7ζ (n − 6) + · · ·

+(−1)r (2r + 1)ζ

(
n −

(
r + 1

2

))
+ · · ·

=
{

(−1)k−1
k(k + 1)(2k + 1)

6
, if n = k(k + 1)

2
,

0, otherwise.

9.4.3. (∗) Use the involution principle to give a sign-reversing involution which cancels
terms in Euler’s identity. Can one give a direct description of this map?

9.4.4. (♦) Prove combinatorially the following identity:

∞∑
n=1

tn

1 − t2n
=

∞∑
n=1

t2n−1

1 − t2n−1
.

9.4.5. (◦) Let ζ◦(n) be the number of odd divisors of n. Prove combinatorially that

ζ◦(n) = |{(k, �) : n = (k+1
2

) + k�, k, � ≥ 0}|. Deduce from here another Jacobi’s iden-
tity:

t

1 − t
+ t3

1 − t3
+ t5

1 − t5
+ t7

1 − t7
+ · · · = t

1 − t
+ t3

1 − t2
+ t6

1 − t3
+ t10

1 − t4
+ · · ·

9.5. Uchimura’s formula for the number of divisors

9.5.1. Let σ (n) be the number of divisors. Note that σ (pk) = k + 1, when p is a prime.
Also, σ (mn) = σ (m)σ (n), if gcd(m, n) = 1.

The following Uchimura identity gives an interpretation of σ (n) in terms of parti-
tions:

∞∑
d=1

td

1 − td
=

∞∑
k=1

ktk
∞∏

i=k+1

(1 − t i ).

Taking coefficients of tn , this is equivalent to:

σ (n) = −
∑
λ∈Dn

(−1)�(λ)s(λ),
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where Dn is the set of partitions λ � n into distinct parts. We present here a bijective
proof of the Uchimura identity in this form.

Let C(m) = {λ ∈ D : a(λ) ≥ m > a(λ) − s(λ)}, and let Cn(m) = {λ � n : λ ∈
C(m)}, where a(λ) = λ1 is the largest part of λ. Clearly, for all λ ∈ D there exist
exactly s(λ) integers m such that λ ∈ C(m). This gives:

∑
λ∈Dn

(−1)�(λ)s(λ) =
n∑

m=1

∑
λ∈Cn (m)

(−1)�(λ).

Now the Uchimura identity follows from:

∑
λ∈Cn (m)

(−1)�(λ) =
{

−1, if m | n

0, otherwise.

Let Fn(m) contain exactly one partition (n) when m | n, and let Fn(m) = ∅ otherwise.
LetA1 = {λ ∈ Cn(m) : λi � n, for all 1 ≤ i ≤ �(λ)}, and letA2 = {λ ∈ Cn(m) : �(λ) ≥
2, and λi | n, for some 1 ≤ i ≤ �(λ)}. Clearly, Cn(m) = A1 ∪ A2 ∪ Fn(m).

We define a sign-reversing involution ϕ on the set of partitions Cn(m) with the set
of fixed points Fn(m). The map ϕ is also a bijection between A1 and A2, and will
be defined as follows. Let λ ∈ A2, with part λi | n and � = �(λ) ≥ 2. Remove part
λi = cm from λ and add m to the smallest part s(λ̃) of the remaining partition. Then
add m to the smallest part of the obtained partition. Repeat this c times, until we obtain
a partition μ � n. Now let ϕ(λ) = μ. Note that �(μ) = � − 1.

To reverse the procedure, start with μ ∈ A1 and subtract m from the largest part μ1.
Then subtract m from the largest part μ̃1 in the resulting partition μ. Repeat this until
we reach λ̃, and the total subtracted amount cm satisfies s(λ̃) + m > cm > λ̃1 − m.
Then add part (cm) to λ̃, to obtain λ = ϕ−1(λ).

� The map ϕ : A2 → A1 defined above is a bijection.

9.5.2. (♦) Let m = 7, λ = (16, 14, 13, 11) ∈ A2. We have λ̃ = (16, 13, 11), c = 2.
Then the partition λ̃ is successively transformed into (18, 16, 13), and then into the
partition ϕ(λ) = μ = (20, 18, 16) ∈ A1.

9.5.3. (◦) Let σd (n) = ∑
m|n md . Clearly, σ0(n) = σ (n), and σ1(n) = ζ (n). Extend the

above argument to show:

σd (n) = −
∑
λ∈Dn

(−1)�(λ)
s(λ)∑
i=1

(λ1 − s(λ) + i)d .

9.5.4. (∗) Can one describe the bijection ϕ by means of the involution principle?

