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Abstract. By jagged partitions we refer to an ordered collection of non-negative integers (n1, n2, . . . , nm ) with
nm ≥ p for some positive integer p, further subject to some weakly decreasing conditions that prevent them
for being genuine partitions. The case analyzed in greater detail here corresponds to p = 1 and the following
conditions ni ≥ ni+1 − 1 and ni ≥ ni+2. A number of properties for the corresponding partition function are
derived, including rather remarkable congruence relations. An interesting application of jagged partitions concerns
the derivation of generating functions for enumerating partitions with special restrictions, a point that is illustrated
with various examples.
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1. Introduction

A new type of ‘partitions’ (dubbed ‘jagged’ for a reason to be explained shortly) recently
arose in the context of a conformal field-theoretical problem, namely the construction of
a quasi-particle basis for graded parafermionic theory with ZK cyclic symmetry. These
jagged partitions are ordered sequences of non-negative integers:

(n1, n2, . . . , nm) n j ≥ 0, nm ≥ 1, (1)

satisfying the weakly decreasing conditions

n j ≥ n j+1 − 1 and n j ≥ n j+2. (2)

In their original appearance context, the jagged partitions were further subject to an exclusion
condition: ni ≥ ni+K−1 + 1 or ni = ni+K−1 and ni+1 = ni+K−2 + 2, with K even. The
generating function for these restricted jagged partitions has been obtained in [4] while
the corresponding one for K odd was found in [10]. This counting problem appeared to
be a rather direct generalization of the enumeration of ordinary partitions (λ1, λ2, . . . , λm)
subject to the restriction λi ≥ λi+k−1 + 2 solved by Andrews [2].
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Our previous results strongly suggest that these new ‘partitions’ (in their unrestricted
versions) could have rather nice properties. One of our goal in this work is to pinpoint
some of them. In particular, using the previously obtained generating function for j(n), the
number of jagged partitions of n, we derive a recurrence relation together with a number of
simple congruence properties for j(n) itself, the most spectacular being that j(8n + 7) ≡ 0
mod 64. We also show that j(n) is given by the Cauchy product of p(m − n), the number of
partitions of n − m, and d(m), the number of partitions of m into distinct parts, a result that
entails an exact expression for j(n). These results are presented in Section 2. Moreover,
by adapting to our case the Ramanujan’s method for obtaining the generating function of
p(5n + 4), we have derived a number of interesting generating functions for j(rn + s) with
fixed r and s. These results are reported in Section 3.

Another aim of the present work is to explore the use of jagged partitions as a tool for
enumerating standard partitions satisfying special restrictions. Let us explain in which sense
that can be done. There exists a simple bijection between unrestricted jagged partitions (that
is, vectors satisfying (1) and (2)) and partitions subject to a ‘difference-two condition at
distance 2’ : λi ≥ λi+2 + 2 (the jagged partitions being simply augmented by the addition
of a staircase) [4, 10]. The corresponding generating functions are consequently related
in a simple way. Here we stress that phrasing the counting problem in terms of jagged
partitions induces an important simplification within our working framework [4]. This
method amounts to derive the generating function as the solution of a recurrence relation, a
technique inspired from that of Andrews [2] for obtaining recurrence relations for restricted
partitions. When formulated in terms of jagged partitions, this method leads to a first-order
recurrence relation, while its reformulation directly in terms of ordinary partitions leads to
a third-order recurrence relation. This point is discussed in full detail in Section 4, where
we also highlight a convenient pictorial tool for deriving recurrence relations.

This suggests that one could similarly count generalized jagged partitions to obtain the
generating functions for partitions with other interesting special restrictions.

