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Abstract In this paper, a product formula for the eigenfunction of the Jacobi-Dunkl

differential-difference operator is derived. It leads to a uniformly bounded convolution

of point measures and a signed hypergroup on IR.
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Introduction

We consider the Jacobi-Dunkl differential-difference operator

�α,β f (x) = f ′(x) + [(2α + 1) coth x + (2β + 1) tanh x]

(
f (x) − f (−x)

2

)
,

where α, β ∈ IR, α ≥ β ≥ − 1
2

and α �= − 1
2
.

We point out that this operator �α,β coincides with the Heckman-Opdam operator

Dξ = ∂ξ + 1

2

∑
a∈R+

kaa(ξ )
1 + e−a

1 − e−a
(1 − ra)
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on IR, with R+ = {2, 4} and suitable choice of ka’s, as mentioned by the anonymous

referees.

In [3], the authors have constructed an intertwining operator Vα,β between �α,β and

the usual derivative operator, which is a topological isomorphism from the space of

C∞-functions on IR onto itself. This operator is used to define a translation operator

only on the space of C∞-functions as follows

T x
α,β f (y) = V x

α,β V y
α,β

[
V −1

α,β f (x + y)
]
, x, y ∈ IR,

which gives a convolution on restricted function spaces. This manner does not permit

to extend the study of this convolution, for instance, to the space of bounded measures

and on the appropriate weighted L p-spaces.

In this paper, we proceed by a different method for repairing this insufficiency.

In fact, we establish a product formula for the eigenfunction of the operator �α,β

which permits to define the translation operator on various spaces and consequently

to introduce a convolution product of measures and functions.

The eigenfunction �
α,β

λ of �α,β satisfying

{
�α,β u = iλ u, λ ∈ IC,

u(0) = 1,

is related to the Jacobi functions ϕ
γ, δ
μ namely, we have

�
α,β

λ (x) = ϕα,β
μ (x) + i

λ

2(α + 1)
sinh x cosh x ϕα+1,β+1

μ (x),

where λ2 = μ2 + ρ2, λ ∈ IC, x ∈ IR and ρ = α + β + 1.

Using the properties of the Jacobi functions ϕ
γ, δ
μ , we prove the main result of this

work

∀x, y ∈ IR, λ ∈ IC, �
α,β

λ (x) �
α,β

λ (y) =
∫

IR
�

α,β

λ (z)dμα,β
x,y (z),

where μ
α,β
x,y is a real uniformly bounded measure with compact support, which may

not be positive.

This product formula permits to define the translation operator

T x
α,β f (y) =

∫
IR

f (z)dμα,β
x,y (z), x, y ∈ IR,

here f is a measurable function.

Notice that this translation coincides with the one given in [3] on the space of C∞-

functions. As it is well known, the product formula is an important tool for obtaining

a convolution structure. Indeed, the convolution of two bounded measures μ and ν is
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defined as follows

〈μ ∗α,β ν, f 〉 =
∫

IR

∫
IR
T x

α,β f (y)dμ(x)dν(y).

Also the convolution of two functions in L1(IR, Aα,β(y)dy) is given by

f ∗α,β g(x) =
∫

IR
T x

α,β f (−y)g(y)Aα,β(y)dy.

We prove that this product formula generates a structure of signed hypergroup on

IR, in the sense given by M. Rösler in [9], which we call the Jacobi-Dunkl signed

hypergroup with parameter (α, β).

The paper is organized as follows. In the first section, we recall some properties

of the Jacobi functions, essentially the addition formula and the product formula for

these functions. In the second section, we introduce the Jacobi-Dunkl operator, the

eigenfunction ψ
α,β

λ and we establish the associated product formula, we give some

properties of the measure μ
α,β
x,y , next we provide the real line with a structure of a signed

hypergroup. The last section deals with some harmonic analysis associated with the

differential-difference operator �α,β essentially, we define the convolution product in

appropriate weighted L p-spaces and the Fourier transform called here Jacobi-Dunkl

transform.

1 Preliminaries

In this section we recapitulate some results related to the Jacobi functions which will

be used later, for a background on these special functions, one can see, [1, 5, 6].

In [5], M. Flensted-Jensen and T. H. Koornwinder have proved the following addi-

tion formula for the Jacobi function ϕα,β
μ (x):

For α, β ∈ IR, α > β > − 1
2

and (x, y, r, ψ) ∈ IR × IR × [0, 1] × [0, π ], we have

ϕα,β
μ (arc cosh(γ (x, −y, r, ψ))) =

∞∑
k=0

k∑
l=0

�
α,β

μ,k,l(x) �
α,β

−μ,k,l(y) χ
α,β

k,l (r, ψ) �
α,β

k,l ,

(1.1)

where

γ (x, y, r, ψ) = | cosh x cosh y + r eiψ sinh x sinh y|, (1.2)

�
α,β

μ,k,l(x) = cα,β(−μ)

cα+k+l,β+k−l(−μ)

(2 sinh x)k−l(2 cosh x)k+lϕα+k+l,β+k−l
μ (x), (1.3)
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with

cα,β(μ) = 2ρ−iμ�(α + 1)�(iμ)

�
( iμ+ρ

2

)
�

( iμ+α−β+1

2

) , (1.4)

and

χ
α,β

k,l (r, ψ) = R(α−β−1,β+k−l)
l (2r2 − 1)rk−l R

(β− 1
2
,β− 1

2
)

k−l (cos ψ), (1.5)

Rα,β
n is the normalized Jacobi polynomial.

