Ramanujan J (2006) 12:359-378
DOI 10.1007/s11139-006-0149-0

Convolution structure associated with the Jacobi-Dunkl
operator on IR

N. Ben Salem - A. Ould Ahmed Salem

Received: 15 October 2003 / Accepted: 13 April 2005
© Springer Science + Business Media, LLC 2006
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Introduction

We consider the Jacobi-Dunkl differential-difference operator

A pf(X) = f'(x)+ [Qa + 1)cothx + (28 + 1)tanhx](M>,

2

where o, B € IR, @ > > —% and o # —%.
We point out that this operator A, g coincides with the Heckman-Opdam operator
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360 N. Ben Salem, A. Ould Ahmed Salem

on IR, with R, = {2, 4} and suitable choice of k,’s, as mentioned by the anonymous
referees.

In [3], the authors have constructed an intertwining operator V,, g between A, g and
the usual derivative operator, which is a topological isomorphism from the space of
C*°-functions on IR onto itself. This operator is used to define a translation operator
only on the space of C*°-functions as follows

T f ) = VgV y[Vapfr + 0], x,y € IR,

which gives a convolution on restricted function spaces. This manner does not permit
to extend the study of this convolution, for instance, to the space of bounded measures
and on the appropriate weighted L”-spaces.

In this paper, we proceed by a different method for repairing this insufficiency.
In fact, we establish a product formula for the eigenfunction of the operator A, g
which permits to define the translation operator on various spaces and consequently
to introduce a convolution product of measures and functions.

The eigenfunction \Il;"ﬂ of Ag g satisfying

Agpu =iku, xeC,
u(0) = 1,

is related to the Jacobi functions w%’ 8 namely, we have

\Il;[’ﬂ(x) — (pz»ﬁ(x) + i sinh x cosh x (pzﬂ’ﬂﬂ(x),

A
2(a + 1)

where A2 = > +p?, A e, x€IRandp =a + f + 1.
Using the properties of the Jacobi functions ¢}, ® we prove the main result of this
work

Vx,y € IR, 1 €, w;”ﬂ(x)\p;’"ﬂ(y)zf P (2)dpsh (),
IR

where ufj)’s is a real uniformly bounded measure with compact support, which may

not be positive.
This product formula permits to define the translation operator

T = | fQ@dull@), x,y € IR,
IR

here f is a measurable function.

Notice that this translation coincides with the one given in [3] on the space of C*°-
functions. As it is well known, the product formula is an important tool for obtaining
a convolution structure. Indeed, the convolution of two bounded measures p and v is
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Convolution structure associated with the Jacobi-Dunkl operator on /R 361

defined as follows
(1 *ap v, f) =/ / wp S A (x)dv(y).

Also the convolution of two functions in L' (IR, Ay g(y)dy) is given by

[ *a,p 8(x) = / wpf (=0 Aap(¥)dy.

We prove that this product formula generates a structure of signed hypergroup on
IR, in the sense given by M. Rosler in [9], which we call the Jacobi-Dunkl signed
hypergroup with parameter (o, §).

The paper is organized as follows. In the first section, we recall some properties
of the Jacobi functions, essentially the addition formula and the product formula for
these functions. In the second section, we introduce the Jacobi-Dunkl operator, the
eigenfunction v, # and we establish the associated product formula, we give some
properties of the measure uﬁf , next we provide the real line with a structure of a signed
hypergroup. The last section deals with some harmonic analysis associated with the
differential-difference operator A, g essentially, we define the convolution product in
appropriate weighted L”-spaces and the Fourier transform called here Jacobi-Dunkl
transform.

1 Preliminaries

In this section we recapitulate some results related to the Jacobi functions which will
be used later, for a background on these special functions, one can see, [1, 5, 6].