But in order to see how jagged partitions could naturally be generalized, let us emphasis
some salient features of the Definition (1)–(2). We see from (2) that the vector (n1, . . . , nm)
is not a genuine partition because the non-decreasing condition is not satisfied: an increment
by one unit from n j to n j+1 is allowed. However a further increase by one unit from n j+1

to n j+2 is ruled out by the second condition in (2). Note also that if the last entry is 1, zero
entries are allowed. For instance, the set of jagged partitions of weight ≤7 and length 5 (the
length and the weight being respectively the number of parts m and the sum of the parts) is

(10101) (20101) (11101) (30101) (21101) (11111)
(12101) (40101) (31101) (22101) (21111) (12111)
(21201) (50101) (41101) (32101) (31111) (22111)
(23101) (21211) (12121) (31201) (22201).

(3)

Note that the lowest-weight jagged partition of given length has the form (· · · 01010101).
The jagged character of this ‘ground-state partition’ accounts for their name.

In view of introducing hierarchies of novel jagged partitions, it is appropriate to introduce
a more precise and, at the same time, more flexible terminology for those jagged partitions
we have been discussing so far. Given that they are characterized by their ground state,
these can be conveniently called 01-partitions. The 01 notation indicates that these are the
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(pseudo) partitions built on the ground state whose period is 01. Natural extensions are thus
02-partitions or 001-partitions, etc. In this terminology, ordinary partitions are 1-partitions.
In Section 5, we present the generating functions for 02-, 012-, 001-partitions with fixed
length and apply them to special enumeration problems for ordinary partitions.

2. Basic properties of 01-partitions functions

Definition 1. A 01-partition of n is a weakly decreasing sequence of non-negative integers
(n1, n2, · · ·) where n = ∑

i ni , such that the last entry is non-zero and the conditions (2)
are satisfied.

Definition 2. The function j(n) is the number of 01-partitions of n.

Theorem 3. The generating function for the 01-partitions is

J (q) =
∞∑

n=0

j(n)qn = (−q)∞
(q)∞

. (4)

Proof: This follows from [4], Eq. (5.17), with z = 1, using (a)n := (a; q)n = (1−a)(1−
aq) · · · (1 − aqn−1). Another proof is presented in Section 4.

Corollary 4. The partition function j(n) satisfies the recurrence relation

j(n) = 2
∑

m≥1

(−1)m+1 j(n − m2), n ≥ 1. (5)

Proof: This follows from the reexpression of (4) as (cf. [3], the equation following
(10.6.6))

J (q) = 1

θ4(q)
, (6)

where

θ4(q) = 1 + 2
∑

m≥1

(−1)mqm2
. (7)

One then has

1 = J (q)
1

J (q)
=

∞∑

n=0

j(n)qn

(

1 + 2
∑

m≥1

(−1)mqm2

)

, (8)

from which the result follows.

Corollary 5. The partition function j(n) is related to p(n), the number of partitions of n
and d(n) the number of partitions of n into distinct parts, by

j(n) =
n∑

m=0

p(n − m)d(m). (9)



218 FORTIN, JACOB AND MATHIEU

Proof: The generating functions for p(n) and d(n) are respectively

P(q) =
∞∑

n=0

p(n)qn = 1

(q)∞
, D(q) =

∞∑

n=0

d(n)qn = (−q)∞. (10)

We have thus

J (q) = D(q)P(q), (11)

which implies (9).

Remark 6. Given that closed-form expressions are known for both p(n) and d(n), due to
Hardy-Ramanujan-Rademacher (cf. theorem 5.1 in [1]) and Hau-Iseki-Hagis respectively
(cf. Ex 5.3 therein), this entails a closed-form expression for j(n). We recall that at the
origin of the Hardy-Ramanujan collaboration on partition problems is rooted in the fruitful
‘Ramanujan’s false statement’ ([11] p. 9) that the coefficient of qn in 1/θ4(q), which is
precisely j(n), is given by

1

4n

(

cosh π
√

n − sinh π
√

n

π
√

n

)

. (12)

This remains a remarkable approximation.
The expression of the generating function J (q) in terms of the inverse of θ4 leads imme-

diately to two simple congruence properties.

Corollary 7. j(n) ≡ 0 mod 2 for n > 1.