χ
α,β

k,l are polynomials in the two variables r2, r cos ψ, orthogonal (when α > β >

−1/2, k, l ∈ IN , k ≥ l ≥ 0) with respect to the measure mα,β, given by

dmα,β(r, ψ) = 2�(α + 1)√
π �(α − β)�

(
β + 1

2

) (1 − r2)α−β−1 (r sin ψ)2β rdr dψ. (1.6)

Finally,

�
α,β

k,l =
[ ∫ 1

0

∫ π

0

(
χ

α,β

k,l (r, ψ)
)2

dmα,β(r, ψ)

]−1

. (1.7)

The double series in (1.1) converges absolutely, uniformly for (x, y, r, ψ) in compact

subsets of IR × IR × [0, 1] × [0, π ].

The authors in [5] pointed out that, if α = β > − 1
2
, r = 1 or α > β = − 1

2
, ϕ =

0, π then (1.1) still holds but it degenerates to a single series. The two cases are

related by the quadratic transformation,

ϕ
α,− 1

2
μ (2t) = ϕ

α,α
2μ (t). (1.8)

Furthermore, the functions ϕα,α
μ (2t) can be expressed in terms of Gegenbauer functions

ϕα,α
μ (t) =

C
α+ 1

2
iμ−ρ

2

(cosh(2t))

C
α+ 1

2
iμ−ρ

2

(1)

, (1.9)

(see [4], ch.3).

Also, the functions ϕα,β
μ , μ ∈ IC , satisfy the following product formula, for α >

β > − 1
2

ϕα,β
μ (x) ϕα,β

μ (y) =
∫ 1

0

∫ π

0

ϕα,β
μ (arc cosh γ (x, y, r, ψ))dmα,β(r, ψ), x, y ≥ 0. (1.10)
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A change of integration variables, namely

eiχ cosh u = cosh x cosh y + reiψ sinh x sinh y, (1.11)

gives the second form of the product formula

ϕα,β
μ (x) ϕα,β

μ (y) =
∫ ∞

0

ϕα,β
μ (z)Wα,β(x, y, z) Ãα,β(z)dz, x > 0, y > 0, (1.12)

where

Ãα,β(x) = 22ρ(sinh x)2α+1(cosh x)2β+1, x ≥ 0,

the function u → Wα,β(x, y, u) is nonnegative, symmetric in its three variables and

supported in [|x − y|, x + y]. It is given by

Wα,β(x, y, u) = 2Mα,β(sinh x sinh y sinh u)−2α

∫ π

0

(g(x, y, u, χ ))
α−β−1
+ sin2β χ dχ,

(1.13)

g(x, y, u, χ) = 1 − cosh2 x − cosh2 y − cosh2 u + 2 cosh x cosh y cosh u cos χ.

(1.14)

Here

z+ =
{

z, if z > 0,

0, if z ≤ 0,

and

Mα,β = 2−2ρ�(α + 1)√
π �(α − β)�

(
β + 1

2

) . (1.15)

It satisfies ∫ ∞

0

Wα,β(x, y, u) Ãα,β(u)du = 1. (1.16)

It is remarked in [6], p. 256 that the formula (1.13) can be rewritten as

Wα,β(x, y, u) = 2−2ρ�(α + 1)(cosh x cosh y cosh u)α−β−1

π
1
2 �

(
α + 1

2

)
(sinh x sinh y sinh u)2α

(1 − B2)α− 1
2

×2 F1

(
α + β, α − β; α + 1

2
; 1−B

2

)
, |x − y| < u < x + y,

(1.17)
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where

B = (cosh x)2 + (cosh y)2 + (cosh u)2 − 1

2 cosh x cosh y cosh u
. (1.18)

According to formula (1.17), the product formula given by (1.12) remains valid for

α ≥ β ≥ −1/2 and α > −1/2.

2 The product formula for the eigenfunction of �α,β

In the following, we shall introduce the differential-difference operator �α,β which is

a particular case of the operator � defined on IR by

� f (x) = f ′(x) + A′(x)

A(x)

(
f (x) − f (−x)

2

)
,

where A(x) = |x |2α+1 B(x), α > −1/2 and B a C∞-function on IR even and positive

(see [7]). Also, we remark that this operator coincides with the rank-one Heckman-

Opdam operator.

2.1 The differential-difference operator �α,β

Definition 2.1. For α, β ∈ IR, the differential-difference operator �α,β is defined on

C1(IR), by

�α,β f (x)= f ′(x)+[(2α + 1) coth x + (2β + 1) tanh x]

(
f (x) − f (−x)

2

)
, x ∈ IR.

(2.1)

Notation. For α, β ∈ IR, α ≥ β ≥ − 1
2
, λ ∈ IC and x ∈ IR, we put

� �
α,β

λ (x) =
⎧⎨⎩ϕα,β

μ (x) − i

λ

∂

∂x
ϕα,β

μ (x), if λ �= 0,

1 , if λ = 0,

(2.2)

with λ2 = μ2 + ρ2.