In [5], M. Flensted-Jensen and T. H. Koornwinder have proved the following addi-
tion formula for the Jacobi function go""ﬂ(x)'

Fora, B € IR, a>,3>——and(x y,r,¥) € IR x IR x [0, 1] x [0, =], we have

ook
P (arccosh(y (x, =y, r, y)) = Y > @ (1) @28 00 xi (9 TS,

=0 1=0
(1.1)

where
y(x,y,r, ¥) = |coshx coshy + r e’V sinh x sinh y|, (1.2)
O™ (x) = — P (9 5inh vk (2 coshx) H e A () (1.3)

Cotk+1,B+k—1(—p) a
Z2 Springer
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with
20T (o + 1)T(i )
Cap(H) = — e T (1.4)
[ (520 (i)
and
_lg1
X/i}ﬂ(r, V) = Rl(w—ﬂ_l’ﬂ+k_l)(2r2 - l)rk_lR,((ﬁ_l 2772 (cos ¥), (1.5)

R%" is the normalized Jacobi polynomial.
Xl(:, ‘,’3 are polynomials in the two variables r2, r cos ¥, orthogonal (when a > B >
—1/2,k,l € IN, k > [ > 0) with respect to the measure m, g, given by

2l (a + 1)
VaT(@—BT(B+1)

dmgp(r, ) = A =P rsiny)?P rdrdy.  (1.6)

Finally,

1 pm -1
HZ.}ﬂ:[/O/O (XZ}ﬂ(rsl/f))zdma,ﬂ(r,l/f)} . (1.7)

The double series in (1.1) converges absolutely, uniformly for (x, y, r, ¥) in compact
subsets of IR x IR x [0, 1] x [0, 7 ].

The authors in [5] pointed out that, if « = 8 > —1,r = lora > f=—1,¢ =
0, = then (1.1) still holds but it degenerates to a single series. The two cases are
related by the quadratic transformation,

oI (20) = D). (1.8)

Furthermore, the functions ¢;;*(2¢) can be expressed in terms of Gegenbauer functions

oHr%
C,,_, (cosh(2t))
-z

@ () = , (1.9)

oty

2

(see [4], ch.3).
Also, the functions (pfj’ﬂ, n € @, satisty the following product formula, for o >

p >t

1 pm
il g (y) = / f oPlarccoshy(x,y, r.y))dmg p(r, ¥), x,y = 0. (1.10)
0J0
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A change of integration variables, namely
e'* coshu = cosh x cosh y + re'V sinh x sinh y, (1.11)

gives the second form of the product formula

COUAOE / ¢ @OWap(x, ¥, )Aap(@)dz, x>0,y >0, (112)
0

where
Ay p(x) = 2% (sinh x)** ™ (cosh )+, x >0,

the function u — W, g(x, y, u) is nonnegative, symmetric in its three variables and
supported in [|x — y|, x + y]. It is given by

b
We p(x, y, u) = 2M, g(sinh x sinh y sinh u)_z"‘/ (g(x,y,u, )())i_ﬂ_1 sin?® y dy,
0

(1.13)
g(x, v, u, x) = 1 — cosh?> x — cosh? y — cosh? u + 2 cosh x cosh y cosh u cos x.
(1.14)
Here
z, ifz >0,
““=lo, ifz<o,
and
27%T 1
Moy = @+l _ (1.15)
V7 D@ — BT (B+1)
It satisfies
e ~
/ W pg(x, y, u)Ay gu)du = 1. (1.16)
0

It is remarked in [6], p. 256 that the formula (1.13) can be rewritten as

272T'(a 4 1)(cosh x cosh y cosh u)* A1
3T (@ + 1)(sinh x sinh y sinh )2
X2F1(a+/3,a—,3;a+%;1’TB), x—yl<u<x+y,
(1.17)
@Springer
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where

B_ (cosh x)? 4 (cosh y)?> + (coshu)? — 1

1.18
2 cosh x cosh y cosh u ( )

According to formula (1.17), the product formula given by (1.12) remains valid for
a>p>—-1/2anda > —1/2.
2 The product formula for the eigenfunction of A, g

In the following, we shall introduce the differential-difference operator A, g which is
a particular case of the operator A defined on /R by

A = fi) + 5 (f (x) = f(—x))’

A(x) 2

where A(x) = [x|*T'B(x), a > —1/2 and B a C*°-function on IR even and positive
(see [7]). Also, we remark that this operator coincides with the rank-one Heckman-
Opdam operator.

