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Abstract Elliptic 6j-symbols first appeared in connection with solvable models of
statistical mechanics. They include many interesting limit cases, such as quantum 6j-
symbols (or q-Racah polynomials) and Wilson’s biorthogonal 10W9 functions. We give
an elementary construction of elliptic 6j-symbols, which immediately implies several
of their main properties. As a consequence, we obtain a new algebraic interpretation
of elliptic 6j-symbols in terms of Sklyanin algebra representations.
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1 Introduction

The classical 6j-symbols were introduced by Racah and Wigner in the early 1940’s
[34, 58]. Though they appeared in the context of quantum mechanics, they are natu-
ral objects in the representation theory of SL(2) that can be introduced from purely
mathematical considerations. Wilson [59] realized that 6j-symbols are orthogonal
polynomials, and that they generalize many classical systems such as Krawtchouk
and Jacobi polynomials. This led Askey and Wilson to introduce the more general
q-Racah polynomials [4].

The q-Racah polynomials belong to the class of basic (or q-) hypergeometric series
[15]. Since the 1980’s, there has been a considerable increase of interest in this classical
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Göteborg, Sweden
e-mail: hjalmar@math.chalmers.se

Springer



132 H. Rosengren

subject. One reason for this is relations to solvable models in statistical mechanics,
and to the related algebraic structures known as quantum groups.

Kirillov and Reshetikhin [22] found that q-Racah polynomials appear as 6j-symbols
of the SL(2) quantum group, or quantum 6j -symbols. We mention that in the introduc-
tion to the standard reference [8], three major applications of quantum groups to other
fields of mathematics are highlighted. For at least two of these, namely, invariants of
links and three-manifolds [56], and the relation to affine Lie algebras and conformal
field theory [11], quantum 6j-symbols play a decisive role.

The q-Racah polynomials form, together with the closely related Askey–Wilson
polynomials, the top level of the Askey Scheme of (q-)hypergeometric orthogonal
polynomials [23]. One reason for viewing this scheme as complete is Leonard’s
theorem [31], saying that any finite system of orthogonal polynomials with poly-
nomial duals is a special or degenerate case of the q-Racah polynomials. However, if
one is willing to pass from orthogonal polynomials to biorthogonal rational functions,
natural extensions of the Askey Scheme do exist.

One such extension was found by Wilson [60], who constructed a system of
biorthogonal rational functions given by 10φ9 (or, more precisely, 10W9) basic hy-
pergeometric series. These form a generalization of q-Racah polynomials that seems
very natural from the viewpoint of special functions; see also [39].

Another indication that natural generalizations of quantum 6j-symbols exist came
from statistical mechanics. The solvable models that lead to standard quantum groups
appear there as degenerate cases. Typically, the most general case of the models in-
volve elliptic functions. In the 1980’s Date et al. [9, 10] applied a fusion procedure
(see [30]) to Baxter’s eight-vertex SOS model [3,7], obtaining in this way a more gen-
eral model whose Boltzmann weights generalize quantum and classical 6j-symbols.
These were called elliptic 6j -symbols. However, no identification of these objects
with biorthogonal rational functions was obtained, nor was their nature as generalized
hypergeometric sums emphasized.

In the latter direction, Frenkel and Turaev [13] found that the trigonometric limit
case of elliptic 6j-symbols can be written as 10W9-series. A further limit transition
gives rational 6j-symbols. Moreover, in [14] it was found that general elliptic 6j-
symbols may be expressed as elliptic, or modular, hypergeometric series, a completely
new class of special functions. In spite of their intriguing properties, including close
relations to elliptic functions and modular forms, such series were never considered
in “classical” mathematics, but needed physics for their discovery. We refer to [15]
for an introduction to the subject, with further references.

Frenkel and Turaev seem not to have been aware of the work of Wilson. Spiri-
donov and Zhedanov [49, 50] gave an independent approach to elliptic 6j-symbols,
showing in particular that they are biorthogonal rational functions, and that they coin-
cide with Wilson’s functions in the trigonometric limit. More precisely, trigonometric
6j-symbols correspond to certain discrete restrictions on the parameters of Wilson’s
functions. Similarly, elliptic 6j-symbols correspond to special parameter choices for
Spiridonov’s and Zhedanov’s biorthogonal rational functions. We will be concerned
with the larger parameter range, although, for simplicity, we will use the term “6j-
symbol” also in that setting.

To summarize, we have a scheme (in the sense of Askey) consisting of classical,
quantum, rational, trigonometric and elliptic 6j-symbols, see Fig. 1. Arrows indicate
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Fig. 1 The hierarchy of
6j-symbols

limit transitions. We also give the hypergeometric type of the systems. (We use Spiri-
donov’s [46] more logical notation 12V11, see (5.1) below, rather than 10ω9 as in [14],
for the series underlying elliptic 6j-symbols.)

Note that the discrete part of the Askey Scheme lies below the classical and quantum
6j-symbols in Fig. 1. We remark that, once we decide to include biorthogonal rational
functions, many further limit cases exist (including biorthogonal polynomials and
orthogonal rational functions). It seems desirable to classify all limit cases, along with
their continuous relatives. Many known systems (see [1, 2, 16–18, 29, 33, 35–38] for
some candidates) should fit into this larger picture.

The aim of the present work is to give a self-contained and elementary approach
to 6j-symbols, which works for all five cases. We will show how to obtain many of
their properties in an elementary fashion, without using quantum groups or techniques
from statistical mechanics (although the approach is certainly related to both). In the
exposition we will focus on trigonometric 6j-symbols. We stress that this is not because
of any essential difficulties with the elliptic case, but since we want to emphasize the
elementary nature of our approach as much as possible.

Our main idea comes from the interpretation of Askey–Wilson and q-Racah polyno-
mials given in [42]; see [51,62] for related work. The standard definition of 6j-symbols
involves three-fold tensor products of representations. This works equally well in the
classical and quantum case. In [42], we gave an interpretation of q-Racah polynomi-
als involving a single irreducible representation of the SL(2) quantum group. On the
level of polynomials, this means that q-Racah polynomials appear as q-analogues of
Krawtchouk polynomials rather than of Racah polynomials. Realizing the represen-
tation using difference operators on a function space (sometimes called the coherent
state method [21]), this yields a kind of generating function for q-Racah polynomials,
see (2.16) below. We may now forget about the quantum group and use the gener-
ating function to recover the main properties of q-Racah polynomials. Our aim is to
generalize this approach to include all 6j-symbols in Fig. 1, keeping the underlying
quantum group (known as the Sklyanin algebra in the most general case) implicit until
the final Section 6.

The plan of the paper is as follows. Section 2 contains preliminaries; in particular we
explain in some detail the degenerate cases corresponding to Krawtchouk polynomials
and q-Racah polynomials (or quantum 6j-symbols). In Sections 3 and 4 we generalize
this to trigonometric 6j-symbols, and in Section 5 we sketch the straight-forward
extension to elliptic 6j-symbols. Although the main point of the paper is to avoid
using quantum groups, we give an algebraic interpretation of our construction in
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Section 6. It turns out that elliptic 6j-symbols appear as the transition matrix between
the solutions of two different generalized eigenvalue problems in a finite-dimensional
representation of the Sklyanin algebra.

Note added in proof: The bases discussed in Remark 5.2, which play a fundamental
role in our approach, were introduced by Takebe [56] in connection with Baxter’s
vertex-IRF transformation for the eight-vertex model. This can be compared with
the appearance of vertex-IRF transformations as deformed group elements in the
degenerate case treated in [42].

2 Preliminaries

2.1 Notation

We recall the standard notation for shifted factorials

(a)k = a(a + 1) · · · (a + k − 1),

(a1, . . . , an)k = (a1)k · · · (an)k,

for hypergeometric series

r Fs

[
a1, . . . , ar

b1, . . . , bs
; x

]
=

∞∑
k=0

(a1, . . . , ar )k

(b1, . . . , bs)k

xk

k!
,

for q-shifted factorials

(a; q)k = (1 − a)(1 − aq) · · · (1 − aqk−1),
(2.1)

(a1, . . . , an; q)k = (a1; q)k · · · (an; q)k,

for q-binomial coefficients

[
N
k

]
q

= (q; q)N

(q; q)k(q; q)N−k
,

for basic hypergeometric series

rφs

[
a1, . . . , ar

b1, . . . , bs
; q, z

]
=

∞∑
k=0

(a1, . . . , ar ; q)k

(q, b1, . . . , bs ; q)k

(
(−1)kq(k

2)
)1+s−r

zk
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and for very-well-poised series

r+1Wr (a; b1, . . . , br−2; q, z) = r+1φr

[
a, qa

1
2 , −qa

1
2 , b1, . . . , br−2

a
1
2 , −a

1
2 , aq/b1, . . . , aq/br−2

; q, z

]

=
∞∑

k=0

1 − aq2k

1 − a

(a, b1, . . . , br−2; q)k

(q, aq/b1, . . . , aq/br−2; q)k
zk .