Using the relation

∂

∂x
ϕα,β

μ (x) = − ρ2 + μ2

2(α + 1)
sinh x cosh x ϕα+1,β+1

μ (x),
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the function �
α,β

λ can be written as follows

�
α,β

λ (x) = ϕα,β
μ (x) + i

λ

2(α + 1)
cosh x sinh x ϕα+1,β+1

μ (x). (2.3)

One can see by an easy computation, the following result

Proposition 2.2. For α ≥ β ≥ − 1
2

and λ ∈ IC, the function �
α,β

λ is an eigenfunction
of the first-order differential-difference operator �α,β satisfying

{
�α,β�

α,β

λ = iλ�
α,β

λ ,

�
α,β

λ (0) = 1.

It is noticed immediately that for α = β = − 1
2
, the operator �α,β is reduced to the

usual first derivative operator and the corresponding �λ is given by �λ(x) = eiλx .

Henceforth, we suppose that α, β ∈ IR, α ≥ β ≥ − 1
2

and α �= − 1
2
.

2.2 Product formula for the eigenfunction �
α,β

λ

In the following we shall establish the product formula for the eigenfunction �
α,β

λ

which will be obtained by using the product formula and the addition formula for the

Jacobi functions. We remark that the argumentation follows closely that of [8].

Notations. For x, y, u ∈ IR and χ ∈ [0, π ] we put

� Aα,β(x) = 22ρ(sinh |x |)2α+1(cosh x)2β+1, ρ = α + β + 1.

� σχ
x,y,u =

⎧⎨⎩−cosh u cos χ − cosh x cosh y

sinh x sinh y
, if xy �= 0,

0 , if xy = 0.

(2.4)

� Ix,y = [−|x | − |y|, −||x | − |y| | ] ∪ [ | |x | − |y||, |x | + |y| ].

�
α,β

λ, o (resp.�
α,β

λ, e ) denotes the odd (resp. even) part of �
α,β

λ ,

�
α,β

λ, o(x) = i
λ

2(α + 1)
cosh x sinh x ϕα+1,β+1

μ (x),

�
α,β

λ, e (x) = ϕα,β
μ (x),

with λ, μ ∈ IC, such that λ2 = μ2 + ρ2 and x ∈ IR.

In Lemmas 2.3 and 2.4 and in Theorem 2.5, we suppose that α, β ∈ IR, with α >

β > − 1
2
.
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Lemma 2.3. Let x, y ∈ IR \ {0} and λ ∈ IC then

�
α,β

λ, o(x) �
α,β

λ, e (y) = Mα,β

∫
Ix,y

(sinh |x | sinh |y| sinh |u|)−2α �
α,β

λ, o(u)

×
∫ π

0

(g(x, y, u, χ ))
α−β−1
+ σχ

x,u,y sin2β χ dχ Aα,β(u) du. (2.5)

Proof: Firstly, we show the result for λ ∈ IC with λ2 = μ2 + ρ2, x > 0, y > 0.

Using the formula (1.10), we can write

∂

∂x
ϕα,β

μ (x)ϕα,β
μ (y)

=
∫ 1

0

∫ π

0

∂

∂x

[
ϕα,β

μ (arc cosh γ (x, y, r, ψ))
]

dmα,β(r, ψ)

=
∫ 1

0

∫ π

0

[ cosh x sinh x cosh2 y

γ (x, y, r, ψ)
√

[γ (x, y, r, ψ)]2 − 1

+ r cos ψ cosh y sinh y(cosh2 x + sinh2 x) + r2 cosh x sinh x sinh2 y

γ (x, y, r, ψ)
√

[γ (x, y, r, ψ)]2 − 1

× ∂

∂x

(
ϕα,β

μ

)
(arc cosh γ (x, y, r, ψ))

]
dmα,β(r, ψ).

By the use of the change of integration variables

eiχ cosh u = cosh x cosh y + r eiψ sinh x sinh y,

we obtain

∂

∂x
ϕα,β

μ (x)ϕα,β
μ (y) = 2Mα,β

∫ x+y

|x−y|
(sinh x sinh y sinh u)−2α ∂

∂u
ϕα,β

μ (u)

×
[ ∫ π

0

(g(x, y, u, χ ))
α−β−1
+ σχ

x,u,y sin2β χdχ

]
Aα,β(u) du.

As the functions u → ∂
∂u ϕα,β

μ (u), u → σ
χ
x,u,y are odd, the last equality can be rewritten

∂

∂x
ϕα,β

μ (x)ϕα,β
μ (y) = Mα,β

∫
Ix,y

(sinh x sinh y sinh |u|)−2α ∂

∂u
ϕα,β

μ (u)

×
[ ∫ π

0

(g(x, y, u, χ ))
α−β−1
+ σχ

x,u,y sin2β χdχ

]
Aα,β(u) du.
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Then, for λ ∈ IC \ {0} , ( when λ = 0, the result is clear), and x, y > 0, we conclude

that

�
α,β

λ, o(x) �
α,β

λ, e (y) = Mα,β

∫
Ix,y

(sinh |x | sinh |y| sinh |u|)−2α �
α,β

λ, o(u)

×
[ ∫ π

0

σχ
x,u,y(g(x, y, u, χ ))

α−β−1
+ sin2β χ dχ

]
Aα,β(u) du.