2.1 The differential-difference operator Ay g
Definition 2.1. For «, B € IR, the differential-difference operator A g is defined on

C'(IR), by

Awpf)=f"(x)+[Qa + 1)cothx + (28 + l)tanhx]<M), x € IR.

2
2.1)
Notation. Fora,B € IR, a > B > —L ye@andx € IR, we put
w8 () — - LB (), if 10
’ X)— —— ’ X), bl
o WP (x) = “u oxm (2.2)
1 . ifA=0,

with A2 = u? + p2.
Using the relation

3 pr+u?
— %P =——" ginhx coshx ®THF+! (x),
oz Pk (x) 2 5 1 b X, (x)
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Convolution structure associated with the Jacobi-Dunkl operator on /R 365

the function \l’f’ﬁ can be written as follows

WP () = ¢ (x) + i cosh x sinhx 2 A+ (), (2.3)

A
2@+ 1)
One can see by an easy computation, the following result

Proposition 2.2. Foro > 8 > —% and ). € @, the function \I/f’ﬂ is an eigenfunction
of the first-order differential-difference operator Ay g satisfying

A g WP = iaweF,
vPo) = 1.

It is noticed immediately that for « = 8 = —%, the operator A g is reduced to the
usual first derivative operator and the corresponding W; is given by W; (x) = e'**,
Henceforth, we suppose that o, 8 € IR, o > 8 > —% and o # —%.

2.2 Product formula for the eigenfunction \Ilf”s

In the following we shall establish the product formula for the eigenfunction \I!;f’ﬂ
which will be obtained by using the product formula and the addition formula for the
Jacobi functions. We remark that the argumentation follows closely that of [8].

Notations. For x,y,u € IR and x € [0, ] we put
o Agp(x) =2%(sinh|x[)*(coshx)* ™!, p=a+ B+ 1.

coshu cos x — coshx coshy

, ifx 0,
o of = sinh x sinh y y#

X, 51 24
0 , ifxy=0.

o Ly =[=Ix[ =yl =llxl = Iy[TTULTlx] = IyIl x|+ [y]].
WP (resp. W) denotes the odd (resp. even) part of W;"",

A
qjgjg(x) = j——— coshx sinh x (,ol‘)frl"fprl (x),

2(a +1)
W) = g (),

with A, u € @, suchthat A = u? + p? and x € IR.

In Lemmas 2.3 and 2.4 and in Theorem 2.5, we suppose that «, 8 € IR, with o >
B> —%.
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366 N. Ben Salem, A. Ould Ahmed Salem

Lemma 2.3. Let x,y € IR\ {0} and \ € C then
\-If;‘:g(x) lllf:f(y) =M, / (sinh |x| sinh | y| sinh |u|)_2“ \I—f;’,’g(u)
Loy

x / &y, P 0%, sin® g dy Aupdu.  (2.5)
0

Proof: Firstly, we show the result for A € € with A2 = u? + p%,x > 0,y > 0.
Using the formula (1.10), we can write

9
a%‘i’ﬂ )@%? (y)

1pm 9
_ // a[qyfj’ﬂ (arc coshy (x, y, r, V)| dmq,p(r, ¥)
0Jo

B L cosh x sinh x cosh? y
_/o/o [ﬂx,y,r, VW@ y P =1
r cos ¥ cosh y sinh y(cosh? x + sinh® x) + r2 cosh x sinh x sinh? y
vy )V Iy G,y )P — 1

d
X 5((pz’ﬁ)(arc coshy(x, y,r, 1//))] dmg g(r, V).

By the use of the change of integration variables
e'* coshu = cosh x coshy + r ¢’V sinh x sinh y,

we obtain

x+y

0 0
—(pfj*ﬂ (x)gol‘jﬂ (y) =2M,p / (sinh x sinh y sinh 1) ™% a—ugol’j‘ﬁ(u)

dx =l

b
—B—1 .
x [f (gCx, y, u, )" ok, sin? xdx}Aa,,s(u)du-
0
As the functions u — a%gol‘j*ﬂ(u), u — o,y are odd, the last equality can be rewritten