If one of the numerator parameters equals q−n , with n a non-negative integer, the series
reduces to afinite sum. We are particularly interested in the terminating balanced 10W9,
that is, the case when r = 9, the sum is finite, z = q and a3q2 = b1 . . . b7. The standard
reference for all this is [15].

To write our results in standard notation, some routine computation involving q-
shifted factorials is necessary. We will not give the details, but we mention that all that
one needs is the elementary identities

(a; q)n = (−1)nq(n
2)an(q1−n/a; q)n, (2.2a)

(a; q)n+k = (a; q)n(aqn; q)k, (2.2b)

(a; q)n−k = (−1)kq(k
2)(q1−n/a)k (a; q)n

(q1−n/a; q)k
. (2.2c)

2.2 An extended example: Krawtchouk polynomials

Our guiding example will be Krawtchouk polynomials, arising as matrix elements
of SL(2, C). (Incidentally, they also appear as 6j-symbols, namely, of the oscillator
algebra [57, Section 8.6.6].) For later comparison, we recall some fundamental facts
on this topic [27, 57].

Consider the coefficients K l
k = K l

k(a, b, c, d; N ) in

(ax + b)k(cx + d)N−k =
N∑

l=0
K l

k xl , (2.3)

where k ∈ {0, 1, . . . , N } and we assume, with no great loss of generality, that ad −
bc = 1. Note that SL(2) acts on polynomials of degree ≤ N by

p(x) �→ (cx + d)N p

(
ax + b

cx + d

)
, (2.4)

and that K l
k are the matrix elements of this group action in the standard basis of

monomials.
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Using the binomial theorem, several different expressions for K l
k as hypergeometric

sums may be derived. For instance,

(ax + b)k(cx + d)N−k =
(

1
d

x + b

d
(cx + d)

)k

(cx + d)N−k

=
k∑

j=0

(
k

j

)
bk− j d−k x j (cx + d)N− j

=
k∑

j=0

N− j∑
m=0

(
k

j

)(
N − j

m

)
bk− j cmd N−k− j−m xm+ j .

Thus, writing m = l − j , we obtain

K l
k =

min(k,l)∑
j=0

(
k

j

)(
N − j

l − j

)
bk− j cl− j d N−k−l

=
(

N

l

)
bkcld N−k−l

2 F1

[−k, −l
−N

; − 1
bc

]
,

(2.5)

in standard hypergeometric notation.
Note that the expansion problem inverse to (2.3),

xk =
N∑

l=0
K̃ l

k (ax + b)l(cx + d)N−l (2.6)

is equivalent to the original problem (replace the matrix ( a b
c d ) by its inverse). Thus,

K̃ l
k is given by a similar formula, namely,

K̃ l
k =

(
N

l

)
(−1)k+laN−k−lbkcl

2 F1

[−k, −l
−N

; − 1
bc

]
.

Combining (2.3) and (2.6), we obtain the orthogonality relation

δkm =
N∑

l=0
K l

k K̃ m
l

=
N∑

l=0

(
N

l

)(
N

m

)
(−1)l+maN−l−mbk+l cl+md N−k−l

× 2 F1

[−k, −l
−N

; − 1
bc

]
2 F1

[−m, −l
−N

; − 1
bc

]
.

(2.7)
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Now let us introduce the standard notation

Kn(x ; p, N ) = 2 F1

[−n, −x
−N

;
1
p

]
.

This is a polynomial in x of degree n, known as the Krawtchouk polynomial [61].
Writing bc = −p, ad = 1 − p and t = cx/d, (2.3) takes the form

(
1 + p − 1

p
t

)k

(1 + t)N−k =
N∑

l=0

(
N

l

)
Kl(k; p, N ) t l , (2.8)

which is a well-known generating function for Krawtchouk polynomials. Our approach
to the 6j-symbols in Fig. 1 will be based on generalizing this identity.

In terms of Krawtchouk polynomials, (2.7) takes the form

N∑
x=0

(
N

x

)
px (1 − p)N−x Kk(x ; p, N )Km(x ; p, N ) = δkm

(1 − p)k

pk
(N

k

) .

For 0 < p < 1, this is an orthogonality relation for a positive measure, namely, the
binomial distribution on a finite arithmetic progression. That we get a genuine orthog-
onality stems from the fact that the underlying representation is unitarizable for the
group SU(2).

Several other interesting properties of Krawtchouk polynomials are immediately
obtained from (2.3). For instance, one may consider three bases ek , fk , gk , each being
of the form (ax + b)k(cx + d)N−k , with different a, b, c, d. The transition coefficients
in

ek =
∑

l

Kkl gl =
∑

l

K ′
kl fl , fk =

∑
K ′′

kl gl

are then all given by Krawtchouk polynomials, with different parameter p. Clearly,
they are related by matrix multiplication:

Knm =
N∑

k=0
K ′

nk K ′′
km . (2.9)

In the case ek = gk , one gets back the orthogonality (2.7).
From the viewpoint of group theory, (2.9) corresponds to representing the group

law in an (N + 1)-dimensional representation. This should be quite familiar when
N = 1 and we restrict to SO(2), the rotations of the plane, obtaining in this way the
addition formulas for sine and cosine. Thus, (2.9) appears as a natural extension of
these addition formulas.
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138 H. Rosengren

From the hypergeometric viewpoint, (2.9) is an instance of Meixner’s formula [32]

∞∑
k=0

(c)k

k! 2 F1

[−k, a
c

; x

]
2 F1

[−k, b
c

; y

]
zk

= (1 − z)a+b−c

(1 − z + xz)a(1 − z + xz)b 2 F1

[
a, b

c
;

xyz

(1 − z + xz)(1 − z + yz)

]
.

More precisely, it is the special case when a = −n, b = −m, c = −N , with m, n, N
integers such that 0 ≤ m, n ≤ N .

Another consequence of (2.3) is obtained by exploiting the multiplicative structure
of the basis vectors. Namely, expanding both sides of

(ax + b)k+ j (cx + d)M+N−k− j = (ax + b)k(cx + d)M−k(ax + b) j (cx + d)N− j

(2.10)

into monomials gives ∑
l

K l
k+ j x

l =
∑

m

K m
k xm

∑
n

K n
j xn,

or

K l
k+ j (a, b, c, d; M + N ) =

∑
m+n=l

K m
k (a, b, c, d; M)K n

j (a, b, c, d; N ). (2.11)

In hypergeometric notation, this is(
M + N

l

)
2 F1

[−l, −k − j
−M − N

; t

]
=

∑
m+n=l

0≤m≤M
0≤n≤N

(
M

m

)(
N

n

)
2 F1

[−m, −k
−M

; t

]
2 F1

[−n, − j
−N

; t

]
. (2.12)

The group-theoretic interpretation of (2.11) is the following. Let VN denote the
(N + 1)-dimensional irreducible representation of SL(2), realized on the space of
polynomials as above. Then multiplication of polynomials defines a map VM ⊗ VN →
VM+N . The relation (2.10), and thus (2.11), expresses the fact that this map is in-
tertwining, that is, commutes with the group action. This immediately suggests
a non-trivial generalization. Namely, one has the equivalence of representations
VM ⊗ VN 
 ⊕min(M,N )

s=0 VM+N−2s , and one may do the same thing for the intertwin-
ers VM ⊗ VN → VM+N−2s . The corresponding generalization of (2.12) has additional
factors of type 3 F2 appearing on both sides. From the group-theoretic viewpoint, these
are Clebsch–Gordan coefficients and, from the viewpoint of special functions, Hahn
polynomials, see [57, Section 8.5.3].
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Next we point out that (2.11) may be iterated to

K l
k1+···+kn

(a, b, c, d; M1 + · · · + Mn)

=
∑

m1+···+mn=l

K m1
k1

(a, b, c, d; M1) · · · K mn
kn

(a, b, c, d; Mn), (2.13)

where 0 ≤ ki , mi ≤ Mi . This is especially interesting when Mi = 1 for all i . Writing
the result in hypergeometric form, we get in that case

(
n

l

)
2 F1

[−l, −k1 − · · · − kn

−n
; t

]
=

∑
m1+···+mn=l

0≤mi ≤1

n∏
i=1

2 F1

[−mi , −ki

−1 ; t

]
.

Note that the range of summation may be identified with the l-element subsets L of
N = {1, . . . , n} (interpreting mi = 1 as i ∈ L). Similarly, (k1, . . . , kn) labels a subset
K of N with

∑
i ki elements. Since

2 F1

[−mi , −ki

−1 ; t

]
=

{
1 − t, mi = ki = 1,

1, mi = 0 or ki = 0,

the term in the sum is (1 − t)|L∩K |. Replacing t with 1 − t , we obtain(|N |
l

)
2 F1

[−l, −|K |
−|N | ; 1 − t

]
=

∑
L⊆N , |L|=l

t |L∩K |, K ⊆ N . (2.14)

This (not very deep) identity gives a combinatorial interpretation for Krawtchouk
polynomials as a generating function for the statistics |L ∩ K | on subsets L of fixed
cardinality. We shall see that the appearance of 6j-symbols in statistical mechanics is
via a generalization of this identity.