Thus the result is proved for λ ∈ IC, x, y > 0.

For x, y ∈ IR \ {0}, we write

�
α,β

λ, o(x) �
α,β

λ, e (y) = sgn(x)�
α,β

λ, o(|x |) �
α,β

λ, e (|y|)

= sgn(x)Mα,β

∫
Ix,y

(sinh |x | sinh |y| sinh |u|)−2α �
α,β

λ, o(u)

×
[ ∫ π

0

σ
χ

|x |,u,|y|(g(x, y, u, χ ))
α−β−1
+ sin2β χ dχ

]
Aα,β(u) du

= Mα,β

∫
Ix,y

(sinh |x | sinh |y| sinh |u|)−2α �
α,β

λ, o(u)

×
[ ∫ π

0

σχ
x,u,y(g(x, y, u, χ ))

α−β−1
+ sin2β χdχ

]
Aα,β(u) du.

�

Lemma 2.4. Let x, y ∈ IR \ {0} and λ ∈ IC, then

�
α,β

λ, o(x) �
α,β

λ, o(y) = −Mα,β

∫
Ix,y

�
α,β

λ, e (u)(sinh |x | sinh |y| sinh |u|)−2α

×
[ ∫ π

0

σχ
x,y,u(g(x, y, u, χ ))

α−β−1
+ sin2β χdχ

]
Aα,β(u) du.

(2.6)

Proof: We begin by proving the result for x > 0, y > 0.

Using the formula (1.1) and the fact that the functions, (r, ψ) → χ
α,β

k,l (r, ψ) are

orthogonal with respect to the measure mα,β, we obtain

∫ 1

0

∫ π

0

ϕα,β
μ (arc cosh γ (x, y, r, ψ))r cos ψ dmα,β(r, ψ)

= − λ2

16(α + 1)2
sinh(2x) sinh(2y) ϕα+1,β+1

μ (x) ϕα+1,β+1
μ (y),

with λ2 = μ2 + ρ2.
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Using the change of integration variables defined by the formula (1.11), we obtain

−2Mα,β

∫ x+y

|x−y|
ϕα,β

μ (u)(sinh x sinh y sinh u)−2α

×
∫ π

0

(g(x, y, r, ψ))
α−β−1
+ σχ

x,y,u sin2β χdχ Aα,β(u) du

= − λ2

16(α + 1)2
sinh(2x) sinh(2y) ϕα+1,β+1

μ (x) ϕα+1,β+1
μ (y).

Using the fact that u → σ
χ
x,y,u is even, we obtain for λ ∈ IC, x, y ∈ IR and x >0, y >0,

−Mα,β

∫
Ix,y

�
α,β

λ,e (u)(sinh x sinh y sinh |u|)−2α

×
[ ∫ π

0

(g(x, y, r, ψ))
α−β−1
+ σχ

x,y,u sin2β χdχ

]
Aα,β(u) du

= �
α,β

λ, o(x)�
α,β

λ, o(y).

For x, y ∈ IR \ {0}, we conclude the result by using the equality

�
α,β

λ, o(x)�
α,β

λ, o(y) = sgn(xy)�
α,β

λ, o(|x |)�α,β

λ, o(|y|), x, y ∈ IR.

�

Notations. For x, y, u ∈ IR and χ ∈ [0, π ], we denote by

� �χ (x, y, u) = 1 − σχ
x,y,u + σχ

u,y,x + σχ
u,x,y . (2.7)

� Kα,β(x, y, u) = Mα,β(sinh |x | sinh |y| sinh |u|)−2α 1Ix,y (u)

×
∫ π

0

�χ (x, y, u)(g(x, y, u, χ ))
α−β−1
+ sin2β χ dχ, (2.8)

1Ix,y denotes the indicator function of the set Ix,y .

� dμα,β
x,y (u) =

⎧⎪⎨⎪⎩
Kα,β(x, y, u) Aα,β(u) du, if xy �= 0,

δx , if y = 0,

δy , if x = 0.

(2.9)

As a consequence of the previous results and the relation

�
α,β

λ (x) �
α,β

λ (y) = �
α,β

λ,e (x)�
α,β

λ,e (y) + �
α,β

λ,e (x)�
α,β

λ,o (y)

+ �
α,β

λ,o (x)�
α,β

λ,e (y) + �
α,β

λ,o (x)�
α,β

λ,o (y), x, y ∈ IR, λ ∈ IC,

we give the main result of this paper, namely the product formula for the eigenfunction

�
α,β

λ in the following Theorem.
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Theorem 2.5. Let x, y ∈ IR, λ ∈ IC, then we have

�
α,β

λ (x) �
α,β

λ (y) =
∫

IR
�

α,β

λ (u)dμα,β
x,y (u). (2.10)

Remark. The product formula established in Theorem 2.5 is available in the case

where α > β > − 1
2
, using the properties of the Jacobi functions (formula (1.8)), we

can deduce that

�
α,−1/2

λ (2x) = �
α,α
2λ (x). (2.11)

So, to show that the formula (2.10) extends to the case where α ≥ β ≥ − 1
2

with

α �= − 1
2
, it is sufficient to study the case where α = β > −1/2. In this case, we know

that (see [6])

ϕα,α
μ (x)ϕα,α

μ (y) =
∫ x+y

|x−y|
ϕα,α

μ (u)Wα,α(x, y, u)Aα,α(u)du, (2.12)

where Wα,α is given by (1.17) with α = β.