Proof: Equation (8) can be written as

1 = J (q) + 2J (q)
∑

n≥1

(−1)nqn2
, (13)

which implies (using (4))

J (q) = 1 + 2J (q)
∑

n≥1

(−1)n+1qn2 = 1 + 2
(−q)∞
(q)∞

∑

n≥1

(−1)n+1qn2
. (14)

01-partition functions are thus always even except for j(0) = 1.

Corollary 8. j(n) ≡ 0 mod 2p+1 for all n that cannot be written as a sum of p or less
squares.

Proof: Iterating the first equality in (14), we obtain

J (q) = 1 +
∞∑

p=1

2p
∑

n1,n2,..n p≥1

(−1)
∑p

i=1(ni +1) q
∑p

i=1 n2
i , (15)

from which the statement is immediate.
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This result is meaningful only for p ≤ 3 since, by Lagrange theorem, all numbers can be
written as a sum of four squares. Here is a simple application of the corollary: since (8n +7)
cannot be written as a sum of less that 4 squares, it readily follows that j(8n + 7) ≡ 0 mod
16.

Corollary 9. If p′ stands for the least number of squares into which rn+s, with 1 ≤ s < r,
is decomposable, then j(rn + s) ≡ 0 mod a 2p′

, where a = min (c, 2) with c being the
number of distinct vectors (n′

1, . . . , n′
p′ ) of strictly positive entries which sum to s.

Proof: The least number of squares into which a number can be decomposed is easily
found by inspection of the non-zero values of m2 modulo r , which are (1, 4, . . . , (r − 1)2)
mod r . The number of solutions of s = n′

1 +· · ·+n′
p′ , where the n′

i are square residues mod
r (i.e., 1 ≤ n′

i < r ), is a divisor of the number of equivalent terms in the first summation
in (15). For c > 2, the p′-square contribution might not be the lowest one and we need to
consider also the contribution of p′ + 1 squares; therefore the bound obtained by the lowest
contributing term is actually a = min (c, 2).

Let us consider some applications of this corollary. An immediate consequence is that
j(rn + 2) ≡ 0 mod 4 when r > 2. Indeed, these numbers can be decomposed in two
squares, not less, hence p′ = 2, and this can be done in one way mod r (2 = 1 + 1), so that
c = 1. Similarly, j(rn +3) ≡ 0 mod 4 when r > 3 since then p′ = 3 and the combinatorial
factor c is again 1. In the same vein, it follows that j(rn + 5) ≡ 0 mod 8 when r > 5 since
rn + 5 can be decomposed as two squares and s = 4 + 1 = 1 + 4 so that c = 2. Our final
example deserves to be singled out.

Corollary 10. j(8n + 7) ≡ 0 mod 64.

Proof: We have already noticed that the first coefficient of (15) contributing to j(8n + 7)
comes from the decomposition into 4 squares. But it has a combinatorial factor at least equal
to 4 since 7 = 4+1+1+1 and its three permutations. It is larger than 4 whenever the three
residues n′

i = 1 are residues of distinct numbers ni . On the other hand, since j(8n + 7)
cannot be decomposed into five squares, the factor a in Corollary 9 can be replaced by
a′ = min (c, 4) = 4.

Here is an illustration of this congruence from a direct computation based on (15):

j(15) = −24 · 12 − 26 · 20 + 27 · 7 + 29 · 36 − 212 · 12 + 215 = 64 · 23. (16)

The number of contributing terms from the first summation is 12 since there are 12 ways of
writing 15 = ∑4

i=1 n2
i = 9 + 4 + 1 + 1 and permutations; modulo 8, this equation reduces

to 7 = 4 + 1 + 1 + 1 and permutations; hence here there are three n′
i equal to 1 but the

corresponding ni ’s are all different (they are permutations of (9, 4, 1)).
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3. Ramanujan-type generating functions for 01-partitions

In this section, we derive special generating functions analogous to the famous Ramanujan
result (cf. [1] chap 10):