2.3 q-Racah polynomials

In [42], we considered a q-analogue of the above set-up, leading to general q-Racah
polynomials. The group SL(2) was replaced by a quantum group, and the basis vectors
xk and (ax + b)k(cx + d)N−k by appropriate q-shifted products such as

k∏
j=0

(axq j + b)
N−k∏
j=0

(cxq j + d).

Such bases were interpreted as eigenvectors of Koornwinder’s twisted primitive el-
ements [28], and also as the image of standard basis vectors xk under Babelon’s
vertex-IRF transformations [6] (called generalized group elements in [42]). Actually,
we focused on the case of infinite-dimensional representations, and only mentioned
the case of present interest somewhat parenthetically [42, Section 6].
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140 H. Rosengren

To be more precise, the expansion problem that yields quantum 6j-symbols (q-
Racah polynomials) is

k∏
j=0

(axq− j + b)
N−k∏
j=0

(cxq− j + d) =
N∑

l=0
Cl

k

l∏
j=0

(αxq j + β)
N−l∏
j=0

(γ xq j + δ). (2.15)

For generic parameter values, the polynomials on the right form a basis for the space
of polynomials of degree ≤ N , so that the coefficients exist uniquely. For the rest of
this section we assume that we are in such a generic situation.

Note that when q = 1, (2.15) reduces to

(ax + b)k(cx + d)N−k =
N∑

l=0
Cl

k (γ x + β)l(γ x + δ)N−l ,

which is further reduced to (2.3) by a change of variables. The expansion (2.15) is
more rigid. After multiplying with a trivial factor and changing parameters, we may
restrict to the case

(ax ; q−1)k(bx ; q−1)N−k =
N∑

l=0
Cl

k(a, b, c, d; N ; q) (cx ; q)l(dx ; q)N−l . (2.16)

We could dilate x to get rid of one more parameter, but the remaining 7 parameters,
counting q , enter in a non-trivial fashion. Indeed, we have

Cl
k(a, b, c, d; N ; q) = ql(l−N )

[
N

l

]
q

(q1−N b/d; q)l(q1−N b/c; q)N−l(q1−ka/c; q)k

(ql−N c/d; q)l(q−ld/c; q)N−l(q1−N b/c; q)k

× 4φ3

[
q−k, q−l , qk−N b/a, ql−N c/d

q−N , c/a, q1−N b/d
; q, q

]
. (2.17)

(In Section 3 we will derive a more general identity in an elementary way.)
Similarly as for (2.3), we may invert (2.16) to get the orthogonality relation

δkm =
N∑

l=0
Cl

k(a, b, c, d; N ; q) Cm
l (c, d, a, b; N ; q−1). (2.18)

One may verify that (2.18) gives the orthogonality of q-Racah polynomials. (If we
want a positive measure, some conditions on the parameters must be imposed.)

Note that (2.16) generalizes the generating function (2.8) to the level of q-Racah
polynomials. This identity was obtained, in a related but not identical context, by
Koelink and Van der Jeugt [26, Remark 4.11(iii)].

The mixture of base q and q−1 in (2.16) is crucial. Admittedly, the expansion
problem

(ax ; q)k(bx ; q)N−k =
N∑

l=0
Dl

k(a, b, c, d; N ; q) (cx ; q)l(dx ; q)N−l (2.19)
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is immediately reduced to (2.16) by a change of variables; explicitly, one has

Dl
k(a, b, c, d; N ; q) = Cl

k(aqk−1, bq N−k−1, c, d; N ; q).

However, the relation

δkm =
k∑

l=0
Dl

k(a, b, c, d; N ; q) Dm
l (c, d, a, b; N ; q)

is not equivalent to (2.18). It gives a system of biorthogonal rational functions. When
cd̄ = ab̄ ∈ R it is an orthogonal system, found in an equivalent context by Koelink [24,
Proposition 9.5]; see also [16, Corollary 4.4] and Remark 4.2 below.

Remark 2.1. We conclude the introductory part of the paper with some comments
on the relation to Terwilliger’s concept of a Leonard pair; see [55] and refer-
ences given there. As was mentioned above, if we let ek = (ax ; q−1)k(bx ; q−1)N−k ,
fk = (cx ; q)k(dx ; q)N−k , then ek and fk appear as eigenbases of certain q-difference
operators Y1, Y2, respectively. It is easy to check that each of these operators acts
tridiagonally on the eigenbasis of the other, that is,

Y1 fk ∈ span{ fk−1, fk, fk+1}, Y2ek ∈ span{ek−1, ek, ek+1}.

Except for a non-degeneracy condition, this is the definition of (Y1, Y2) being a Leonard
pair. Then (2.17) means that (Y1, Y2) is a Leonard pair of “q-Racah type”, which is the
most general kind. This gives a simple model for studying Leonard pairs. For instance,
the “split decompositions” [54] are easily understood in this model. A typical split basis
between ek and fk would be gk = (ax ; q−1)k(dx ; q)N−k , which interpolates between
the two other bases in the sense that

gk ∈ span{ek, ek+1, . . . , eN } ∩ span{ f0, f1, . . . , fk}.

More generally, we may picture the factors

(ax ; q−1)k, (bx ; q−1)k, (cx ; q)N−k, (dx ; q)N−k

as being attached to the corners of a tetrahedron, with two opposite edges corre-
sponding to the original Leonard pair and the remaining four edges to different split
decompositions.

3 Trigonometric 6 j-symbols

It is not hard to check that both q-Racah polynomials and Koelink’s orthogonal func-
tions are degenerate cases of Wilson’s biorthogonal functions. Thus, if one wants
to obtain general trigonometric 6j-symbols in a similar way, it seems necessary to
unify the products (ax ; q)k and (ax ; q−1)k . The correct unification turns out to be
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the Askey–Wilson monomials hk(x ; a) = hk(x ; a; q), which are the natural building
blocks of Askey–Wilson polynomials [5]. They are given by

hk(x ; a) =
k−1∏
j=0

(1 − axq j + a2q2 j ).

We will assume that q = 0, but we allow q to be a root of unity, which case is of
special interest in statistical mechanics. We will need the elementary identities

hk(x ; a) = qk(k−1)a2khk(x ; q1−k/a), (3.1)

hk+l(x ; a) = hk(x ; a)hl(x ; aqk). (3.2)

To write hk in the notation (2.1) one must introduce an auxiliary variable ξ satisfying

ξ + ξ−1 = x ; (3.3)

then

hk(x ; a) = (aξ, aξ−1; q)k . (3.4)

(In the context of Askey–Wilson polynomials one usually dilates x by a factor 2 and
writes x/2 = cos θ , ξ = eiθ .)

It is easy to see that

lim
t→0

hk(x/t ; at) = (ax ; q)k, lim
t→0

t2khk(x/t ; a/t) = qk(k−1)a2k(x/a; q−1)k .

(3.5)

Thus, we may unify (2.16) and (2.19), together with several related expansion problems
(see Remark 4.2 below), into

hk(x ; a)hN−k(x ; b) =
N∑

l=0
Rl

k(a, b, c, d; N ; q) hl(x ; c)hN−l(x ; d). (3.6)

We will suppress parameters when convenient, writing

Rl
k = Rl

k(a, b, c, d; N ) = Rl
k(a, b, c, d; N ; q).

Note that, in contrast to the limit cases considered above, we cannot get rid of any
parameters by scaling x . We shall see that Rl

k depends on all 8 parameters (counting
q) in a non-trivial fashion.

Clearly, the coefficients Rl
k exist uniquely if and only if (hk(x ; c)hN−k(x ; d))N

k=0
form a basis for the space of polynomials of degree ≤ N . Although it is not quite
necessary for our purposes, we will first settle this question.
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Lemma 3.1. The polynomials (hk(x ; c)hN−k(x ; d))N
k=0 form a basis for the space of

polynomials of degree at most N if and only if none of the following conditions are
satisfied:

c/d ∈ {q1−N , q2−N , . . . , q N−1}, (3.7a)

cd ∈ {q1−N , q2−N , . . . , 1}, (3.7b)

c = d = 0. (3.7c)

Proof: If c/d = q j with 1 − N ≤ j ≤ 0, then all the polynomials have the common
zero x = d + d−1, so they cannot form a basis. Similarly, if c/d = q j with 0 ≤ j ≤
N − 1 then x = c + c−1 is a common zero, and if (3.7b) holds then both x = c + c−1

and x = d + d−1 are common zeroes. In the case (3.7c), all the polynomials equal 1
and clearly do not form a basis.

Conversely, assume that none of the conditions (3.7) hold. We need to show that
any linear relation

N∑
k=0

λk hk(x ; c)hN−k(x ; d) ≡ 0 (3.8)

is trivial. By symmetry, we may assume c = 0. Choosing x = c + c−1 in (3.8) gives

λ0(dc, d/c; q)N = 0.