9.5.5. (∗∗∗) Prove combinatorially the following Jacobi formulas for the number
rk(n) of decompositions of n as a sum of k squares of integers: r2(n) = 4(δ1(n) −
δ3(n)), r4(n) = 8ζ (n), when n is odd, and r4(n) = 24ζ◦(n), when n is even. Here δi is
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the number of divisors d | n, such that d ≡ i mod 4, and ζ◦(n) is the number of odd
divisors of n (cf. 9.4.5).

9.5.6. (∗∗) Prove combinatorially “Liouville’s Last Theorem”: For all integer n >

0, σ2(n) − nσ0(n) is equal to the number of integer quintuples (w, x, y, z, u), such
that wx + xy + yz + zu = n, and w, x, z, u ≥ 0, y > 0.

9.5.7. (∗∗) Prove combinatorially the Dirichlet-Ramanujan identity:

∑
a,b∈Z

ta2+ab+b2 = 1 + 6
∞∑

n=0

(
t3n+1

1 − t3n+1
− t3n+2

1 − t3n+2

)
.

9.6. Asymptotic behavior of the partition function

9.6.1. There are very precise formulas for the asymptotic behavior of the partition
function p(n). The following formula of Hardy and Ramanujan is already too precise
to be accessible by combinatorial methods:

p(n) ∼ 1

4
√

3n
eπ

√
2
3

n.

A much weaker result:

ea
√

n < p(n) < eb
√

n for some b > a > 0

is not difficult to obtain, and we sketch two combinatorial proofs of both the lower
and the upper bound. We shall use the notation in 2.2.1 and no analytic tools other
than Stirling’s formula n! ∼ √

2πn( n
e )n .

9.6.2. (♦) Write a partition λ ∈ Pn,k with at most k parts as a sum n = λ1 + · · · + λk ,
with λi ≥ 0. Taking all permutations of the parts, deduce that

k!pk(n) ≥
(

n + k − 1

k − 1

)
≥ nk−1

(k − 1)!
.

Setting k = �√n�, obtain the lower bound.
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9.6.3.(♦) Let ρm be a partition (m − 1, m − 2, . . . , 1) � (m
2

)
. Take m = 2k, and con-

sider all
(

2k
k

)
Young diagrams obtained by adding k squares in the m outside corners

of [ρm]. Setting m = �√2n�, obtain the lower bound.

9.6.4. (◦) Define qk(n) by the following formula:

∞∑
n=0

qk(n)tn = 1

(1 − t)2(1 − t2)2 · · · (1 − t k)2
.

Deduce from here the recurrence relation:

qk(n) = qk−1(n) + 2qk−1(n − k) + 3qk−1(n − 2k) + · · ·

Use induction to show that

qk(n) ≤ (n + k2)2k−1

(2k − 1)!(k!)2
.

Rewrite Euler’s identity 2.3.1 as follows:

p(n) = q1(n − 1) + q2(n − 4) + q3(n − 9) + · · ·

Therefore,

p(n) ≤
∞∑

k=1

n2k−1

(2k − 1)! (k!)2
.

Use Stirling’s formula to obtain the upper bound.

9.6.5. (♦) Start with the following recurrence:

np(n) =
n∑

r=1

r
∑

λ�n−r

mr (λ) =
n∑

r=1

r
�n/r�∑
m=1

p(n − mr ).

The first equality can be obtained by the following double counting argument. Observe
that np(n) is the total number of squares in all Young diagrams of partitions λ � n.
The middle term is a summation over all r of squares in all rows of length r, which
occurs exactly m = mr times in [λ]. For the second equality, we have:∑

λ�n

mr (λ) = |{λ � n : mr (λ) = 1}| + 2|{λ � n : mr (λ) = 2}|
+ 3|{λ � n : mr (λ) = 3}| + · · ·

= |{λ � n : mr (λ) ≥ 1}| + |{λ � n : mr (λ) ≥ 2}|
+ |{λ � n : mr (λ) ≥ 3}| + · · ·

= p(n − r ) + p(n − 2r ) + p(n − 3r ) . . .
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Assume that p(k) < ec
√

k for al k < n, where c = π

√
2
3

is the same as in the Hardy-

Ramanujan’s formula. Now use the above formula in the induction step:

np(n) <
∑

(i,m):im<n

rec
√

n−mr < ec
√

n
∞∑

r=1

∞∑
m=1

re(−cm/2
√

n)r .

Note that
∑∞

1 rtr = t/(1 − t)2 and e−x/(1 − e−x )2 < 1
x2 , for all x ∈ R. We conclude:

p(n) <
ec

√
n

n

∞∑
m=1

e−cm/2
√

n

(1 − e−cm/2
√

n)2
<

ec
√

n

n

∞∑
m=1

4n

c2m2
= ec

√
n 4

c2

(
π2

6

)
= ec

√
n.