0 . . . —2a 9 o
a(pfj*’s (x)gol"j”s (y) =M,pg / (sinh x sinh y sinh |u|)~2 a—ugoﬂ‘ﬁ(u)
Loy

T
« / (g, you )P %, sin® xdx}Aa.ﬁ(wdu.
0
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Convolution structure associated with the Jacobi-Dunkl operator on /R 367

Then, for A € € \ {0}, (when A = 0, the result is clear), and x, y > 0, we conclude
that

qu;ﬁ(x)qjg‘;f(y)zMa,ﬂf (sinh |x| sinh || sinh |u)~>* W} ()
I\

x [ f 0% (80, 1, ) sin® dx] Au pl)du.
0

Thus the result is proved for A e €, x, y > 0.
For x,y € IR\ {0}, we write

WD) W () = sgno) s h (1x ) Wil (| yD)

sgn(x)My g / (sinh |x| sinh |y| sinh |u|)_2°‘ \I/f”/;(u)

/g
* / U);W,Iy(g(x’y’”vX))i_ﬁ_lSin2ﬁXdX:|Aa,ﬁ(”)du
0

= Maﬁf] (sinh |x| sinh | y| sinh [u]) = \Ilfjﬁ(u)

X / ol (g(x, v, u, O ~!gin? de:|Aa,5(M)du'
0

Lemma2.4. Letx,y € IR\ {0} and A € T, then

W) Wby = - a,f,/ WP (u)(sinh |x| sinh |y| sinh u[) =
Iy
x (2.6)
X|:/ xvu(g(x y,u, X))+ - Sinzﬁ Xd)(:|Aa,3(u)du
0

Proof: We begin by proving the result for x > 0,y > 0.
Using the formula (1.1) and the fact that the functions, (r, ¥) — X/?, ’/3 (r, y) are
orthogonal with respect to the measure m, g, we obtain

/f (arccoshy(x Y1, Y)rcosyr dmg g(r, )

= m sinh(2x) sinh(2y) @2+ A+ (x) gt 1A+ (y),

with A2 = p? + p%.
@ Springer
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Using the change of integration variables defined by the formula (1.11), we obtain

x+y
—2Ma,ﬁf gofj’ﬂ(u)(sinhx sinh y sinh 1) ™%
. [x=yl
—p—1 .
x | (gt )i ok, sin® xdx Agp(u) du

2

A
_ o : a+1,8+1 a+l, 1
= 6@ 12 sinh(2x) sinh(2y) g% +1A 4! (x) gt 1AH(y).

Using the fact thatu — o*)?fy,u iseven, weobtainforA € €, x,y € IRandx >0, y >0,

—mdnmemHmwmwﬂa
1

7f.y
x [ / G,y ro ) ok sin? xdx}Aa,ﬁ(u)du
0
= WP Wl ().
For x, y € IR \ {0}, we conclude the result by using the equality

WP WP (v) = sgney) Wy L (x D (), x, y € IR.

O
Notations. Forx,y,u € IR and x € [0, 7], we denote by
o o*(x,y,u)=1-— a;fy!u + qu,y,x + O'Li(’x,y. 2.7

o Kqp(x,y,u) = M g(sinh |x| sinh |y| sinh )2 1, (u)
b 5
x f 0 (x, y, w)(g(x, y, u, )T sin® xdy, (2.8)
0
1y, denotes the indicator function of the set I y.

Ko plx,y,u)Aqpu)du, ifxy #0,
o dulfu) = 8 , ify=0, (2.9
5, . ifx=0.

As a consequence of the previous results and the relation
WP W () = WL owl o) + Wl vl ()
+ W OW L o) + oWl o), Xy e IR e,

we give the main result of this paper, namely the product formula for the eigenfunction
" in the following Theorem.
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Convolution structure associated with the Jacobi-Dunkl operator on /R 369

Theorem 2.5. Let x,y € IR, ) € T, then we have

WPy Wl (y) = / WP (u)d p B (u). (2.10)
IR

Remark. The product formula established in Theorem 2.5 is available in the case
where o > 8 > —%, using the properties of the Jacobi functions (formula (1.8)), we
can deduce that

W2 (2x) = Wh(x). 2.11)