Since (dc, d/c; q)N = 0 only if (3.7a) or (3.7b) holds, we have λ0 = 0. We may then
divide (3.8) with 1 − cx + c2, giving

N∑
k=1

λk hk−1(x ; cq)hN−k(x ; d) ≡ 0.

By iteration (choosing x = cq + (cq)−1 in the next step) or by induction on N , we
conclude that λi = 0 for all i , and thus that the polynomials form a basis. �

We now turn to the problem of computing the coefficients Rl
k . Recall that our

derivation of (2.5) consisted in applying the binomial theorem twice. The same proof
should be applicable to (3.6), once we have a generalized binomial theorem of the
form

hN (x ; a) =
N∑

k=0
C N

k (a, b, c) hk(x ; b)hN−k(x ; c). (3.9)

In fact, (3.9) is solved by one of the most fundamental results on basic hypergeometric
series: Jackson’s 8W7 summation [15, 20]. Since we have promised to give a self-
contained treatment, we give a straight-forward proof, motivated by our present view
of (3.9) as an extension of the binomial theorem.
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We will follow the standard inductive proof of the binomial theorem based on
Pascal’s triangle. First we write

hN+1(x ; a) = hN (x ; a)(1 − aq N x + a2q2N ).

To get a recurrence for C N
k , we split the factor 1 − axq N + a2q2N into parts that attach

to the right-hand side of (3.9), namely, as

1 − aq N x + a2q2N = Ak(1 − bqk x + b2q2k) + Bk(1 − cq N−k x + c2q2(N−k)).

(3.10)

We compute

Ak = (1 − acq2N−k)(1 − aqk/c)
(1 − bcq N )(1 − bq2k−N /c)

,

Bk = (1 − abq N+k)(1 − aq N−k/b)
(1 − bcq N )(1 − cq N−2k/b)

,

(3.11)

assuming that the denominators are non-zero. For the elliptic extension discussed in
Section 5 it is important to note that this uses the elementary identity

v

x
(1 − xy)(1 − x/y)(1 − uv)(1 − u/v)

= (1 − ux)(1 − u/x)(1 − vy)(1 − v/y)

−(1 − uy)(1 − u/y)(1 − vx)(1 − v/x), (3.12)

with

(u, v, x, y) �→ (cq N−k, bqk, aq N , ξ ).

Combining (3.9) and (3.10) yields the generalized Pascal triangle

C N+1
k = BkC N

k + Ak−1C N
k−1, (3.13)

with boundary conditions

C0
0 = 1, C N

−1 = C N
N+1 = 0.

Iterating (3.13), one quickly guesses that

C N
k = qk(k−N )

[
N

k

]
q

(a/c, q N−kac; q)k(a/b, qkab; q)N−k

(qk−N b/c; q)k(q−kc/b; q)N−k(bc; q)N
. (3.14)
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To verify the guess, we plug (3.14) into (3.13). After cancelling common factors, we
are left with

qk−N−1(1 − q N )(1 − q N ab)(1 − q N ac)(1 − q N+1−2kc/b)

= (1 − qk)(1 − qk−1ab)(1 − q2N−k+1ac)(1 − q−kc/b)

−(1 − qk−N−1)(1 − q N+kab)(1 − q N−kac)(1 − q N+1−kc/b),

which is another instance of (3.12), this time with

(u, v, x, y) �→ (
q N+ 1

2
√

ac, q− 1
2
√

ac, q N−k+ 1
2
√

ac, qk− 1
2 b

√
a/c

)
.

This shows that, for generic parameters, (3.9) holds with the coefficients given by
(3.14). As one expects from Lemma 3.1, C N

k has poles precisely if

b/c ∈ {q1−N , q2−N , . . . , q N−1}, bc ∈ {1, q−1, . . . , q1−N } or b = c = 0.

Other singularities, such as when q is a root of unity, are removable.

Remark 3.2. Plugging (3.14) into (3.9) and rewriting the result in standard notation
gives

8W7(q−N b/c; q−N , q1−N /ac, a/c, bξ, bξ−1; q, q) = (cb, c/b, aξ, aξ−1; q)N

(ab, a/b, cξ, cξ−1; q)N
.

This is Jackson’s summation. Essentially the same method was used in [43] to obtain
extensions of Jackson’s summation to multiple elliptic hypergeometric series related
to the root systems An and Dn .

We may now compute the coefficients Rl
k in (3.6) by applying the “binomial theo-

rem” (3.9) twice. For instance, using (3.2) we may write

hk(x ; a)hN−k(x ; b) =
k∑

j=0
Ck

j (a, c, bq N−k) h j (x ; c)hN− j (x ; b)

=
k∑

j=0

N− j∑
m=0

Ck
j (a, c, bq N−k)C N− j

m (b, cq j , d)h j+m(x ; c)hN− j−m(x ; d).

This gives

Rl
k =

min(k,l)∑
j=0

Ck
j (a, c, bq N−k)C N− j

l− j (b, cq j , d).

Plugging in the expressions from (3.14) and rewriting the result in standard form one
finds that the sum is a balanced 10W9 series.
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Theorem 3.3. For generic values of the parameters, the coefficients Rl
k in (3.6) exist

uniquely and are given by

Rl
k(a, b, c, d; N ; q)

= ql(l−N )
[

N

l

]
q

(ac, a/c; q)k(q N−lbd, b/d; q)l(b/c; q)N−k(b/c; q)N−l(bc; q)N−k

(ql−N c/d; q)l(q−ld/c; q)N−l(cd; q)N (b/c; q)N (bc; q)l

× 10W9(q−N c/b; q−k, q−l , qk−N a/b, ql−N c/d, cd, q1−N /ab, qc/b; q, q).

Remark 3.4. The limit case d = 0 of Theorem 3.3 was recently obtained by Ismail
and Stanton [19, Theorem 3.1] using different methods.

Remark 3.5. From the definition, it is clear that Rl
k has the symmetries

Rl
k(a, b, c, d; N ) = Rl

N−k(b, a, c, d; N ) = RN−l
k (a, b, d, c; N ), (3.15a)

and from (3.1) we have moreover that

Rl
k(a, b, c, d; N ) = q−k(k−1)a−2k Rl

k(q1−k/a, b, c, d; N ). (3.15b)

Combining these symmetries with Theorem 3.3 gives further expressions for Rl
k as

10W9 sums. These are related via Bailey’s classical 10W9 transformations [15]. On the
other hand, the explicit expression in Theorem 3.3 implies many symmetries for Rl

k
that are not obvious from the definition.

4 Elementary properties

4.1 Biorthogonality

It is clear from (3.6) that the coefficients Rl
k satisfy

δnm =
N∑

k=0
Rk

n(a, b, c, d; N ; q) Rm
k (c, d, a, b; N ; q). (4.1)

We will now show that (4.1) gives a system of biorthogonal rational functions, which
is identical to the one obtained by Wilson [60].
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To facilitate comparison with Wilson’s result, we rewrite (4.1) in terms of the
functions

Rn(μ(k)) = qk(N−k)

(cd)n
[N

k

]
q

(q−N ; q)n(qk−N c/d, bc; q)k(q−kd/c, bd; q)N−k(cd; q)N

(b/d; q)k(bc, bd; q)N−n(b/c; q)N−k

× Rk
n(a, b, c, d; N ; q)

= (q−N , ac, q1−N /bd, a/c; q)n

(q1−N c/b; q)n

× 10W9(q−Nc/b; q−n, qn−Na/b, q−k, qk−Nc/d, cd, q1−N/ab, cq/b; q, q)

and

Sm(μ(k))= qm(N−m)

(ab)m
[N

m

]
q

(q−N , ac, ad, qm−N a/b; q)m(q−mb/a; q)N−m(ab; q)N

(ac, c/a; q)k(ad, d/a; q)N−k

× Rm
k (c, d, a, b; N ; q)

= (q−N , ac, q1−N /bd, d/b; q)m

(q1−N a/d; q)m

× 10W9(q−Na/d; q−m, qm−Na/b, q−k, qk−Nc/d, ab, q1−N/cd, aq/d; q, q),

where

μ(k) = q−k + qk−N c/d.

Note that Rn has the form

Rn(μ(k)) =
n∑

j=0
σ j

(q−k, qk−N c/d; q) j

(q1−N+kc/b, q1−kd/b; q) j

=
n∑

j=0
σ j

j−1∏
t=0

1 − qtμ(k) + q2t−N c/d

1 − qt+1μ(k)d/b + q2t+2−N cd/b2 ,

with σ j independent of k, and is thus a rational function in μ(k) of degree n/n.
Similarly,

Sm(μ(k)) =
m∑

j=0
τ j

j−1∏
t=0

1 − qtμ(k) + q2t−N c/d

1 − qt+1μ(k)a/c + q2t+2−N a2/cd
.