10. Final remarks

1. Let us start by saying that the identities that appear in this survey seem to appear
also in other subjects seemingly as remote as Statistical Physics, Algebra, Number
Theory and Lie Theory [24]. Virtually none of the relevant results or references are
presented here. For more on Partition Theory and q-series see [24, 78].

2. Traditionally, in the context of Partition Theory, partitions are usually represented
by Ferrers graphs (named after Ferrers [121]), which are drawn with dots instead of
squares (see e.g. [4, 24]). We chose to use Young diagrams for clarity and consistency.

Sylvester was also the one to name and use Ferrers’ diagrams (see [121] p. 258).
Interestingly, Sylvester agonized over the fact that he had to draw pictures. In [121],
he tried several different versions and issued the following apologetic disclaimer:

The method is in its essence absolutely independent of graphical consider-
ation, but as it becomes somewhat easier to apprehend by means of graphical
description and nomenclature, I shall avail myself here of graphical terminology
to express it.

Despite obvious benefits to the reader, the use of Ferrers’ graphs or Young diagrams
to represent partitions became widespread only recently. Unfortunately, a number of
older papers do not have any pictures. The following quote from [76] may explain the
situation:

Combinatorial constructs involving partitions are most easily communicated
by drawing suitably chosen pictures. This is not the style most often used in the
literature. The reason may be that pictorial descriptions are sometimes thought
to lack precision and rigor. On the other hand, mathematical language can be a
rather imprecise medium at times. . .

It seems m-modular diagrams and MacMahon diagrams go back to Frobenius and
MacMahon, in one form or another. They were also rediscovered on many occa-
sions afterwards and bear other names. We chose a name “MacMahon diagrams” in
honor of the discoverer whose contributions were largely overlooked for so long. The
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standard MacMahon diagrams is a subclass of MacMahon diagrams invariant under
conjugation; as the reader shall see this is the most useful notion.

For a bijection proving 2.1.5, consider the first step of Sylvester’s bijection ψ

defined in 3.4.1. This result seems to be due to Durfee (see [121]).
The terms of the summation on the l.h.s. in 2.1.6 are the probabilities that a random

permutation σ ∈ Sn has cyclic type λ � n (see e.g. [115] Section 1.3). For 2.1.7 see
[89]. The relationship between these two identities is puzzling.

The identity in 2.3.5 is taken from [118]. For a combinatorial proof of the Rogers-
Fine identity, its history and applications see [14] (see also [59] for a proof in the
language of MacMahon diagrams). For Vahlen’s involution, see [120, 123]. Exercise
2.4.2 implies the Regev–Vershik Conjecture, as presented in [39] (see also [34] for the
generating function). The identity 2.2.4 is given in [117].

Ramanujan’s identity 2.2.2 implies one of the celebrated Ramanujan’s congruence
p(5k − 1) ≡ 0 mod 5. Ramanujan also found congruences modulo 7 and 11, and
now many other congruences are known (see e.g. [2, 24]). The rank of a partition
(see 2.5.1) was defined by Dyson in [60] for the purposes of giving a combinatorial
interpretation 2.5.6 of the congruences. He reminisced in [62] on his discovery: “I
gave thanks to Ramanujan for two things, for discovering congruence properties of
partitions and for not discovering the criterion for dividing them into equal classes.”
Dyson conjectured in [60] that his rank statistic gives a combinatorial interpretation
of Ramanujan’s congruences modulo 5 and 7, but found it errs modulo 11. These
conjectures were later proved in [32]. In Dyson’s own words, “I think this should be
enough to disillusion anyone who takes Professor Littlewood’s innocent views of the
difficulties of algebra” (see the quote in the introduction).

Dyson also conjectured the existence of a hypothetical statistic he called “crank”
which would give a combinatorial interpretation of all three congruences. He summa-
rized his “guesses” in [60] and remarked that

Whatever these guesses are warranted by evidence, I leave to the reader to
decide. Whatever the final verdict may be, I believe the “crank” is unique among
arithmetic functions in having been named before it was discovered.

Building on Garvan’s work [77] for triples of partitions 2.5.7 the crank was eventually
found by Andrews and Garvan in [29], where they proved 2.5.9 analytically. For a
story of a famous phone call, see [31].

The Fine-Dyson symmetry relation was given in [61, 70]. Fine’s relations 2.5.2
appeared in [69, 70] (see [105] for a historical account). The generating function
derivation 2.5.4 follows [61] (see also [37, 62]). Combinatorial proofs of 2.5.7, 2.5.8,
and 2.5.9 were given in [63].