So, to show that the formula (2.10) extends to the case where o > 8 > —% with

o # —%, it is sufficient to study the case where « = > —1/2. In this case, we know
that (see [6])

x—+y
()P () = / G U Wa o (X, 1, 1) Ag o), 2.12)

[x=yl

where W, , is given by (1.17) with o = B.
By using the change of variable

coshu = | coshx cosh y + ¢'¥ sinh x sinh y|,
we obtain

@ (e (v)

=M, / <pl‘j’°‘(arc cosh(| cosh x cosh y 4 ¢'¥ sinh x sinh y|))(sin v*dy, (2.13)
0

r 1
where Ma = #.
2

The addition formula in this case is

o0
g (arccosh(y (x, =y, 1Y) = Y %5 o(x) @4 1) xio (1 ¥) TG
k=0

(2.14)

Then, the same technique used above (fora > 8 > —1/2), gives the following product
formula

W () W () = f W () ), 2.15)
IR
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where
Keoalx,y,u) Ago)du, if xy #0,
duysw) = 8y , ify=0, (2.16)
d, , ifx=0,
with

1
ICa,a(xa Y, Ll) - 5(1 - ax,)*,u + Uu,y,x + O‘u,x,y) Wa,a(xa Y, u) ll,m»(u)a

and
(coshu)? — (cosh x)?(cosh y)> — (sinh x)*(sinh y)? .
- - - , ifxy #0,
Ox,yu = 2 sinh x cosh x cosh y sinh y
0 , ifxy=0.
2.17)

Obviously, we have the following properties.

Proposition 2.6. Let x,y € IR\ {0} and u € IR, we have

(1) Keplx,y,u) =Kqp(y,x,u).
(ii) Ko,p(x, y, u) = Ko g(—=x, u, y).
(111) IC(X,ﬁ(-x’ y7 —M) = ’Ca,ﬂ(_x7 _yv M).

Next, we shall give some properties of the measures Mﬁjyﬁ , which are the same as
in the rank-one Dunkl setting, see [8].

Proposition 2.7. For every x,y € IR we have the following properties
i) uEHUR) = 1.

(i) |y < 4.

(iii) supp (u3)) C L.

(iv) In general the measures ,uf:j/ys are not positive.

Proof: In our proof, we will be interested only in the case where o« > 8 > — % , (since
the other case is obvious).

(i) By replacing A by 0 in the formula (2.10), we find the result.
(ii) For x,y € IR with xy # 0,u € I, , and x € [0, 7], we have |o{, .| <1, be-
cause oy, y = —r cos ¥ in the notion of (1.11). By using the fact

nel,y,oxel,y, & yel,,,

we obtain |0, | < 1and |0}, | < I.
According to the previous results and the formula (1.13), we deduce (ii).
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Convolution structure associated with the Jacobi-Dunkl operator on /R 371

(iii) evident.
(iv) It suffices to show that there exist xg, yo € IR and a borelian set V C IR such
that %", (V) < 0. O

A calculation shows that, for x > 0 and x € [0, 7] :

3
Qx<x,x,—%> < Q0<x,x,—%> < —3 and g(x,x, —%,O) > 0.

By using continuity argumentations, we can deduce the existence of a compact neigh-
borhood V of —% in I, . such that nZfwvy <o.

Also, one can see in the same way the existence of a compact neighborhood V' of
—x such that u$%(V) < 0, forx > y > 0.

Note that u2* _ is positive for all x € IR.
Notations. We put
o hé(x,y,r,¥)=1+rcosi.

¢ 8(x, y, r, ¥)=sinh(x+ y)(cosh x cosh y+r cos ¢ cosh(x—}—y)—l—r2 sinh x sinh y).
3(x,y,r,Y) .
if x £ —y,

o R, y, 1Y) =y, WV Gy ) — 1
0 , ifx=—y.

& fe (resp.) f, denotes the even (resp. odd) part of f.
¢ Cp(IR) denotes the space of continuous functions and bounded on /R.