By using the change of variable

cosh u = | cosh x cosh y + eiψ sinh x sinh y|,

we obtain

ϕα,α
μ (x)ϕα,α

μ (y)

= Mα

∫ π

0

ϕα,α
μ (arc cosh(| cosh x cosh y + eiψ sinh x sinh y|))(sin ψ)2αdψ, (2.13)

where Mα = �(α+1)√
π �(α+ 1

2
)
.

The addition formula in this case is

ϕα,α
μ (arc cosh(γ (x, −y, 1, ψ))) =

∞∑
k=0

�
α,α
μ,k,0(x) �

α,α
−μ,k,0(y) χ

α,α
k,0 (1, ψ) �

α,α
k,0 .

(2.14)

Then, the same technique used above (for α > β > −1/2), gives the following product

formula

�
α,α
λ (x) �

α,α
λ (y) =

∫
IR

�
α,α
λ (u)dμα,α

x,y (u), (2.15)
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where

dμα,α
x,y (u) =

⎧⎪⎨⎪⎩
Kα,α(x, y, u) Aα,α(u) du, if xy �= 0,

δx , if y = 0,

δy , if x = 0,

(2.16)

with

Kα,α(x, y, u) = 1

2
(1 − σx,y,u + σu,y,x + σu,x,y) Wα,α(x, y, u) 1Ix,y (u),

and

σx,y,u =
⎧⎨⎩− (cosh u)2 − (cosh x)2(cosh y)2 − (sinh x)2(sinh y)2

2 sinh x cosh x cosh y sinh y
, if xy �= 0,

0 , if xy = 0.

(2.17)

Obviously, we have the following properties.

Proposition 2.6. Let x, y ∈ IR \ {0} and u ∈ IR, we have

(i) Kα,β(x, y, u) = Kα,β(y, x, u).

(ii) Kα,β(x, y, u) = Kα,β(−x, u, y).

(iii) Kα,β(x, y, −u) = Kα,β(−x, −y, u).

Next, we shall give some properties of the measures μ
α,β
x,y , which are the same as

in the rank-one Dunkl setting, see [8].

Proposition 2.7. For every x, y ∈ IR we have the following properties

(i) μ
α,β
x,y (IR) = 1.

(ii) ‖μα,β
x,y ‖ ≤ 4.

(iii) supp (μ
α,β
x,y ) ⊂ Ix,y .

(iv) In general the measures μ
α,β
x,y are not positive.

Proof: In our proof, we will be interested only in the case where α > β > − 1
2
, (since

the other case is obvious).

(i) By replacing λ by 0 in the formula (2.10), we find the result.

(ii) For x, y ∈ IR with xy �= 0, u ∈ Ix,y and χ ∈ [0, π ], we have |σχ
x,y,u | ≤ 1, be-

cause σ
χ
x,u,y = −r cos ψ in the notion of (1.11). By using the fact

u ∈ Ix,y ⇔ x ∈ Iu,y ⇔ y ∈ Iu,x ,

we obtain |σχ
x,u,y | ≤ 1 and |σχ

y,u,x | ≤ 1.

According to the previous results and the formula (1.13), we deduce (ii).
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(iii) evident.

(iv) It suffices to show that there exist x0, y0 ∈ IR and a borelian set V ⊂ IR such

that μ
α,β
x0,y0

(V ) < 0. �

A calculation shows that, for x > 0 and χ ∈ [0, π ] :

�χ

(
x, x, − x

2

)
≤ �0

(
x, x, − x

2

)
≤ −3

8
and g

(
x, x, − x

2
, 0

)
> 0.

By using continuity argumentations, we can deduce the existence of a compact neigh-

borhood V of − x
2

in Ix,x such that μ
α,β
x,x (V ) < 0.

Also, one can see in the same way the existence of a compact neighborhood V of

−x such that μ
α,β
x,y (V ) < 0, for x > y > 0.

Note that μ
α,β
x,−x is positive for all x ∈ IR.

Notations. We put

� he(x, y, r, ψ) = 1 + r cos ψ.

� δ(x, y, r, ψ)=sinh(x+y)(cosh x cosh y+r cos ψ cosh(x+y)+r2 sinh x sinh y).

� ho(x, y, r, ψ) =
⎧⎨⎩

δ(x, y, r, ψ)

γ (x, y, r, ψ)
√

(γ (x, y, r, ψ))2 − 1
, if x �= −y,

0 , if x = −y.

� fe (resp.) fo denotes the even (resp. odd) part of f.
� Cb(IR) denotes the space of continuous functions and bounded on IR.

Definition 2.8. Let x ∈ IR, the translation of the function f ∈ Cb(IR) (or a suitable

function f ) denoted T x
α,β f is defined on IR by

T x
α,β f (y) = μα,β

x,y ( f ) =
∫

IR
f dμα,β

x,y .