∞∑

n=0

p(5n + 4)qn = 5
(q5; q5)5

∞
(q)6∞

, (17)

which implies that p(5n + 4) ≡ 0 mod 5.
We have calculated the generating functions for all 01–partitions j(rn + s) with 2 ≤ r ≤

8. Those for r = 2, 3, 4 take a rather compact form:

Proposition 11. The generating functions for the 01-partitions j(rn + s), 2 ≤ r ≤ 4 read

∞∑

n=0

j(2n)qn = (q4; q4)5
∞

(q)4∞(q8; q8)2∞
,

∞∑

n=0

j(2n + 1)qn = 2
(q2; q2)2

∞(q8; q8)2
∞

(q)4∞(q4; q4)∞
,

∞∑

n=0

j(3n)qn = (q2; q2)4
∞(q3; q3)6

∞
(q)8∞(q6; q6)3∞

,

∞∑

n=0

j(3n + 1)qn = 2
(q2; q2)3

∞(q3; q3)3
∞

(q)7∞
,

∞∑

n=0

j(3n + 2)qn = 4
(q2; q2)2

∞(q6; q6)3
∞

(q)6∞
,

∞∑

n=0

j(4n)qn = (q2; q2)19
∞

(q)14∞(q4; q4)6∞
,

∞∑

n=0

j(4n + 1)qn = 2
(q2; q2)13

∞
(q)12∞(q4; q4)2∞

,

∞∑

n=0

j(4n + 2)qn = 4
(q2; q2)7

∞(q4; q4)2
∞

(q)10∞
,

∞∑

n=0

j(4n + 3)qn = 8
(q2; q2)∞(q4; q4)6

∞
(q)8∞

. (18)

Note that from these expressions, we obtain three more formulas for J (q), the simplest one
being:

J (q) =
∞∑

n=0

[ j(2n)q2n + j(2n + 1)q2n+1]

= (q8; q8)5
∞

(q2; q2)4∞(q16; q16)2∞
+ 2q

(q4; q4)2
∞(q16; q16)2

∞
(q2; q2)4∞(q8; q8)∞

. (19)

The last result we make explicit is the following, which provides an alternative proof of
Corollary 10.

Proposition 12. The generating functions for the 01-partitions j(8n + 7) is

∞∑

n=0

j(8n + 7)qn = 64
(q2; q2)22

∞
(q)23∞

. (20)
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Sketch of the proof of Propositions 11 and 12. Our proof of these relations is inspired by
the derivation of (17) given in [3] Section 11.7. The proof is divided into three steps.

1. We first compute the ratio J (q1/r )/J (qr ). We keep the denominator in the form of a
product and break the inverse of J (q1/r ),

1

J (q1/r )
=

∞∑

n=−∞
(−1)nqn2/r , (21)

into r sums (setting n = rm + �, with 0 ≤ � ≤ r − 1) and evaluate each sum by means
of the Jacobi triple-product identity:

∞∑

n=−∞
(−1)nqn(n+1)/2zn = (qz)∞ (z−1)∞ (q)∞. (22)

That leads us to an expression of the form:

J (q1/r )

J (qr )
= 1

∑r−1
�=0 ξ�(q)q�/r

. (23)

The different ξ�(q)’s are now known functions of q. The division by J (qr ) is purely
conventional, its role being to simplify the form of the ‘coefficients’ ξ�(q). In particular,
for r odd, it makes ξ0(q) = 1. By construction, the ξ�(q)’s are invariant under the
transformation q1/r → q1/rωk , with ω = e2π i/r .