Definition 2.8. Let x € IR, the translation of the function f € C,(IR) (or a suitable
function f) denoted 7} pJf 1s defined on IR by

T =ul(H=| fdull.
IR

Proposition 2.9. Let f € C,(IR) and x,y € IR, then
() fora > B > —1/2, we have

WA = /O 1/0 fulare cosh(y(x, y, r, YORECE, v 1, W)dma p(r, )
+ /01/0” folarc cosh(y (x, y, r, Y )h°(x, y, r, Y )dme p(r, ¥).
(i) fora > —1/2, we have
uE(f) = My /O " fularc cosh(y (e, y, 1 (e, 3. 1 Y)(sin g dy

+ M, /ﬂ folarc cosh(y(x, y, 1, Y)h’(x, y, 1, ¥)(sin §)** dp.
0
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Proof: (i) The result is clear when x = 0 or y = 0. Then, we suppose that xy # 0,

[x|+1yl

1B (f) = 2M, 4 /

[lx]=1y1l
X (g, y, u, )P sin® y dx Ay p(u)du

T
fe(u)(sinh|x|Sinh|y|sinh|u|)72“/ (1 —o’;{.vu)
0

e+ rr
+2Ma,ﬁ/ Jo(u)(sinh |x|Sinh|)’|Sinh|M|)72a/ (Gﬁu,v‘F%}f”)
| 0 ’ o

[x[=Iyll

x(g(x, vy, u, )())[_)‘;’3_l sin?® x dxAqyp(u)du.
Using the change of variables
exp(i x)coshu = coshx cosh y + r exp(i ) sinh x sinh y,
we can conclude the result (i). We prove (ii) in the same way as (i). Il

We achieve this subsection by stating the following standard Lemma which can be
proved in the same way as Lemma 3.3 in [8], by using the injectivity of the Fourier-
Stieltjes transform in the Jacobi hypergroup.

Lemma 2.10. Suppose u € M,(IR) with / ‘-I-';l’ﬂ(x)d,u,(x) =0 forall . > p, then
IR
w=0.

2.3 Structure of the Jacobi-Dunkl signed hypergroup
We recall in the following the definition of a signed hypergroup (see [8, 9, 10]).

Definition 2.11. Let X be a locally compact, o-compact Hausdorff space and
m a positive Radon measure on it with suppm = X. Further, let  : X x X —
My(X), (x,y) — 8 *8,, be a t,-continuous mapping, where M;(X) the space of
bounded Radon measures on X, here, t,-topology on M;,(X) denotes the weak- -
topology o (M, (X), Co(X)).

Then the triple (X, m, w) is called a signed hypergroup, if the following axioms are
satisfied:

(Al) For each x € X and f € Cy(X), the translates T* f : y — 8, * 8,(f) and
T.f :y — &, *6,(f) again belong to C;(X). Furthermore, for f € C.(X) and
any compact subset K C X, the set U, g (supp(T™* f) U supp(T, f)) is relatively
compact in X.

(A2) ||8; x 8,]| < C forall x, y € X with some constant C > 0.

(A3) The canonical continuation of w is associative.

(A4) There exists a neutral element e € X, such that

ek =pux*x8, =, forall ue MyX).
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Convolution structure associated with the Jacobi-Dunkl operator on /R 373

(AS5) There exists an involution homeomorphism ~ on X such that
6y x8y)” =08, *8,-, forallx,y € X,
where for a Borel measure ¢ € X, the measure 1~ on X is defined by = (A) =

(A7), A C X any Borel set.
(A6) For all f, g € C.(X) and x € X the following adjoint relation holds:

f (T f)gdm = f FT g)dm.
X X

The signed hypergroup is said commutative if we have

Vx,y € X, 8 %8y =8, * d;.

In our situation, we put w(x, y) = @y g(x, y) = 8y *q 5 8y = ,ufc’jf.

Theorem 2.12. Fora,8 € IR,a > B > —% and a # —%, the triple (IR, wq g, Aq.p)
is a commutative signed hypergroup with neutral element 0, involution x — —x and
Aq p(x)dx as the Haar measure.

Proof: It is clear that the %% are real and u%? = %%, We suppose o > g > -3
thecasea = 8 > —%
We begin by proving that for f € C,(/R) the mapping (x, y) — Mﬁjff(f) is con-

tinuous on IR?. This yields t,-continuity of (x, y) — ,uffjf( f) and also that 7. pf €

can be treated in the same way.