In terms of these functions, (4.1) takes the form

N∑
k=0

wk Rn(μ(k))Sm(μ(k)) = Cn δnm, (4.2)
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where

wk = 1 − q2k−N c/d

1 − q−N c/d

(q−N c/d, q−N , ac, q1−N /bd, b/d, c/a; q)k

(q, qc/d, q1−N /ad, bc, q1−N c/b, q1−N a/d; q)k
qk

and

Cn = (ba, b/a, dc, d/c; q)N

(bc, b/c, da, d/a; q)N

× 1 − q−N a/b

1 − q2n−N a/b

(q, q−N , ac, ad, q1−N /bc, q1−N /bd, aq/b; q)n

(q−N a/b; q)n
q−n.

Thus, we have indeed a system of biorthogonal rational functions.
We now compare this result with the work of Wilson [60], who used the notation

rn

(
z + z−1

2
; a, b, c, d, e, f ; q

)
= (ab, ac, ad, 1/a f ; q)n

(aq/e; q)n
10W9(a/e; az, a/z, q/be, q/ce, q/de, qn/e f, q−n; q, q),

(4.3)

where

abcde f = q.

The normalization is chosen so as to make rn symmetric in a, b, c, d. Assum-
ing ab = q−N with N a non-negative integer, Wilson obtained the biorthogonality
relation

N∑
k=0

wk rn

(
aqk + a−1q−k

2
; a, b, c, d, e, f ; q

)

× rm

(
aqk + a−1q−k

2
; a, b, c, d, f, e; q

)
= Cn δnm, (4.4)

where

wk = 1 − a2q2k

1 − a2
(a2, ab, ac, ad, ae, a f ; q)k

(q, aq/b, aq/c, aq/d, aq/e, aq/ f ; q)k
qk

and

Cn = (a2q, q/cd, q/ce, q/de; q)N

(aq/c, aq/d, aq/e, b f ; q)N

(q, qn/e f, ab, ac, ad, bc, bd, cd; q)n

(q/e f ; q)2n
q−n
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(in [60], the factor q−n and the exponent 2 in a2q are missing in the expression for
Cn). Note that the case m = n = 0 of (4.4) is the Jackson sum.

It is now easy to check that (4.2) and (4.4) are equivalent. The explicit correspon-
dence of parameters is

(a, b, c, d, e, f )

�→ (
q− N

2
√

c/d, q− N
2
√

d/c, q
N
2 a

√
cd, q1− N

2 /b
√

cd, q
N
2 b/

√
cd, q

N
2
√

cd/a
)

(which is consistent with the relations ab = q−N , abcde f = q) or, conversely,

(a, b, c, d) �→ (
√

c/ f , q/d
√

c f , a
√

c f , b
√

c f ). (4.5)

Remark 4.1. Continuous biorthogonality measures for the function rn (not assuming
ab = q−N ) were obtained by Rahman [36, 38], see [48] for the elliptic case.

Remark 4.2. Note that, in view of the limit relations (3.5), any one of the sixteen
expansion problems

(ax ; q±)k(bx ; q±)N−k =
N∑

l=0
Cl

k (cx ; q±)l(dx ; q±)N−l ,

with all possible choices of ±, may be obtained as a degenerate case of (3.6). It is easy to
see from Theorem 3.3 that the coefficients Cl

k are always given by 4φ3 or (equivalently,
in view of Watson’s transformation [15]) 8W7 sums. Gupta and Masson [16] worked
out all such degenerate cases of Wilson’s biorthogonal rational functions, finding five
different systems. The system in [16, Corollary 4.2] is related to the expansion

(ax ; q)k(bx ; q−1)N−k =
N∑

l=0
Cl

k (cx ; q)l(dx ; q−1)N−l ,

the system in [16, Corollary 4.3] to

(ax ; q)k(bx ; q−1)N−k =
N∑

l=0
Cl

k (cx ; q)l(dx ; q)N−l ,

the system in [16, Corollary 4.4] is essentially Koelink’s functions [24], related to

(ax ; q)k(bx ; q)N−k =
N∑

l=0
Cl

k (cx ; q)l(dx ; q)N−l ,
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the system in [16, Corollary 4.5] to

(ax ; q)k(bx ; q)N−k =
N∑

l=0
Cl

k (cx ; q)l(dx ; q−1)N−l ,

and the system in [16, Corollary 4.6] is the q-Racah polynomials, related to

(ax ; q−1)k(bx ; q−1)N−k =
N∑

l=0
Cl

k (cx ; q)l(dx ; q)N−l .

(For some of the systems Gupta and Masson gave a more general version, with infinite
discrete biorthogonality measure.) All other cases may be reduced to one of those five.

4.2 Addition formula

By iterating (3.6), one immediately generalizes the biorthogonality relation (4.1) to

Rm
n (a, b, e, f ; N ; q) =

N∑
k=0

Rk
n(a, b, c, d; N ; q) Rm

k (c, d, e, f ; N ; q). (4.6)

This is an extension of the addition formula (2.9). We do not believe that the general
case of (4.6) can be found in the literature, although it can probably be obtained by
analytic continuation from the Yang–Baxter equation for trigonometric 6j-symbols
[9, 13]. Though in the present approach it seems almost trivial, in a more direct ap-
proach, such as defining Rm

k through the explicit expression in Theorem 3.3, it might
not be easy to guess the existence of such an identity.

It may be of interest to rewrite (4.6) in Wilson’s notation (4.3). We introduce
s = e/a, t = b/ f as new parameters, and then make the change of variables (4.5).
The calculations are essentially the same as those in Section 4.1, and we are content
with stating the end result.

Corollary 4.3. For abcde f = q, ab = q−N and s and t arbitrary, Wilson’s functions
(4.3) satisfy the addition formula

N∑
k=0

wk rn

(
aqk + a−1q−k

2
; a, b, c, d, e, f ; q

)

× rm

(
aqk + a−1q−k

2
; a, b, cs, dt, f/s, e/t ; q

)
= X Rm

n (
√

c/ f , q/d
√

c f , s
√

c/ f , q/td
√

c f ; q, N ) (4.7)

= Y rn

(
Aqm + A−1q−m

2
; A, B, C, D, E, F ; q

)
,
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where

wk = 1 − a2q2k

1 − a2
(a2, ab, acs, ad, ae, a f/s; q)k

(q, aq/b, aq/cs, aq/d, aq/e, aqs/ f ; q)k
qk,

X = (a2q, q/cdst, qt/ces, q/de; q)N

(aq/cs, aq/d, aq/e, b f/s; q)N
(ab, ad, bd; q)n

× (q, qmst/e f, acs, bcs, cdst ; q)m

(qst/e f ; q)2m
q−nt2m−N qm2−n2 (ce2 f )n−m,

Y = (a2q, q/de, q/cds, q/ces; q)N

(aq/cs, aq/d, aq/e, b f/s; q)N

(ad, bd; q)n

(q/ces, dt/e; q)n

× (ab, t, acs, bcs, dt/e; q)m

(qs/d f, qs/e f ; q)m
,

(A, B, C, D, E, F) = (
√

st/e f , ab
√

e f/st, c
√

es/ f t, d
√

f t/es,
√

e f t/s,
√

e f s/t).

The intermediate expression in (4.7) makes it clear that the special case s = t = 1
gives back (4.4), since then Rm

n = δnm . The presence of square roots is due to Wilson’s
choice of parametrization. Writing the identity explicitly in terms of 10W9-series, all
square roots combine or cancel.

4.3 Convolution formulas

Next we extend (2.11) to the present setting, by exploiting the multiplicative property
(3.2) of our basis elements. Because of the shifts appearing in that identity there are
several different convolution formulas, which we write compactly as follows.

Corollary 4.4. The coefficients Rm
k satisfy the convolution formulas

Rl
k+ j (a, b, c, d; M + N ; q) =

∑
m+n=l

Rm
k (aqα j , bqβ(N− j), c, d; M ; q)

× Rn
j

(
aq (1−α)k, bq (1−β)(M−k), cqm, dq M−m ; N ; q

)
(4.8)

for all α, β ∈ {0, 1}, where 0 ≤ k, m ≤ M, 0 ≤ j, n ≤ N.

Proof: Since, for generic parameters, Rl
k is determined by (3.6), it suffices to compute

M+N∑
l=0

Cl hl(x ; c)hM+N−l(x ; d),
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where Cl is the right-hand side of (4.8). Inside the summation sign, we split the factors
as

hm+n(x ; c)hM+N−m−n(x ; d) = hm(x ; c)hM−m(x ; d)hn(x ; cqm)hN−n(x ; dq M−m).

Performing the summation, using (3.6), gives

hk(x ; aqα j )hM−k(x ; bqβ(N− j))h j (x ; aq (1−α)k)hN− j (x ; bq (1−β)(M−k)).