2. We then observe that by rewriting

1
∑r−1

�=0 ξ�(q) q�/r
=

∏r−1
k=1

∑r−1
�=0 ξ�(q) ωk� q�/r

∏r−1
k=0

∑r−1
�=0 ξ�(q) ωk� q�/r

=:

∏r−1
k=1

∑r−1
�=0 ξ�(q) ωk� q�/r

�r (q)
, (24)

the denominator becomes a function of q and not of q1/r . This denominator is evaluated
from (23), but using this times the product form of both J (q1/r ) and J (qr ):

1

�r (q)
= 1

[J (qr )]r

r−1∏

k=0

J (ωkq1/r ). (25)

The evaluation of �r (q) relies on the lemma that follows this sketch.
3. Finally, in order to select the terms j(rn − s ′) from J (q1/r ), we multiply it by qs ′/r ,

replace q1/r by ωkq1/r and then sum over all values of k. For J (q1/r ), we use formula
(23). The same operation of the rhs selects the qs ′/r+m terms in the numerator (with m
integer). The final result follows by multiplying both sides by J (qr ).
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Lemma 13. The product
∏r−1

k=0 J (ωkq1/r ), for r odd and prime or r = 2p takes the
following form:

r−1∏

k=0

∞∏

n=1

1 + (ωkq1/r )n

1 − (ωkq1/r )n
= (q2; q2)r+1

∞ (qr ; qr )2
∞

(q)2r+2∞ (q2r ; q2r )∞
for r odd and prime,

= (q2; q2)r
∞

(q)2r∞
for r = 2p. (26)

Proof: Set n = rm + s with 0 < s ≤ r and m ≥ 0. In the case r = 2p, for given
values of m and s 	= r , the r terms (resulting from the product over k) of the numerator
are easily seen to be permutations of those of the denominator so that the product is 1; for
s = r , the k dependence disappear (all r terms are identical) and the product over m yields
(−q)r

∞/(q)r
∞. For r prime and 	= 2, we find that for m fixed:

r∏

s=1

r−1∏

k=0

1 + (ωkq1/r )rm+s

1 − (ωkq1/r )rm+s

= (1 + qrm+1) · · · (1 + qrm+r−1)(1 + qm+1)r

(1 − qrm+1) · · · (1 − qrm+r−1)(1 − qm+1)r
· (1 + qrm+r )(1 − qrm+r )

(1 − qrm+r )(1 + qrm+r )
, (27)

(where at the end we have introduced a suitable decomposition of 1). The quoted result is
obtained by taking the product over all m and reorganizing the sums using repeatedly the
simple identity:

(−qc; qc)∞ = (q2c; q2c)∞
(qc; qc)∞

. (28)

These cases cover all those (namely r = 3, 21, 22 and 23) needed to tackle Propositions 11
and 12.

Proof of Proposition 11 for r = 3. Let us now detail the case r = 3. By decomposing
the sum in (21) into three sums according to n = 3m, 3m ± 1 and transform them by the
Jacobi triple-product identity:

1

J (q1/3)
=

∞∑

m=−∞
(−1)mq3m2 − 2q1/3

∞∑

m=−∞
(−1)mq3m2+2m

= (q3; q3)2
∞

(q6; q6)∞
− 2q1/3 (q)∞ (q6; q6)2

∞
(q2; q2)∞ (q3; q3)∞

, (29)

we end up with

J (q1/3)

J (q3)
= 1

1 − 2q1/3ζ1(q)
, (30)
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where

ζ1(q) = (q)∞ (q6; q6)3
∞

(q2; q2)∞ (q3; q3)3∞
. (31)

The function ζ1(q) is manifestly unaffected by the replacement of q1/3 by q1/3ωk , with
ω = e2π i/3. We thus have ξ0(q) = 1, ξ2(q) = 0 and we have redefined ξ1(q) = −2ζ1(q).
This completes step 1. We now evaluate �3(q):

�3(q) =
2∏

k=0

[1 − 2q1/3ωkζ1(q)] = 1 − 8qζ 3
1 (q), (32)

while, from (25) and (26), we have

1

�3(q)
= (q2; q2)4

∞, (q3; q3)8
∞

(q)8∞(q6; q6)4∞
. (33)

We can thus write

1

1 − 2q1/3ζ1(q)
=

∏2
k=1

[
1 − 2q1/3ωkζ1(q)

]

1 − 8qζ 3
1 (q)