Cy(IR) for f € C,(IR) , by norm-boundedness of /ngf.. Two cases are discussed ac-
cording to the parity of the function f.
If f is even, according to Proposition 2.9, we have

1 pm
WEB(f) = /0 /O Flarc cosh(y(x, v, r, W)L+ cos Y)dme s(r, ).

This integral is a continuous function in (x, y) € IR>.
If f is odd, again by using Proposition 2.9, we have

1 pm
uf;f(f)=// flarc cosh(y(x, y, r, Y )Dh°(x, y, r, ¥)dmg g(r, ¥).
0J0

It is clear that the integral is a continuous function if |x| # |y|, ( since y(x, y, r, ¥)
> 1).If |x| = |y|, as the weight h°(x, y, r, ) is bounded by 2 and f(0) = 0, then we
obtain the result.

Concerning axiom Aj, it remains to note that if f € C.(IR), with supp(f) C
[—a, a)), then supp ’Tojfﬁ(f) C [—a — |x|,a + |x|]), forall x € IR.
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We remark that the argumentations for (A,) — (Ag) are very similar to those in [8],
hence we omit their proofs. g

2.4 The dual of the Jacobi-Dunkl signed hypergroup

The dual of the Jacobi signed hypergroup of parameters «, 8, denoted 5(\0[, g is the
set of the functions defined on /R with values in €, which are multiplicative (i.e.
’Z}a’ﬁx(y) = x(x)x(»)), continuous, bounded and hermitian (i.e. x (x~) = ¥ (x)) (see
[9D.

ogs 1
Proposition 2.13. Leta, B € IR, > 8 > —3, then

~

Xop = {97, % € IR)}.

Proof: We suppose that « > 8 > —1/2, (for « = 8 > —1/2 the result can be seen
in the same way).

From the product formula, it is clear that \Ilf‘ﬂ , A €€ is multiplicative.

On the other hand, let ¢ be a multiplicative function, thenforallx, y € IR, x, y > 0,
we have

x+y

)0u(y) = 2Ma g f . (u)(sinh [x] sinh |y] sinh ju]) >
[x=yl

(gCx, y, u, )" sin® x dy Ag p(u)du,
0

(¢, denotes the even part of ¢), and

xX+y
Po(X)Po(y) = _2Motﬂ/ @e(u)(sinh | x| sinh [ y| sinh u]) >

[x—=yl
/ (g, y.u, )Pl sin® x dx Agp(u)du.

(¢, denotes the odd part of ¢).

The first equality shows that ¢, is a multiplicative function on the Jacobi hypergroup.
According to [2], there exists € € such that ¢, = <pﬁ*ﬂ . Replacing ¢, by its value in
the second equality and using Lemma 2.4, we obtain

Po(X)o(y) = Wi E ()WL (),

where A € @ such that AZ = p? + p2, hence Po(x) = \Ilfjf(x) or g, (x) = —\Df:f =
W/ Thefactthat Wy"" = WP + WP gives p(x) = WP (x) orp(x) = W/, with
A € €. Consequently, there exists A € € such that ¢ = \Ilf’ﬁ .
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From [3], we know that for A € IR the eigenfunction \Ilf”s is bounded. Hence, we
can see that

(WP n e IR} € Xop  {WiF 1 ).
Reciprocally, if W&F e X, 4, & € @ then W"F (—x) = W (x), hence

W () = Wl o), x € IR,
Ul =~ ), x € IR,
the first equality shows that A € IR U i IR. Taking into account this result, the second

implies that A € IR.
Since lllf’ﬁ is continuous and bounded, we conclude the result. O

3 Some Fourier analysis on the Jacobi-Dunkl signed hypergroup

In this section we give some properties of the convolution product associated with
Ag . In particular, estimates are given for || f %, g gl where f € LP(Ay ) and g €
L9(Aq,p). Also, we deal with the related Jacobi-Dunkl transform introduced in [3].

We remark that some of these definitions and results can be deduced from those
stated in the context of general commutative signed hypergroups, see [9].