The q-binomial identity was found by Rothe and was rediscovered by Cauchy and
others (see [1] p. 5). For analytic proofs of the q-binomial identity and the Heine
transformation see [24] p. 17, 20. Our proofs of the q-binomial theorem 2.6.1 and
the Heine transformation 2.7.1 are loosely based on double counting arguments given
in [12] (see also [5]). Hardy described Ramanujan’s 1ψ1-summation 2.7.6 as “a re-
markable formula with many parameters” [80]. It was observed by Ismail [90] that
the summation can be derived from the q-binomial identity 2.6.1, after substituting
b = qm for the integer m, and then using analyticity (cf. [58]). The identity 2.6.3 was
given in [5] and is a special case of Ramanujan’s 1ψ1-summation.
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3. Euler’s Theorem 3.1 was probably the starting point of Partition Theory [66]. See
[4] for more on the history of Euler’s and Glaisher’s Theorems. Franklin’s extension 3.3
(together with a generalization 3.3.2) was given in [73] and does not appear in modern
literature. In Franklin’s words, “[Glaisher’s Theorem and Franklin’s extension] are
very easily obtained either by the constructive proof or by generating function” (see
[121], p. 268). Most recently, these results were rediscovered in [127].

Sylvester’s bijection 3.4.1 is presented in [121], and is sometimes called a fish-hook
construction (see [21, 23, 24]). Sylvester [121] p. 287, gives an acute observation when
comparing two correspondences:

[Glaisher’s] correspondence is eminently arithmetic and transcendental in its
nature, depending as it does on the forms of the numbers of repetitions of each
integer with reference to the number 2.

Very different is [Sylvester’s correspondence] which is essentially graphical,
as in its operation, which is to bring into correspondence the two systems, not as
wholes but separated each other of them into distinct classes; and it is a striking
fact that the pairs arithmetically and graphically associated will be entirely
different, thus evidencing that correspondence is rather a creation of the mind
than a property inherent in the things associated.

Extensions 3.4.2 and 3.5 were stated by Fine in [69] and proved by analytic means
in [70]; the proofs were published about four decades after their discovery. Both results
were noted to follow from Sylvester’s bijection and the Fine-Dyson map by Andrews
[10, 20]. We refer to [24] for references and other proofs. Exercise 3.4.3, combined
with 5.2.2 follows [105] (see also [130]). Together they prove two other results of Fine,
related to certain identities of Ramanujan, which were proved analytically in [10, 19].
The iterated Dyson’s map and a full historical account of Fine’s partition results were
given in [105].

Variation 3.2.4 goes back to Glaisher and Lehmer. A combinatorial proof is given
in [79]. Vector partitions originated in [83, 121]. Generalization 3.2.5 is proved in [55]
by means of generating functions.

The second presentation ζ of the Sylvester’s bijection 3.4.1 follows [108]. It is
essentially the same as that in [25], where the bijection was defined in the language
of Frobenius coordinates of a partition. Finding a different presentation of Sylvester’s
bijection was justified in [21] by the fact that “the reversal of Sylvester’s algorithm is
quite cumbersome”. Sylvester’s bijection was extended to partitions of type (c, m) in
[108] (see also [130]).

The third presentation η follows [38]. It is somewhat midway between the two and
can be used to prove that all three maps define the same bijection [130]. Interest-
ingly, yet a different version (of a reversed bijection) has recently appeared in [93] A
refinement 3.4.5 was given in [41] (see also [93, 130]).

4. The intermediate sets of partitions Rn,k and Gn,k in both proofs of Lebesgue’s
identity 4.1 go back to Andrews [11]. Our presentation in 4.2.1 follows closely Bessen-
rodt’s original paper [38]. The rest of the section uses the language of MacMahon
diagrams, and we modify the constructions appropriately. The bijection 4.3.2 is due to
Bressoud [43], where it was generalized to prove 4.3.5. While Bressoud’s presentation
may appear different, it is essentially equivalent to the bijection we give (see also [6]).
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The second proof of the Lebesgue identity we present in 4.4.1 is a modified version
of [7]. It is built heavily upon [43]. In the original paper [29], the authors formulate
it as a double counting proof in the spirit of [11]. This explains the claim in [38]
that [29] does not contain a direct proof. In fact, the proof 4.2.1 is indirect as it uses
Euler’s Theorem as the first step of a bijection. Partition identity 4.4.2 is taken from
Ramanujan’s “Lost” Notebook (see [16] p. 18).

Schur’s Partition Theorem 4.5.1 was given in [112]. Our proof is a modified version
of [44], which also contains 4.5.2. For various extensions, generalizations, a bijective
proof of 4.5.3, and recent references, see [8] (cf. [27]).

5. Euler’s Pentagonal Theorem is implicit in Euler [66]. The corresponding re-
currence relation was, in fact, used for centuries to tabulate values of p(n). Hardy
and Ramanujan used such a table for n n ≤ 200, which was provided to them by
MacMahon [80, 81].