= 1 + 2q1/3ζ1(q) + 4q2/3ζ 2
1 (q)

�3(q)
, (34)

and by (30), this is equal to J (q1/3)/J (q3):

J (q1/3) =
∞∑

n=0

j(n) qn/3 = J (q3)

�3(q)

(
1 + 2q1/3ζ1(q) + 4q2/3ζ 2

1 (q)
)
. (35)

Let us now replace q1/3 by q1/3ωk on both sides and sum the resulting equation over k. On
the lhs, we get

2∑

k=0

∞∑

n=0

j(n) (q1/3ωk)n =
∞∑

n=0

j(n) qn/3(1 + ωn + ω2n) = 3
∞∑

m=0

j(3m) qm, (36)

while on the rhs, we find

2∑

k=0

(
1 + 2q1/3 ωk ζ1(q) + 4q2/3 ω2k ζ 2

1 (q)
) = 3, (37)

so that

∞∑

m=0

j(3m) qm = (q2; q2)4
∞ (q3; q3)6

∞
(q)8∞ (q6; q6)3∞

. (38)
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By multiplying (35) by q1/3, replacing q1/3 by q1/3ωk on both sides and summing over k,
we get

∞∑

m=0

j(3m − 1) qm = q
∞∑

m=0

j(3m + 2) qm = 4q
(q2; q2)2

∞ (q6; q6)3
∞

(q)6∞
. (39)

The generating function for j(3n + 1) is obtained in a similar way, by multiplying (35) by
q2/3, q1/3 → q1/3ωk and sum over k.

Proof of Proposition 12. It is convenient to start with J (q1/4):

1

J (q1/4)
=

∞∑

n=−∞
(−1)nqn2/4 =

∞∑

n=−∞
q4n2 − 2q1/4

∞∑

n=−∞
q2n(2n+1) + q

∞∑

n=−∞
q4n(n+1).

(40)

Using the Jacobi triple-product identity, this becomes

1

J (q1/4)
= (q8; q8)5

∞
(q4; q4)2∞(q16; q16)2∞

− 2q1/4 (q4; q4)2
∞

(q2; q2)∞
+ 2q

(q16; q16)2
∞

(q8; q8)∞
. (41)

Therefore J (q8)/J (q1/8) can be written as:

J (q8)

J (q1/8)
= ζ0 − 2q1/8ζ1 + 2q1/2ζ4, (42)

with

ζ0 = (q4; q4)5
∞(q16; q16)∞

(q2; q2)2∞(q8; q8)4∞
, ζ1 = (q2; q2)2

∞(q16; q16)∞
(q; q)∞(q8; q8)2∞

, ζ4 = (q16; q16)∞
(q4; q4)∞

. (43)

Using (24), we can write

J (q1/8)

J (q8)
= q7/8α(ζ0, ζ1, ζ4) + · · ·

�8(q)
, (44)

where we only write the coefficient of the terms q7/8+m for m integer, which is

α(ζ0, ζ1, ζ4) = 64
(
2ζ 7

1 − ζ 3
0 ζ 3

1 ζ4 − 4qζ0ζ
3
1 ζ 3

4

)
, (45)

while

1

�8(q)
= (q2; q2)8

∞(q8; q8)16
∞

(q; q)16∞(q16; q16)8∞
. (46)

Note that �8(q) is actually a function of q. For j(8n + 7), we have thus:

(q8; q8)2
∞

(q16; q16)∞

∞∑

n=0

j(8n + 7)qn = 64
(
2ζ 7

1 − ζ 3
0 ζ 3

1 ζ4 − 4qζ0ζ
3
1 ζ 3

4

) (q2; q2)8
∞(q8; q8)16

∞
(q; q)16∞(q16; q16)8∞

. (47)
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The result follows from the identity

ζ 3
0 ζ 3

1 ζ4 + 4qζ0ζ
3
1 ζ 3

4 = ζ 7
1 , (48)

which is established in the appendix.