Definition 3.1. The product of convolution of suitable functions f and g is

f *a.p 8(x) =/ T, 5()=8(NAep(y)dy, x € IR.
IR

Obviously, for f, g, h € Ll(Aa,,g), we have
(1) f *a,6 8 = & *a,8 f
(11) (f *a, B g) *a, B h = f *a,8 (g *a,8 h)
Proposition 3.2.

(i) Forall fin LP(A, ), p € [1, o] the function ’Ta’fﬁ(f), x € IR is defined almost
everywhere on IR, belongs to L”(A,,g), and we have ||Tojfﬂ(f)||,, <4l fllp-

(ii) Let p, g, r besuchthat1 < p,q,r < ooand%+$—1= %
If f e LP(Ayp)and g € LY9(Aqyp), then f %, 53 g € L"(Aq p) and

If *ap gll- <41 fNplIglg-
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Definition 3.3.

(i) The Jacobi-Dunkl transform of a bounded Radon measure w on IR is defined by

Fu s = /1 v @)

(ii) The Jacobi-Dunkl transform for a suitable function f, denoted F, g(f) is defined
on IR by

Fap(HHR) = /IR FEWL(x)Ag p(x)dx.

In [3], The authors have established the following Proposition

Proposition 3.4.

(i) (Plancherel Formula) V f € D(IR), the space of C*°-functions with compact sup-
ports, we have

/ | P Agp(x)dx = / | Fap(N)@) | 2d e (1),

IR IR

(i) The Jacobi-Dunkl transform extends uniquely to an unitary isomorphism from
LZ(Aa,ﬁ) onto Lz(Ha,ﬂ).

_ |1 1d>.
dIly g(A) = S leun (ST 11r\1—-p,p1(A), denotes the spectral or Plancherel

measure.

Proposition 3.5.

(1) Let f € Ll(Aa,,ﬁ) and x € IR then
Fap(Trp £)0) = VSO Fup (M), VA€ IR.
(i) Let f be in LZ(Aa,ﬁ) and x € IR then

Fup(Ts £)0) = WP @O F p(HR), Top —ace.
Proposition 3.6.
(i) For u and v two Radon measures on /R, we have
Fap(I %05 VIA) = Fo g()IA)Fop(v)(X), VA € IR.
) If f,g e Ll(Aa,,_n;), then

Fap(f *a.p 8)X) = Fo g(fHMN)Fap(g)A), Vi€ IR.
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(iii) If £ € L'(Aqp) and g € L2(Aqp), then
Fap(f *ap 8)A) = Fo p(/)M)Fap(@)R), Tlap— ae.

Remarks.
(i) From the definition of the Jacobi-Dunkl transform and the fact that |\IJ§"/3 | <
1, (A € IR), it follows that:
If f € L'(Aqp) then Fy 5(f) € L(I1,, ) and we have
1 Fe.6 (oo < N 11
On the other hand, the Plancherel formula says that
[ Fa (N2 =11 fll2.
Then the Riesz-Thorin interpolation theorem permits to extend F, g from

LP(Aqp) 1 < p <2, into LY(I,,g), where g is the conjugate exponent of p,
and we have the following estimate

1 Fas(Ollg < N f1lp-

(i1) If p and g are conjugate exponents such that p € [1, 2[, g €]2, +oc], then using
the estimate given in Proposition 3.2 in [3] :

(1+p)’
0

Vx € IR M = p. |9 0l < M (1+ |xpe",

where M is a positive constant, we deduce that for |A| > p, the function x —
WP (x) belongs to LI(Aq ) and || W’ ||,, is bounded independently of , || >

leo, for ¢ in LP(A4, g), the function F g(¢) satisfies
Vi € IR, Al > p. | Fup@M)] < 195714 191,
Consequently F, g(¢) € L=(I14,p).
(iii) For fin L?(Aq),1 < p <2 and x € IR, we have
Fap(TE5 F)0) = WP Fo g ()N, VA € supp (T p).
Also, for f € L'(Aqp) and g € LP(Aqp), 1 < p <2, we have

Fap(f *a.p )A) = Fa g(/)M)Fap(g)R), YA € supp (Igp).
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