Franklin’s proof 5.2.1 was published in [72]. A modified version 5.2.3 is presented
in [100]. The first refinement 5.2.4 is due to Shanks [113] who proved it by induction,
and thus obtained a simple proof of Euler’s Pentagonal Theorem. The identity was
also proved in [95, 119] by Franklin’s involution.

Formula 5.2.6 is due to Zagier; it was proved using Franklin’s involution in [54].
The identity in 5.2.5 is taken from [86]. Results 5.2.2 and 5.2.7 are due to Fine [69,
70] (see 3.4.3 and [105]). Theorem 5.2.8 is equivalent to an identity of Ramanujan
(see [16] p. 100).

Our proof of Sylvester’s identity 5.3.1 follows the original generalization of Durfee
squares by Sylvester [121] p. 268. For other generalizations of Durfee squares see
[18]. Exercise 5.3.2 is perhaps the most natural explanation of the nature of Franklin’s
involution.

The bijective proof in 5.4.1 was found in [47]. The proof of 5.4.2 is due to Dyson
[61]. For the history of the subject and the solution to 5.4.3 see [105]. The involution
in 5.5.1 is a modified version of a bijection in [14]. For the rest of the Section 5.5,
references, and details, see [14].

6. Jacobi’s triple product identity was first found by Gauss in an unpublished
manuscript, and became famous after its rediscovery by Jacobi (see [30], Section
4.) The history of a direct bijection is quite involved and somewhat educational. We
believe it deserves to be told in full as it is symptomatic of the subject.

The first bijective proof of the Jacobi identity is due to Sylvester [121] (see below),
just one year after Franklin’s proof was published. Eighty years later it was rediscov-
ered by Wright [128] in a short note, with nice pictures and clear presentation. Soon
thereafter Sudler realized that Wright’s bijection is equivalent to that of Sylvester. He
wrote:

I discovered that Sylvester had already given a proof of [the Jacobi identity]
of the required type. However, because of his somewhat verbose and somewhat
unclear style, his work on this topic has apparently been almost completely
ignored in recent times except by MacMahon, who gave [102] Section 323, a
generalization of Sylvester’s idea.

Naturally, Sudler decided to improve the rigor and exposition of Wright’s and
Sylvester’s papers; his effort [120] did not contain a single picture. As J. Roberts
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put it in the AMS Review article on [120]: “To read the paper one needs to have a
copy of Wright’s paper [128] at hand.”

A subsequent quest for a better exposition of Sylvester’s bijection is perplexing. A
series of papers [55, 57, 76, 97, 99, 120, 124] described a number of bijections, all of
which are either equivalent or give exactly the same correspondence as Sylvester’s.
Since the authors seemed to be aware of the previous work, they emphasized the
notation and the qualities of their presentation. For example, Leibenzon writes that his
description “seems the most elementary and explicit” [97].

Our presentation in 6.2.1 follows Wright [128]. Two versions of a bijection in
6.2.2 follow Vershik [124] and Lewis [99]. The latter paper also acknowledges that
the correspondence is identical to that of Sylvester. To quote Lewis: “[Sylvester’s]
description of this correspondence is fairly obscure as the diligent reader will discover”
[99]. Most recently, an equivalent version has appeared in [57], where it was attributed
to Itzykson and Viennot.

The involutive proof we present here follows Zolnowsky [131]. In fact, it can also
be found in Sylvester’s paper [121]. The following quote from [95] puts a new spin
on the issue:

The literature contains several incorrect references to the history of Sylvester’s
construction. Sudler [120] says that the approach taken by Wright [128] is
essentially that of Sylvester; but in fact it is essentially the same as another
construction due to Arthur S. Hathaway, quoted by Sylvester [121] Section 62.
Zolnowsky independently rediscovered Sylvester’s rules [. . . ]

Sylvester’s original treatment has apparently never been cited by anyone
else, possibly because it comes at the end of a very long paper; furthermore, his
notation was rather obscure and he made numerous errors that a puzzled reader
must rectify.

So who is the real author of the direct proof of Jacobi identity? Our brief historical
investigation showed that both Hathaway and Sylvester are the authors of two different
albeit equivalent versions. It seems Sudler is referring to Sylvester’s proof in [121],
Section 38–40, while [95] is alluding to a full two page quote of Hathaway’s paper
[83] in Sylvester’s “Exodion” [121], Section 62. Sylvester himself did not seem to
notice the relationship. Thus attributing the proof to both Hathaway and Sylvester (as
done in [23]) is quite appropriate.

Perhaps, the shortest and the most elementary analytic proof of the Jacobi identity
is due to Andrews [9], who deduced it directly from Euler’s two identities in 2.2.3
and 2.3.4. The quintuple product identity is a classical result in analysis, going back
to G.N. Watson and Karl Weierstrass. We refer to [52] for the history of the quintuple
product identity, references and a simple proof. Another simple proof, extensions and
more recent references can be found in [71]. Vahlen’s Theorem 6.1.5 has appeared
in [123], and in this form was presented in [125] p. 165. When m = n, MacMahon’s
identity 6.2.3 is called the Cauchy identity [48]. For a simple inductive proof, see [85].
Identity 6.1.7 is taken from [22] p. 99.