Proposition 2.9. Let f ∈ Cb(IR) and x, y ∈ IR, then

(i) for α > β > −1/2, we have

μ
α,β
x,y ( f ) =

∫ 1

0

∫ π

0

fe(arc cosh(γ (x, y, r, ψ))he(x, y, r, ψ)dmα,β(r, ψ)

+
∫ 1

0

∫ π

0

fo(arc cosh(γ (x, y, r, ψ))ho(x, y, r, ψ)dmα,β(r, ψ).

(ii) for α > −1/2, we have

μα,α
x,y ( f ) = Mα

∫ π

0

fe(arc cosh(γ (x, y, 1, ψ))he(x, y, 1, ψ)(sin ψ)2α dψ

+ Mα

∫ π

0

fo(arc cosh(γ (x, y, 1, ψ))ho(x, y, 1, ψ)(sin ψ)2α dψ.
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Proof: (i) The result is clear when x = 0 or y = 0. Then, we suppose that xy �= 0,

μ
α,β
x,y ( f ) = 2Mα,β

∫ |x |+|y|

||x |−|y||
fe(u)(sinh |x | sinh |y| sinh |u|)−2α

∫ π

0

(
1 − σχ

x,y,u

)
×(g(x, y, u, χ ))

α−β−1
+ sin2β χ dχ Aα,β(u) du

+2Mα,β

∫ |x |+|y|

||x |−|y||
fo(u)(sinh |x | sinh |y| sinh |u|)−2α

∫ π

0

(
σχ

x,u,y + σχ
y,u,x

)
×(g(x, y, u, χ ))

α−β−1
+ sin2β χ dχ Aα,β(u) du.

Using the change of variables

exp(iχ ) cosh u = cosh x cosh y + r exp(iψ) sinh x sinh y,

we can conclude the result (i). We prove (ii) in the same way as (i). �

We achieve this subsection by stating the following standard Lemma which can be

proved in the same way as Lemma 3.3 in [8], by using the injectivity of the Fourier-

Stieltjes transform in the Jacobi hypergroup.

Lemma 2.10. Suppose μ ∈ Mb(IR) with
∫

IR
�

α,β

λ (x)dμ(x) = 0 for all λ ≥ ρ, then

μ = 0.

2.3 Structure of the Jacobi-Dunkl signed hypergroup

We recall in the following the definition of a signed hypergroup (see [8, 9, 10]).

Definition 2.11. Let X be a locally compact, σ -compact Hausdorff space and

m a positive Radon measure on it with supp m = X. Further, let ω : X × X →
Mb(X ), (x, y) → δx ∗ δy, be a τ∗-continuous mapping, where Mb(X ) the space of

bounded Radon measures on X, here, τ∗-topology on Mb(X ) denotes the weak- ∗-

topology σ (Mb(X ), C0(X )).

Then the triple (X, m, ω) is called a signed hypergroup, if the following axioms are

satisfied:

(A1) For each x ∈ X and f ∈ Cb(X ), the translates T x f : y → δx ∗ δy( f ) and

Tx f : y → δy ∗ δx ( f ) again belong to Cb(X ). Furthermore, for f ∈ Cc(X ) and

any compact subset K ⊂ X, the set ∪x∈K (supp(T x f ) ∪ supp(Tx f )) is relatively

compact in X.

(A2) ||δx ∗ δy || ≤ C for all x, y ∈ X with some constant C > 0.

(A3) The canonical continuation of ω is associative.

(A4) There exists a neutral element e ∈ X, such that

δe ∗ μ = μ ∗ δe = μ, for all μ ∈ Mb(X ).
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(A5) There exists an involution homeomorphism − on X such that

(δx ∗ δy)− = δy− ∗ δx− , for all x, y ∈ X,

where for a Borel measure μ ∈ X, the measure μ− on X is defined by μ−(A) =
μ(A−), A ⊂ X any Borel set.

(A6) For all f, g ∈ Cc(X ) and x ∈ X the following adjoint relation holds:∫
X

(T x f )gdm =
∫

X
f (T x−

g)dm.

The signed hypergroup is said commutative if we have

∀x, y ∈ X, δx ∗ δy = δy ∗ δx .

In our situation, we put ω(x, y) = ωα,β(x, y) = δx ∗α,β δy = μ
α,β
x,y .

Theorem 2.12. For α, β ∈ IR, α ≥ β ≥ − 1
2

and α �= − 1
2
, the triple (IR, ωα,β, Aα,β)

is a commutative signed hypergroup with neutral element 0, involution x → −x and
Aα,β(x)dx as the Haar measure.

Proof: It is clear that the μ
α,β
x,y are real and μ

α,β
x,y = μ

α,β
y,x . We suppose α > β > − 1

2
,

the case α = β > − 1
2

can be treated in the same way.

We begin by proving that for f ∈ Cb(IR) the mapping (x, y) → μ
α,β
x,y ( f ) is con-

tinuous on IR2. This yields τ∗-continuity of (x, y) → μ
α,β
x,y ( f ) and also that T x

α,β f ∈
Cb(IR) for f ∈ Cb(IR) , by norm-boundedness of μ

α,β
x,y . Two cases are discussed ac-

cording to the parity of the function f .