For any α, β ∈ {0, 1}, these factors combine to

hk+ j (x ; a)hM+N−k− j (x ; b),

which completes the proof. �

4.4 Combinatorial formulas

To get analogues of (2.13) and (2.14), we first consider all possible extensions of (3.2)
to a general sum hk1+···+kn (x ; a). These are naturally labelled by permutations σ of
{1, . . . , n}:

hk1+···+kn (x ; a) = hkσ (1) (x ; a)hkσ (2) (x ; aqkσ (1) ) · · · hkσ (n) (x ; aqkσ (1)+···+kσ (n−1) ).

Replacing σ by σ−1, this may be written

hk1+···+kn (x ; a) =
n∏

i=1
hki (x ; aq |k|σi ),

where we introduced the notation

|k|σi =
∑

{ j ; σ ( j)<σ (i)}
k j

for a multi-index k. Note that

|k|idi = k1 + k2 + · · · + ki−1. (4.9)

Thus, we have an extension of (4.8) labelled by two permutations σ , τ :

Rl
k1+···+kn

(a, b, c, d; M1 + · · · + Mn)

=
∑

m1+···+mn=l

n∏
i=1

Rmi
ki

(aq |k|σi , bq |M−k|τi , cq |m|idi , dq |M−m|idi ; Mi ), (4.10)

where 0 ≤ ki , mi ≤ Mi . (We could replace both occurrences of id in (4.10) by an
arbitrary permutation, but the resulting identity is immediately reduced to (4.10) by
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permuting the mi .) In particular, when M1 = · · · = Mn = 1, one has

Rl
k1+···+kn

(a, b, c, d; n)

=
∑

m1+···+mn=l
0≤mi ≤1

n∏
i=1

Rmi
ki

(aq |k|σi , bq |1−k|τi , cq |m|idi , dq |1−m|idi ; 1). (4.11)

Note that on the right-hand side of (4.11), only the elementary coefficients

Rm
k = Rm

k (a, b, c, d; 1)

given by

(
R0

0 R1
0

R0
1 R1

1

)
=

⎛⎜⎜⎝
(1 − bc)(1 − b/c)
(1 − dc)(1 − d/c)

(1 − bd)(1 − b/d)
(1 − cd)(1 − c/d)

(1 − ac)(1 − a/c)
(1 − dc)(1 − d/c)

(1 − ad)(1 − a/d)
(1 − cd)(1 − c/d)

⎞⎟⎟⎠
appear. We shall see in Section 5.2 that the Eq. (4.11) is closely related to the fusion of
R-matrices developped in [9,10]. This explains the relation between our construction
and the statistical mechanics approach.

The combinatorics of the sum (4.11) deserves a separate study, but we will make
some further comments here. Note that, in (4.11), a large number of right-hand sides
give the same left-hand side. If we only strive for a combinatorial understanding of
the coefficients Rl

k , it may be enough to choose the right-hand side in a particularly
simple fashion. For instance, we may take σ = τ = id, and choose ki as

(k1, . . . , kn) = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

). (4.12)

It seems natural to identify the summation-indices m with lattice paths starting at
(0, 0) and going right at step i if mi = 1 and up if mi = 0, thus ending at (l, n − l).
Suppose that the i :th step in the path starts at (x, y). Then, by (4.9),

|m|idi = x, |1 − m|idi = y.

Moreover, if the ki are chosen as in (4.12), then

|k|idi =
{

i − 1 = x + y, 1 ≤ i ≤ k,

k, k + 1 ≤ i ≤ n,

|1 − k|idi =
{

0, 1 ≤ i ≤ k,

i − 1 − k = x + y − k, k + 1 ≤ i ≤ n.
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Thus, for instance, any one of the first k steps in the path that goes right contributes a
factor

R1
1(aqx+y, b, cqx , dq y ; 1) = (1 − qx+2yad)(1 − qx a/d)

(1 − qx+ycd)(1 − qx−yc/d)

to the sum. There are three other types of steps, giving rise to similar factors. After
replacing n by N , this yields the following result.

Corollary 4.5. The coefficient Rl
k(a, b, c, d; N ; q) is given by the combinatorial for-

mula

∑
paths

∏
early right

(1 − qx+2yad)(1 − qx a/d)
(1 − qx+ycd)(1 − qx−yc/d)

∏
early up

(1 − q2x+yac)(1 − q ya/c)
(1 − qx+ycd)(1 − q y−x d/c)

×
∏

late right

(1 − qx+2y−kbd)(1 − qx−kb/d)
(1 − qx+ycd)(1 − qx−yc/d)

∏
late up

(1 − q2x+y−kbc)(1 − q y−kb/c)
(1 − qx+ycd)(1 − q y−x d/c)

,

where the sum is over all up-right lattice paths from (0, 0) to (l, N − l), the products
are over steps in these paths, the first k steps being called “early” and the remaining
N − k steps being called “late”. In each factor, (x, y) denotes the starting point of
the corresponding step.

There are many limit cases when Corollary 4.5 takes a simpler form. It might be
interesting to investigate the limit cases corresponding to various polynomials in the
Askey Scheme. As an example, let us consider the limit

L = lim
s→0

lim
c→0

(qkd/bs)N−l Rl
k(as, bs, c, d; N ; q).

It is easy to see from Theorem 3.3 that

L =
[

N

l

]
q

(qk−la/b)k
3φ1

[
q−k, q−l , qk−N a/b

q−N ; q,
qlb

a

]
,

which, by [15, Exercise 1.15], equals

[
N

l

]
q

(qka/b)k
3φ2

[
q−k, q−l , q−kb/a

q−N , 0
; q, q

]
. (4.13)

(As an alternative, one may first use the symmetries (3.15) to write

Rl
k(a, b, c, d; N ) = q−2(k

2)a−2kq−2(N−k
2 )b−2(N−k) Rl

k(q1−k/a, q1+k−N /b, c, d),

and then take the termwise limit in the accordingly transformed version of Theorem
3.3, thereby obtaining (4.13) directly.) The quantity (4.13) may be identified with a
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q-Krawtchouk or dual q-Krawtchouk polynomial [23]. On the other hand, starting
from Corollary 4.5 gives the combinatorial expression

L =
∑
paths

∏
early right

1
∏

early up

aqk+x

b

∏
late right

1
∏

late up
qx =

∑
paths

∏
up

qx
∏

early up

aqk

b
.

Note that
∏

up qx = q‖λ‖, where ‖λ‖ is the number of boxes in the Young diagram to
the upper left of the path. Writing t = aqk/b, we conclude that[

N

l

]
q

tk
3φ2

[
q−k, q−l , 1/t

q−N , 0 ; q, q

]
=

∑
paths

q‖λ‖t y(k),

where y(k) is the number of early ups, that is, the y-coordinate of the end-point of the
k:th step. This is a simple q-analogue of (2.14). Like (2.14), it is not very deep, but
it gives an idea about what kind of information is contained in (4.11). Note also that
when k = 0 or t = 1 we recover the well-known fact[

N

l

]
q

=
∑
paths

q‖λ‖.

5 Elliptic 6 j-symbols

5.1 Definition and elementary properties

In this section we discuss the extension of our approach to elliptic 6j-symbols, or, more
precisely, to their continuation in the parameters studied in [49]. Roughly speaking,
this corresponds to replacing everywhere “1 − x” with the theta function

θ (x ; p) =
∞∏
j=0

(1 − p j x)(1 − p j+1/x), |p| < 1.

Since θ (x ; 0) = 1 − x , the case p = 0 will give back Wilson’s functions discussed
above. The main difference is that in the elliptic case there is no Askey-type scheme
of degenerate cases; these limits require p = 0 to make sense.

We recall the notation [15]

(a; q, p)k =
k−1∏
j=0

θ (aq j ; p),

θ (x1, . . . , xn; p) = θ (x1; p) · · · θ (xn; p),

(a1, . . . , an; q, p)k = (a1; q, p)k · · · (an; q, p)k,
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where q = 0. Elliptic 6j-symbols may be expressed in terms of the sum [15]

12V11(a; b, c, d, e, f, g, q−n; q, p)

=
n∑

k=0

θ (aq2k)
θ (a)

(a, b, c, d, e, f, g, q−n; q, p)k

(q, aq/b, aq/c, aq/d, aq/e, aq/ f, aq/g, aqn+1; q, p)k
qk, (5.1)

subject to the balancing condition a3qn+2 = bcde f g. We mention that this function
is invariant under a natural action of SL(2, Z) on (q, p)-space, cf. [14, 47].

Since

θ (1/x ; p) = −θ (x ; p)/x, (5.2)

the symbols (a; q, p)n satisfy elementary identities similar to (2.2). Moreover, (3.12)
has the elliptic analogue (Riemann’s addition formula)

v

x
θ (xy, x/y, uv, u/v; p) = θ (ux, u/x, vy, v/y; p) − θ (uy, u/y, vx, v/x ; p).

(5.3)

As an extension of (3.4) we introduce the function

hk(x ; a) = hk(x ; a; q, p) = (aξ, aξ−1; q, p)k, ξ + ξ−1 = x .