7. The Rogers-Ramanujan identities (�) and (��) are due to Rogers and were later
rediscovered by Schur, Ramanujan, and others. There are numerous analytic proofs
known, as well as proofs by means of Lie Theory, but not a single direct bijective
proof. We refer to [24] for many generalizations and further references.
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The following two quotes were highly influential in the subject. According to Hardy,
“None of the proofs of [(�) and (��)] can be called “simple” and “straightforward,
since the simplest are essentially verifications; and no doubt it would be unreasonable
to expect a really easy proof ” [80]. Forty years later, Andrews concurred with this
sentiment: “Hardy’s comments about the nonexistence of a really easy proof of the
Rogers-Ramanujan identities are still true today” [24].

In his lecture notes [75], Garsia challenges the above assessment. He starts by
saying:

Schur independently discovers the Rogers identities [(�) and (��)] and (unlike
Ramanujan) is also able to provide a proof. We may add that it is really a great
historical injustice (mostly due to the tabloid sensationalism of G.H. Hardy) to
refer to [(�) and (��)] as the Rogers-Ramanujan identities.

He then continues to criticize the above Hardy’s quote:

Hardy must have not given a close look at Schur’s paper, otherwise such a
judgement can only be a result of Hardy’s lack of knowledge of 19th century
“Partition” literature. Schur’s proof is not only quite simple, but a straightfor-
ward extension of Franklin’s proof of the Euler Pentagonal Theorem [5.1.1].
Moreover, as such it is substantially different from any innumerable other proofs
[of (�) and (��)], that have been given in the more than 100 years since they
have been discovered.

In Hardy’s defense, he did seem to know everything there was to know about “partition
literature.” In the very same book [80] he presents “F. Franklin’s beautiful proof ” (see
pp. 83–85), and writes, “About the same time [of Ramanujan’s rediscovery of (�) and
(��) published earlier by Rogers] I. Schur, who was then cut off from England by
the war, rediscovered the identities again. Schur published two proofs, one of which
is “combinatorial” and is quite unlike any other proof known” (see p. 92). Hardy
then proceeds to restate Rogers-Ramanujan’s identities as combinatorial results and
concludes with the following passage:

These forms of the theorems are MacMahon’s (or Schur’s); neither Rogers nor
Ramanujan ever considered their combinatorial aspect. It is natural to ask for
a proof in which we set up, by “combinatorial” arguments, a direct correspon-
dence between the two sets of partitions, but no such proof is known. Schur’s
“combinatorial” proof is based not on [identity (�)] itself, but on a transforma-
tion of the formula [. . . ] It is not unlike Franklin’s proof of [Euler’s Pentagonal
Theorem 5.1.1] but a good deal more complicated.

It is natural to assume that the preponderance of analysis over combinatorics in
those days led Hardy to believe that Schur’s proof 7.2.2 is quite complicated, a view
not shared in modern times. Other than this evaluation, both authors seem to be in ac-
cordance with each other. Injustice or not, the name “Rogers-Ramanujan’s identities”
has long been accepted as standard in the field. See [92] Section 7.11 for an indepen-
dent literary account of how Ramanujan “rediscovered” and published identities (�)
and (��) after previously seeing them in Rogers’ paper, since, in Ramanujan’s words,
“[the identities] had entirely slipped from my memory.”
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The interpretation 7.1.4 is given in [18]. In our presentation of Schur’s proof [111]
we follow [76], which used a rather different language. Our Fig. 31 is based upon
pictures in [75]. Generalizations 7.2.4 (see also 7.2.3) are given in [74]. For 7.2.6, see
[46]. The Farkas-Kra identity 7.2.5 was given in [68] p. 521. For 7.3.1, see e.g. [82]
Section 19.15 (see also [24]).

8. The involution principle was introduced by Garsia and Milne [76] as a tool to
give a bijective proof of the Rogers–Ramanujan’s identities (see 8.4.4). Although the
authors claimed to have “an algorithm for the construction of bijections in a wider
combinatorial setting than that of the theory of partitions,” the involution principle
has rarely been used outside of the field.

The first equality in 8.1.3 is due to Schur [112], while the second is due to Andrews
[27] (cf 4.5.1). The exercise 8.4.2 is explicit in [76].

Exercise 8.4.6 is based on Zagier’s “one-sentence proof” [129]. For missing sen-
tences see [28]. The involution β goes back to Heath-Brown. We dispute the assertion
that Zagier’s proof is ineffective, which was made in [129] and repeated in [3]. In
fact, in view of the involution principle it is effective indeed, albeit the corresponding
algorithm is probably very inefficient (see [114] for the analysis).