If f is even, according to Proposition 2.9, we have

μ
α,β
x,y ( f ) =

∫ 1

0

∫ π

0

f (arc cosh(γ (x, y, r, ψ))(1 + r cos ψ)dmα,β(r, ψ).

This integral is a continuous function in (x, y) ∈ IR2.

If f is odd, again by using Proposition 2.9, we have

μ
α,β
x,y ( f ) =

∫ 1

0

∫ π

0

f (arc cosh(γ (x, y, r, ψ))ho(x, y, r, ψ)dmα,β(r, ψ).

It is clear that the integral is a continuous function if |x | �= |y|, ( since γ (x, y, r, ψ)

> 1). If |x | = |y|, as the weight ho(x, y, r, ψ) is bounded by 2 and f (0) = 0, then we

obtain the result.

Concerning axiom A1, it remains to note that if f ∈ Cc(IR), with supp( f ) ⊂
[−a, a]), then supp T x

α,β( f ) ⊂ [−a − |x |, a + |x |]), for all x ∈ IR.
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We remark that the argumentations for (A2) − (A6) are very similar to those in [8],

hence we omit their proofs. �

2.4 The dual of the Jacobi-Dunkl signed hypergroup

The dual of the Jacobi signed hypergroup of parameters α, β, denoted X̂α,β is the

set of the functions defined on IR with values in IC, which are multiplicative (i.e.

T α,β
x χ (y) = χ (x)χ (y)), continuous, bounded and hermitian (i.e. χ (x−) = χ (x)) (see

[9]).

Proposition 2.13. Let α, β ∈ IR, α ≥ β ≥ − 1
2
, then

X̂α,β = {
�

α,β

λ , λ ∈ IR
}
.

Proof: We suppose that α > β > −1/2, (for α = β > −1/2 the result can be seen

in the same way).

From the product formula, it is clear that �
α,β

λ , λ ∈ IC is multiplicative.

On the other hand, letϕ be a multiplicative function, then for all x, y ∈ IR, x, y > 0,

we have

ϕe(x)ϕe(y) = 2Mα,β

∫ x+y

|x−y|
ϕe(u)(sinh |x | sinh |y| sinh |u|)−2α

×
∫ π

0

(g(x, y, u, χ ))
α−β−1
+ sin2β χ dχ Aα,β(u)du,

(ϕe denotes the even part of ϕ), and

ϕo(x)ϕo(y) = −2Mα,β

∫ x+y

|x−y|
ϕe(u)(sinh |x | sinh |y| sinh |u|)−2α

×
∫ π

0

(g(x, y, u, χ ))
α−β−1
+ σχ

x,y,u sin2β χ dχ Aα,β(u)du.

(ϕo denotes the odd part of ϕ).

The first equality shows that ϕe is a multiplicative function on the Jacobi hypergroup.

According to [2], there exists μ ∈ IC such that ϕe = ϕα,β
μ . Replacing ϕe by its value in

the second equality and using Lemma 2.4, we obtain

ϕo(x)ϕo(y) = �
α,β

λ,o (x)�
α,β

λ,o (y),

where λ ∈ IC such that λ2 = μ2 + ρ2, hence ϕo(x) = �
α,β

λ,o (x) or ϕo(x) = −�
α,β

λ,o =
�

α,β

−λ,o. The fact that �
α,β

λ = �
α,β

λ,e + �
α,β

λ,o , gives ϕ(x) = �
α,β

λ (x) or ϕ(x) = �
α,β

−λ , with

λ ∈ IC. Consequently, there exists λ ∈ IC such that ϕ = �
α,β

λ .
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From [3], we know that for λ ∈ IR the eigenfunction �
α,β

λ is bounded. Hence, we

can see that {
�

α,β

λ , λ ∈ IR
} ⊂ X̂α,β ⊂ {

�
α,β

λ , λ ∈ IC
}
.

Reciprocally, if �
α,β

λ ∈ X̂α,β, λ ∈ IC then �
α,β

λ (−x) = �
α,β

λ (x), hence⎧⎨⎩�
α,β

λ,e (x) = �
α,β

λ,e (x), x ∈ IR,

�
α,β

λ,o (x) = −�
α,β

λ,o (x), x ∈ IR,

the first equality shows that λ ∈ IR ∪ i IR. Taking into account this result, the second

implies that λ ∈ IR.

Since �
α,β

λ is continuous and bounded, we conclude the result. �

3 Some Fourier analysis on the Jacobi-Dunkl signed hypergroup

In this section we give some properties of the convolution product associated with

�α,β. In particular, estimates are given for ‖ f ∗α,β g‖r where f ∈ L p(Aα,β) and g ∈
Lq (Aα,β). Also, we deal with the related Jacobi-Dunkl transform introduced in [3].

We remark that some of these definitions and results can be deduced from those

stated in the context of general commutative signed hypergroups, see [9].

Definition 3.1. The product of convolution of suitable functions f and g is

f ∗α,β g(x) =
∫

IR
T x

α,β( f )(−y)g(y)Aα,β(y)dy, x ∈ IR.