For a = 0, this is an entire function of x . (If a = 0, it does not make sense unless
p = 0.) We may then introduce the coefficients Rl

k = Rl
k(a, b, c, d; N ; q, p) by

hk(x ; a)hN−k(x ; b) =
N∑

l=0
Rl

k(a, b, c, d; N ; q, p) hl(x ; c)hN−l(x ; d). (5.4)

Since the computation leading to Theorem 3.3 only used results that have verbatim
elliptic extensions, it immediately carries over to the elliptic case.

Theorem 5.1. For generic values of the parameters, the coefficients Rl
k in (5.4) exist

uniquely and are given by

Rl
k(a, b, c, d; N ; q, p) = ql(l−N ) (q; q, p)N

(q; q, p)l(q; q, p)N−l

× (ac, a/c; q, p)k(q N−lbd, b/d; q, p)l(b/c; q, p)N−k(b/c; q, p)N−l(bc; q, p)N−k

(ql−N c/d; q, p)l(q−ld/c; q, p)N−l(cd; q, p)N (b/c; q, p)N (bc; q, p)l

× 12V11(q−N c/b; q−k, q−l , qk−N a/b, ql−N c/d, cd, q1−N /ab, qc/b; q, p).
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Remark 5.2. Like for Theorem 3.3, the existence and uniqueness falls out of the
computation, but can also be explained directly. Let f be any function of the form

f (ξ ) =
N∏

j=1
θ (a jξ, a jξ

−1; p), (5.5)

and let F be the function

F(x) = f (e2π i x ) =
N∏

j=1
θ (a j e

2π i x , a j e
−2π i x ; p).

Then F is an entire function satisfying

F(x + 1) = F(x), F(x + τ ) = e−2π i N (2x+τ ) F(x), F(−x) = F(x),

where p = e2π iτ . In classical terminology, F is an even theta function of order 2N
and zero characteristics. It is known that the space VN of such functions has dimen-
sion N + 1. We denote by WN the space of corresponding functions f , that is, of
holomorphic functions on C\{0} such that

f (ξ ) = f (ξ−1), f (pξ ) = (1/pξ 2)N f (ξ ).

(In [40], these are called BC1 theta functions of degree N .) Now we observe that, for
ab = 0, the functions

fk(ξ ) = hk(x ; a)hN−k(x ; b), x = ξ + ξ−1,

are of the form (5.5). With essentially the same proof as for Lemma 3.1, one may
check that for

pma/b /∈ {q1−N , q2−N , . . . , q N−1}, pmab /∈ {1, q−1, . . . , q1−N }, m ∈ Z,

( fk)N
k=0 form a basis for WN . We may then interpret Theorem 5.1 as giving the matrix

for a change between two such bases. Note that we need not impose any condition on
q apart from q = 0; the singularities apparent when q is a root of unity are removable.

The following Corollary will be used below (at the end of Section 5.2 and in the
proof of Proposition 6.2).

Corollary 5.3. If m and n are non-negative integers, then

hk(x ; a)hN−k(x ; b) ∈ spank−m≤l≤k+n{hl(x ; aqm)hN−l(x ; bqn)}.
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Proof: We need to consider the coefficient Rl
k(a, b, aqm, bqn; N ; q, p). Isolating the

factors containing the quotients b/d and a/c in Theorem 5.1 gives

Rl
k(a, b, c, d; N ; q, p) =

min(k,l)∑
j=0

λ j (a/c; q, p)k− j (b/d; q, p)l− j ,

where λ j collects all other factors. If a/c = q−m this vanishes unless k − j ≤ m, and
if b/d = q−n unless l − j ≤ n. Thus, the range of summation is restricted to max(k −
m, l − n) ≤ j ≤ min(k, l), which is indeed empty unless k − m ≤ l ≤ k + n. �

It is clear that the coefficients Rl
k enjoy similar properties as were obtained above in

the special case p = 0. This applies to the biorthogonality relation (4.1) (allowing us
to recover the biorthogonal rational functions of Spiridonov and Zhedanov [49]), the
addition formula (4.6), the convolution formulas in Corollary 4.4 and the combinatorial
formulas (4.11). In particular, the identity in Corollary 4.5 holds after replacing all
factors 1 − x with the theta function θ (x ; p).

Remark 5.4. Rains [40] has obtained multivariable (Koornwinder–Macdonald-type)
extensions of Spiridonov’s and Zhedanov’s biorthogonal rational functions. The ap-
proach is different from ours, although there are similarities. Note, for instance, that
the one-variable case of the interpolation functions in [40, Definition 5] are essentially
of the form hk(x ; a)/hk(x ; b).

5.2 Comparison with statistical mechanics

In this section we compare the coefficients Rl
k with the elliptic 6j-symbols as defined

in [10]. We shall see that the latter correspond to certain discrete restrictions on the
parameters of Rl

k .
We will follow the notation of [9], where elliptic 6j-symbols are denoted

WM N (a, b, c, d | u).

They depend on four external parameters p, λ, ξ , K and are defined for integers
a, b, c, d such that

a − b, c − d ∈ {−M, 2 − M, . . . , M}, (5.6)

a − d, b − c ∈ {−N , 2 − N , . . . , N }. (5.7)

As was observed in [14], these symbols may be expressed in terms of the elliptic
hypergeometric series 12V11. Using Theorem 5.1, we may then relate them to the
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coefficients Rl
k . For instance, we have

WM N ( j + 2l − N , i + 2k − N , i, j |u)

= q (ξ+ j+k+l−N )(l−k)+ 1
2 N (N−u)+ 1

2 (N−2k)(i− j) (qu+M+1−N ; q, p)N

(q; q, p)N
(5.8)

× Rl
k(a, b, c, d; N ; q, p),

where q = eπ iλ/K and

(a, b, c, d)

= (
q

1
2 (u+ξ+i+1−N ), q

1
2 (u−ξ−i+1−N ), q

1
2 (u+ξ+ j+M+1−N ), q

1
2 (u−ξ− j+M+1−N )), (5.9)

or, equivalently,

(q M , qξ+i , qξ+ j , qu) = (cd/ab, a/b, c/d, abq N−1)

(ξ is a parameter from [9] that has nothing to do with (3.3)). Note that (5.7) corresponds
to the condition 0 ≤ k, l ≤ N on Rl

k , while (5.6) gives a further discrete restriction on
the parameters.

In view of the large symmetry group of the terminating 12V11, there are many
different ways to identify elliptic 6j-symbols with the coefficients Rl

k . We have chosen
the representation (5.8) since it explains the relation between fusion of R-matrices and
the combinatorial formulas of Section 4.4. Namely, it is straight-forward to check that
if we let σ = τ = id in (4.11), specialize the parameters as in (5.9) and replace i by
n + 1 − i in the product, then (4.11) reduces to [9, Eq. (2.1.21)].

It is interesting to consider the degeneration of the expansion problem (5.4)
corresponding to the restriction (5.6). For this we introduce the parameter m =
(M + j − i)/2. The condition on c − d in (5.6) means that m is an integer with
0 ≤ m ≤ M . The coefficients (5.8) appear in the expansion problem

hk(x ; a)hN−k(x ; b) =
N∑

l=0
Rl

k hl(x ; aqm)hN−l(x ; bq M−m). (5.10)

By Corollary 5.3, Rl
k vanishes unless k − m ≤ l ≤ M + k − m, which corresponds

exactly to the condition on a − b in (5.6). Then (5.10) reduces to

hk(x ; a)hN−k(x ; b) =
min(N ,M+k−m)∑
l=max(0,k−m)

Rl
k hl(x ; aqm)hN−l(x ; bq M−m),

where 0 ≤ m ≤ M , which is thus the expansion problem solved by the elliptic 6j-
symbols of [10].
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Fig. 2 Connections to quantum
groups and solvable models

6 Sklyanin algebra and generalized eigenvalue problem

As was explained in Section 2.3, our approach was motivated by previous work on
relations between the standard SL(2) quantum group and quantum 6j-symbols. It is
natural to ask what “quantum group” is behind the more general case of elliptic 6j-
symbols. The answer turns out to be very satisfactory, namely, the Sklyanin algebra
[44].

The Sklyanin algebra was first obtained from the R-matrix of the eight-vertex
model. Baxter found that this model is related to a certain SOS (or face) model by a
vertex-IRF transformation [7]. The original construction of elliptic 6j-symbols starts
from the R-matrix of the latter model. Moreover, starting from Baxter’s SOS model,
Felder and Varchenko constructed a dynamical quantum group [12], which was re-
cently related to elliptic 6j-symbols [25]. We summarize these connections in Fig. 2.

It would be interesting to find a direct link between the approach of [25] and the
discussion below. Presumably, this would involve extending Stokman’s paper [51]
to elliptic quantum groups. In particular, vertex-IRF transformations should play an
important role.

To explain the connection with the Sklyanin algebra we introduce the difference
operators

�(a, b, c, d) f (ξ )

= ξ−2θ (aξ, bξ, cξ, dξ ; p) f (q 1
2 ξ ) − ξ 2θ (aξ−1, bξ−1, cξ−1, dξ−1; p) f (q− 1

2 ξ )
ξθ (ξ−2; p)

.