A few words about the history of the problem. In 1747 Euler showed that the
decomposition p = x2 + 4y2 is unique, proving a conjecture of Fermat (see e.g. [64]
Section 2.4). Fermat himself claimed to have such a proof. In a letter to Pascal he asks
for a general rule for finding such a decomposition (ibid. Section 2.6). For efficient
polynomial time algorithms see [33].

For Andrews Theorem 8.1.1 see [24], where the equivalent partition bricks are called
simple classes of partitions. O’Hara’s Algorithm 8.2.1 was given in [104]. Historically,
O’Hara’s paper was based upon Remmel’s and Gordon’s work and has appeared
later. She proves in [104] that the bijection she defines coincides with Remmel’s and
Gordon’s bijection in a special case.

The Cohen-Remmel Theorem 8.6.1 was found by Cohen [56] and then extended by
Remmel [109] by removing a technical disjointness condition. Our presentation of the
Cohen-Remmel Theorem follows the recent paper [103]. We use here a very different,
slightly less general and more structured language. For other presentations see [126]
(see also [115] Section 2). The exercises 8.1.4 and 8.6.6 are taken from [127]. They
are direct generalizations of Franklin’s extension 3.3.1 of Euler’s Theorem 3.1.

9. For MacMahon’s Theorem 9.1.1 see [102], (see also [24]). For Stanley’s for-
mula, extension 9.1.5, other generalizations, a connection to symmetric functions and
references, see [115], Chapter 7. The first bijective proof of MacMahon’s Theorem is
found in [36]. Our presentation follows [107]. Both proofs are related to the Robinson-
Schensted-Knuth correspondence (see e.g. [24, 107, 115]). Formula 9.1.7 is also due
to MacMahon; the only direct bijective proof we know [96] uses an assortment of
‘bijective technology’ not covered in this paper.

The bipartitions 9.2.1 were introduced in [50, 51]. The extension 9.2.3 is given in
[15]. Our proof follows [110] cf. [40]).

Our presentation of 9.3 follows [106]. For more on integer points in cones and
polytopes see [115]. For integer triangles 9.3.2, see [17] (see also [26]). A bijection in
9.3.3 is given in [84]. Partitions with nonnegative r-th differences 9.3.6 were introduced
in [26]; the first bijective proof was given in [49]. The lecture hall partitions 9.3.7 were
introduced in [41] and further studied in [42].
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For a thorough treatment of arithmetic functions and their properties, see [82]. Our
proof of Euler’s identity 9.4.1 follows [125], p. 161 (see also [68] p. 472). Identity 9.4.5
follows from the Gauss identity 6.1.4 [67]. The Uchimura identity 9.5.1 was obtained
in [122]. Our proof follows closely [45]. Simple proofs of the Jacobi formulas 9.5.5
are given in [87, 88] where the author deduces them from the triple product identity
(see also [3]). A proof of Liouville’s Last Theorem can be found in [35] (see also [25]
for historical context and recent references).

Our two lower bounds in 9.6 are probably folklore. The first upper bound proof 9.6.4
follows [81], while the second upper bound proof 9.6.5 follows [65]. The recurrence
relation used in 9.6.5 was given in [81]. Note that the lower bounds, while simpler,
give weaker estimates than the second proof of the upper bound (cf. [65]).
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Math. 196(1/3), 1–11 (1999)
7. Alladi, K., Gordon, B.: Partition identities and a continued fraction of Ramanujan. J. Combin. Theory

Ser. A 63(2), 275–300 (1993)
8. Alladi, K., Gordon, B.: Schur’s partition theorem, companions, refinements and generalizations. Trans.

Amer. Math. Soc. 347(5), 1591–1608 (1995)
9. Andrews, G.E.: A simple proof of Jacobi’s triple product identity. Proc. Amer. Math. Soc. 16, 333–334

(1965)
10. Andrews, G.E.: On basic hypergeometric series, mock theta functions, and partitions. II. Quart. J.

Math. Oxford Ser. (2), 17, 132–143 (1966)
11. Andrews, G.E.: On generalizations of Euler’s partition theorem. Michigan Math. J. 13, 491–498 (1966)
12. Andrews, G.E.: Enumerative proofs of certain q-identities. Glasgow Math. J. 8, 33–40 (1967)
13. Andrews, G.E.: On a calculus of partition functions. Pacific J. Math. 31, 555–562 (1969)
14. Andrews, G.E.: Two theorems of Gauss and allied identities proved arithmetically. Pacific J. Math.