Obviously, for f, g, h ∈ L1(Aα,β), we have

(i) f ∗α,β g = g ∗α,β f.
(ii) ( f ∗α,β g) ∗α,β h = f ∗α,β (g ∗α,β h).

Proposition 3.2.

(i) For all f in L p(Aα,β), p ∈ [1, ∞] the function T x
α,β( f ), x ∈ IR is defined almost

everywhere on IR, belongs to L p(Aα,β), and we have ‖T x
α,β( f )‖p ≤ 4‖ f ‖p.

(ii) Let p, q, r be such that 1 ≤ p, q, r ≤ ∞ and 1
p + 1

q − 1 = 1
r .

If f ∈ L p(Aα,β) and g ∈ Lq (Aα,β), then f ∗α,β g ∈ Lr (Aα,β) and

‖ f ∗α,β g‖r ≤ 4‖ f ‖p ‖g‖q .
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Definition 3.3.

(i) The Jacobi-Dunkl transform of a bounded Radon measure μ on IR is defined by

Fα,β(μ)(λ) =
∫

IR
�

α,β

−λ (x)dμ(x).

(ii) The Jacobi-Dunkl transform for a suitable function f , denoted Fα,β( f ) is defined

on IR by

Fα,β( f )(λ) =
∫

IR
f (x)�

α,β

−λ (x)Aα,β(x)dx .

In [3], The authors have established the following Proposition

Proposition 3.4.

(i) (Plancherel Formula) ∀ f ∈ D(IR), the space of C∞-functions with compact sup-

ports, we have∫
IR

| f (x)|2 Aα,β(x)dx =
∫

IR
|Fα,β( f )(λ) | 2d�α,β(λ).

(ii) The Jacobi-Dunkl transform extends uniquely to an unitary isomorphism from

L2(Aα,β) onto L2(�α,β).

d�α,β(λ) = |λ|dλ

8π
√

λ2−ρ2 |cα,β (
√

λ2−ρ2 )|2
1IR\]−ρ,ρ[(λ), denotes the spectral or Plancherel

measure.

Proposition 3.5.

(i) Let f ∈ L1(Aα,β) and x ∈ IR then

Fα,β

(
T x

α,β f
)
(λ) = �

α,β

λ (x)Fα,β( f )(λ), ∀λ ∈ IR.

(ii) Let f be in L2(Aα,β) and x ∈ IR then

Fα,β

(
T x

α,β f
)
(λ) = �

α,β

λ (x)Fα,β( f )(λ), �α,β − a.e.

Proposition 3.6.

(i) For μ and ν two Radon measures on IR, we have

Fα,β(μ ∗α,β ν)(λ) = Fα,β(μ)(λ)Fα,β(ν)(λ), ∀λ ∈ IR.

(ii) If f, g ∈ L1(Aα,β), then

Fα,β( f ∗α,β g)(λ) = Fα,β( f )(λ)Fα,β(g)(λ), ∀λ ∈ IR.
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(iii) If f ∈ L1(Aα,β) and g ∈ L2(Aα,β), then

Fα,β( f ∗α,β g)(λ) = Fα,β( f )(λ)Fα,β(g)(λ), �α,β − a.e.

Remarks.

(i) From the definition of the Jacobi-Dunkl transform and the fact that |�α,β

λ | ≤
1, (λ ∈ IR), it follows that:

If f ∈ L1(Aα,β) then Fα,β( f ) ∈ L∞(�α,β) and we have

‖Fα,β( f )‖∞ ≤ ‖ f ‖1.

On the other hand, the Plancherel formula says that

‖Fα,β( f )‖2 = ‖ f ‖2.

Then the Riesz-Thorin interpolation theorem permits to extend Fα,β from

L p(Aα,β) 1 < p < 2, into Lq (�α,β), where q is the conjugate exponent of p,

and we have the following estimate

‖Fα,β( f )‖q ≤ ‖ f ‖p.

(ii) If p and q are conjugate exponents such that p ∈ [1, 2[, q ∈]2, +∞], then using

the estimate given in Proposition 3.2 in [3] :

∀x ∈ IR, |λ| ≥ ρ, |�α,β

λ (x)| ≤ M
(1 + ρ)2

ρ
(1 + |x |)e−ρ|x |,

where M is a positive constant, we deduce that for |λ| ≥ ρ, the function x →
�

α,β

λ (x) belongs to Lq (Aα,β) and ||�α,β

λ ||q is bounded independently of λ, |λ| ≥
ρ.

Also, for φ in L p(Aα,β), the function Fα,β(φ) satisfies

∀λ ∈ IR, |λ| > ρ, |Fα,β(φ)(λ)| ≤ ‖�α,β

λ ‖q ‖φ‖p.

Consequently Fα,β(φ) ∈ L∞(�α,β).

(iii) For f in L p(Aα,β), 1 < p < 2 and x ∈ IR, we have

Fα,β

(
T x

α,β f
)
(λ) = �

α,β

λ (x)Fα,β( f )(λ), ∀λ ∈ supp (�α,β).

Also, for f ∈ L1(Aα,β) and g ∈ L p(Aα,β), 1 < p < 2, we have

Fα,β( f ∗α,β g)(λ) = Fα,β( f )(λ)Fα,β(g)(λ), ∀λ ∈ supp (�α,β).
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