Moreover, N being fixed we write

�(a, b, c) = �(a, b, c, q−N /abc).

The following observation was communicated to us by Eric Rains, see [41].

Proposition 6.1 (Rains, Sklyanin). The operators �(a, b, c) preserve the space WN

defined in Remark 5.2. Moreover, they generate a representation of the Sklyanin alge-
bra on that space.
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These representations were found by Sklyanin [45, Theorem 4], except that he
used the equivalent space denoted VN in Remark 5.2 and �2N+

00 in [45]. Let �i ,
i = 0, 1, 2, 3 be the operators representing Sklyanin’s generators Si , pulled over from
VN to WN . Rains observed that every �i is given by an operator of the form �(a, b, c),
with specific choices of the parameters, and that, conversely, every �(a, b, c) may be
expressed as a linear combination of the �i . One may view the resulting representation
as an elliptic deformation of the group action (2.4).

Next we consider the action of the operators � on our basis vectors.

Proposition 6.2. With x = ξ + ξ−1 one has

�(a, b, c)hk(x ; q
1
2 a)hN−k(x ; q

1
2 b)

= q−N

abc
θ (qkac, q N−kbc, q N ab; p) hk(x ; a)hN−k(x ; b) (6.1)

and

�(a, b, c)hk(x ; λ, μ) ∈ spank−1≤ j≤k+1{h j (x ; q
1
2 λ, q

1
2 μ)}. (6.2)

The identity (6.1) is an analogue of the fact that, in the situation of Section 2.2, any
basis ((ax + b)k(cx + d)N−k)N

k=0 is the eigenbasis of a Lie algebra element. Similarly,
(6.2) is an analogue of the fact that any other Lie algebra element acts tridiagonally
on that basis. The parameter shifts are unavoidable and related to the fact that elliptic
6j-symbols are biorthogonal rational functions rather than orthogonal polynomials,
see Remark 6.5 below.

Remark 6.3. The identities (6.1) and (6.2) are consistent in view of

hk(x ; a)hN−k(x ; b) ∈ spank−1≤ j≤k+1{h j (x ; aq)hN− j (x ; bq)},

which is a special case of Corollary 5.3.

Henceforth we suppress the deformation parameters p, q , thus writing

θ (x) = θ (x ; p), (a)k = (a; q, p)k .

When using notation such as θ (aξ±), we will mean θ (aξ ; p)θ (aξ−1; p). The following
theta function identity will be used in the proof of Proposition 6.2.
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Lemma 6.4. If a1 . . . anb1 . . . bn+2 = 1, then

ξ−n−1
n∏

j=1
θ (a jξ )

n+2∏
j=1

θ (b jξ ) − ξ n+1
n∏

j=1
θ (a jξ

−1)
n+2∏
j=1

θ (b jξ
−1)

= (−1)nξθ (ξ−2)
a1 . . . an

n∑
k=1

∏n+2
j=1 θ (akb j )

∏n
j=1, j =k θ (a jξ

±)∏n
j=1, j =k θ (ak/a j )

.

Proof: This is equivalent to the classical identity [53, p. 34], see also [43],

n∑
k=1

∏n
j=1 θ (ak/b j )∏n

j=1, j =k θ (ak/a j )
= 0, a1 . . . an = b1 . . . bn.

Namely, replace n with n + 2 and b j with b−1
j in that identity, and put an+1 = ξ ,

an+2 = ξ−1. Moving the last two terms in the sum to the right gives

n∑
k=1

∏n+2
j=1 θ (akb j )

θ (akξ±)
∏n

j=1, j =k θ (ak/a j )
= −

∏n+2
j=1 θ (ξb j )

θ (ξ 2)
∏n

j=1 θ (ξ/a j )
−

∏n+2
j=1 θ (ξ−1b j )

θ (ξ−2)
∏n

j=1 θ (ξ−1/a j )
.

After multiplying with (−1)nξθ (ξ−2)
∏n

j=1 a−1
j θ (a jξ

±) and using (5.2) repeatedly,
one obtains the desired identity. �

Proof of Proposition 6.2: We start with (6.2). Writing out the left-hand side explicitly,
collecting common factors and using (5.2) repeatedly gives

�(a, b, c)
(
(λξ±)k(μξ±)N−k

)
= 1

ξθ (ξ−2)

{
ξ−2θ (aξ, bξ, cξ, dξ )

(
q

1
2 λξ, q− 1

2 λξ−1)
k

(
q

1
2 μξ, q− 1

2 μξ−1)
N−k

−ξ 2θ
(
aξ−1, bξ−1, cξ−1, dξ−1) (

q− 1
2 λξ, q

1
2 λξ−1)

k

(
q− 1

2 μξ, q
1
2 μξ−1)

N−k

}
= q−1λμ(q 1

2 λξ±)k−1(q 1
2 μξ±)N−k−1

ξθ (ξ−2)

×
{
ξ−4θ

(
aξ, bξ, cξ, dξ, qk− 1

2 λξ, q
1
2 λ−1ξ, q N−k− 1

2 μξ, q
1
2 μ−1ξ

)
−ξ 4θ (aξ−1, bξ−1, cξ−1, dξ−1, qk− 1

2 λξ−1, q
1
2 λ−1ξ−1, q N−k− 1

2 μξ−1, q
1
2 μ−1ξ−1)

}
,

(6.3)

where abcd = q−N . We may apply the case n = 3 of Lemma 6.4 to the factor in
brackets. Choose (b1, . . . , b5) as (a, b, c, d) together with any one of the four numbers(

qk− 1
2 λ, q

1
2 λ−1, q N−k− 1

2 μ, q
1
2 μ−1)

Springer



An elementary approach to 6j-symbols (classical, quantum, rational, trigonometric, and elliptic) 163

and choose (a1, a2, a3) as the remaining three of those numbers. As a function of ξ ,
our expression then takes the form

(
q

1
2 λξ±)

k−1
(
q

1
2 μξ±)

N−k−1

× {
C1θ (a2ξ

±, a3ξ
±) + C2θ (a1ξ

±, a3ξ
±) + C3θ (a1ξ

±, a2ξ
±)

}
.

Depending on the choice of ai , each term is proportional to one of the six functions

(
q− 1

2 λξ±)
k

(
q− 1

2 μξ±)
N−k

,
(
q− 1

2 λξ±)
k+1

(
q

1
2 μξ±)

N−k−1,(
q− 1

2 λξ±)
k

(
q

1
2 μξ±)

N−k
,

(
q

1
2 λξ±)

k

(
q− 1

2 μξ±)
N−k

,(
q

1
2 λξ±)

k−1
(
q− 1

2 μξ±)
N−k+1,

(
q

1
2 λξ±)

k

(
q

1
2 μξ±)

N−k
.

By Corollary 5.3, these all belong to

spank−1≤ j≤k+1
{(

q
1
2 λξ±)

j

(
q

1
2 μξ±)

N− j

}
.

This completes the proof of (6.2).
If we put λ = q

1
2 a, μ = q

1
2 b in (6.3), the factor θ (aξ±, bξ±) can be pulled out from

the bracket, giving

�(a, b, c)
((

q
1
2 aξ±)

k

(
q

1
2 bξ±)

N−k

) = (aξ±)k(bξ±)N−k

ξθ (ξ−2)

× {
ξ−2θ (cξ, dξ, qkaξ, q N−kbξ ) − ξ 2θ (cξ−1, dξ−1, qkaξ−1, q N−kbξ−1)

}
.

The case n = 1 of Lemma 6.4, which is equivalent to (5.3), now gives (6.1). �

Remark 6.5. Proposition 6.2 connects our work with the generalized eigenvalue prob-
lem (GEVP), which is central to the approach of Spiridonov and Zhedanov [49, 50].
Recall that, roughly speaking, the theory of orthogonal polynomials is equivalent to
spectral theory of Jacobi operators, that is, to the eigenvalue problem

Y ek = λkek

for a (possibly infinite) tridiagonal matrix Y . The theory of biorthogonal rational
functions similarly corresponds to the GEVP

Y1ek = λkY2ek (6.4)

for two tridiagonal matrices Y1, Y2. Note that (6.1) means that

ek = hk(x ; a)hN−k(x ; b)
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solves the two-parameter family of GEVP:s

�1ek = λk�2ek,

where �1 = �(q− 1
2 a, q− 1

2 b, c), �2 = �(q− 1
2 a, q− 1

2 b, d), with c and d arbitrary.
Moreover, if we let �3 be any operator of the form �(e, f, g) and we put Y1 = �3�1,
Y2 = �3�2, we have that ek solves (6.4) with Yi tridiagonal in the basis (ek)N

k=0. Thus,
we may view elliptic 6j-symbols as the change of base matrix between the solutions
of two different GEVP:s, where the involved tridiagonal operators are appropriate
elements of the Sklyanin algebra, acting in a finite-dimensional representation.
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