41, 563–578 (1972)
15. Andrews, G.E.: An extension of Carlitz’s bipartition identity. Proc. Amer. Math. Soc. 63(1), 180–184

(1977)

Springer



72 I. Pak

16. Andrews, G.E.: An introduction to Ramanujan’s “lost” notebook. Amer. Math. Monthly 86(2), 89–108
(1979)

17. Andrews, G.E.: A note on partitions and triangles with integer sides. Amer. Math. Monthly 86(6),
477–478 (1979)

18. Andrews, G.E.: Partitions and Durfee dissection. Amer. J. Math. 101(3), 735–742 (1979)
19. Andrews, G.E.: Ramanujan’s “lost” notebook. I. Partial θ -functions. Adv. in Math. 41(2), 137–172

(1981)
20. Andrews, G.E.: On a partition theorem of N. J. Fine. J. Nat. Acad. Math. India 1(2), 105–107 (1983)
21. Andrews, G.E.: Use and extension of Frobenius’ representation of partitions. In Enumeration and

Design (Waterloo, Ont., 1982), pp. 51–65. Academic Press, Toronto, ON (1984)
22. Andrews, G.E.: Combinatorics and Ramanujan’s “lost” notebook. In Surveys in Combinatorics 1985

(Glasgow, 1985), pp. 1–23. Cambridge Univ. Press, Cambridge (1985)
23. Andrews, G.E., Sylvester, J.J.: Johns Hopkins and partitions. In A century of mathematics in America,

Part I, pp. 21–40. Amer. Math. Soc., Providence, RI (1988)
24. Andrews, G.E.: The Theory of Partitions. Cambridge University Press, Cambridge (1998)
25. Andrews, G.E.: Some debts I owe. Sém. Lothar. Combin., 42:Art. B42a, 16 pp. (electronic) (1999)
26. Andrews, G.E.: MacMahon’s partition analysis. II. Fundamental theorems. Ann. Comb. 4(3–4):327–

338, Conference on Combinatorics and Physics (Los Alamos, NM, 1998) (2000)
27. Andrews, G.E.: Schur’s theorem, partitions with odd parts and the Al-Salam-Carlitz polynomials. In

q-series from a contemporary perspective (South Hadley, MA, 1998), pp. 45–56. Amer. Math. Soc.,
Providence, RI (2000)

28. Andrews, G.E., Ekhad, S.B., Zeilberger, D.: A short proof of Jacobi’s formula for the number of
representations of an integer as a sum of four squares. Amer. Math. Monthly 100(3), 274–276 (1993)

29. Andrews, G.E., Garvan, F.G.: Dyson’s crank of a partition. Bull. Amer. Math. Soc. (N.S.) 18(2),
167–171 (1988)

30. Askey, R.: Ramanujan and hypergeometric and basic hypergeometric series. In Ramanujan Interna-
tional Symposium on Analysis (Pune, 1987), pp. 1–83. Macmillan of India, New Delhi (1989)

31. Askey, R.: The work of George Andrews: a Madison perspective. Sém. Lothar. Combin., 42:Art. B42b,
24 pp. (electronic) (1999)

32. Atkin, A.O.L., Swinnerton-Dyer, P.: Some properties of partitions. Proc. London Math. Soc. 4(3),
84–106 (1954)

33. Bach, E., Shallit, J.: Algorithmic Number Theory. Vol. 1. MIT Press, Cambridge, MA (1996)
34. Bacher, R., Manivel, L.: Hooks and powers of parts in partitions. Sém. Lothar. Combin., 47:Article

B47d, 11 pp. (electronic) (2001)
35. Bell, E.T.: The form wx + xy + yz + zu. Bull. Amer. Math. Soc. 42, 377–380 (1936)
36. Bender, E.A., Knuth, D.E.: Enumeration of plane partitions. J. Combinatorial Theory Ser. A 13, 40–54

(1972)
37. Berkovich, A., Garvan, F.G.: Some observations on Dyson’s new symmetries of partitions. J. Combin.

Theory Ser. A 100(1), 61–93 (2002)
38. Bessenrodt, C.: A bijection for Lebesgue’s partition identity in the spirit of Sylvester. Discrete Math.

132(1–3), 1–10 (1994)
39. Bessenrodt, C.: On hooks of Young diagrams. Ann. Comb. 2(2), 103–110 (1998)
40. Bessenrodt, C.: On pairs of partitions with steadily decreasing parts. J. Combin. Theory Ser. A 99,

162–174 (2002)
41. Bousquet-Mélou, M., Eriksson, K.: Lecture hall partitions. Ramanujan J. 1(1), 101–111 (1997)
42. Bousquet-Mélou, Eriksson, K.: A refinement of the lecture hall theorem. J. Combin. Theory Ser. A

86(1), 63–84 (1999)
43. Bressoud, D.M. 7. On a partition theorem of Göllnitz. J. Reine Angew. Math. 305, 215–217.
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