4. Generating function for 01-partitions of prescribed length

In this section, we first rederive the generating function for 01-partitions by using a modified
version of a technique introduced in App. A of [4] . We first motivate the method by deriving
a recurrence relation for ordinary partitions p(m, n) of n into m parts in the language of
Ferrer graphs. Every partition of length m of n can be represented by graphs of n dots
distributed among m rows whose length (specified by the parts of the partition) does not
increase when read from top to bottom. The set of such Ferrer graphs of m rows can be
decomposed into the disjoint union of those graphs with precisely one dot on the last row
and those with more that one dot on this m-th row. The former set is characterized by the
fact that removing the single dot on the m-th row leaves a Ferrer graph with m − 1 rows
(and of course a total of n −1 dots). Similarly, the graphs with two dots or more on the m-th
row are characterized by the fact that they still have m rows if we take out the first column
(reducing n to n − m). That leads directly to the following recurrence relation

p(m, n) = p(m − 1, n − 1) + p(m, n − m). (49)

Instead of working with graphs, we will introduce a pictorial representation that captures
the notion of ‘building on a ground state with prescribed structure’. Let us then represent
p(m, n) as

p(m, n) : (· · · 11111+) (m entries), (50)

where the symbol + indicates that we can build up the partition on the indicated ground
state up to the position of the +. It is clear that this ‘filling process’ can be broken as follows:

(· · · 11111+) = (· · · 1111+1) + (· · · 22222+), (51)

(from now on, all vectors are supposed to have m entries). In the first term of the left hand
side, we isolate those partitions that have at least one 1. What is left is completely taken into
account by the set (· · · 22222+), which describes all partitions without any 1. But this picto-
rial relation is nothing but the Ferrer graph retranscription of the decomposition considered
above. Indeed, elements of the set (· · · 22222+) are in a one-to-one correspondence with
those enumerated by p(m, n − m): the correspondence is obtained by subtracting the parti-
tion (1m) from elements of the former set. Similarly, there is a one-to-one correspondence
between elements of (· · · 1111+1) and the partitions of length m − 1 and weight n − 1: one
simply adds a 1 at the extremity of the elements of the latter set, an operation that preserves
the non-increasing character of the partition. Therefore (51) is equivalent to (49).

The recurrence relation (49) is far from being new: it has first been obtained by Euler
(see e.g., [12] Eq. (97.7) but quoted with a misprint) from the generating function Pm(q) =
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∑
n p(m, n)qn = qm/(q)m . The relation follows from the identity (1 − qm)Pm = q Pm−1.

Euler used it to compute recursively the p(m, n)’s. Our aim is just the opposite: we want to
find generating functions by solving recurrence relations.

Our ‘pictorial’ derivation of (49) is inspired by the method used by Andrews to find the
generating function for partitions with prescribed length and ‘difference-two at distance
k − 1’ [2]. The idea is to split the set we want to enumerate into distinct sets characterized
by their boundary condition. The method is here adapted to the case where the restriction
is washed out.

Definition 14. The function j(m, n) yields the number of 01-partitions of n having exactly
m parts (i.e., of length m).

Lemma 15. The function j(m, n) satisfies the recurrence relations:

j(m, n) = j(m − 2, n − 1) + k(m, n)
(52)

k(m, n) = k(m − 1, n − 1) + j(m, n − m),

where k(m, n) stands for the number of 01-partitions of n having exactly m parts ≥ 1 (i.e.,
having no 0).

Proof: The functions j(m, n) and k(m, n) have the following pictorial representations:

j(m, n) : (· · · 010101+), k(m, n) : (· · · 111111+). (53)

(This last set should not be confused with the set of ordinary partitions of n of length m;
k(m, n) really counts special 01-partitions: for instance (1212) is an element of the set whose
cardinality is k(4, 6).) The following relations are satisfied

(· · · 010101+) = (· · · 0101+01) + (· · · 111111+)
(· · · 111111+) = (· · · 11111+1) + (· · · 121212+). (54)

In the first relation, we isolate the terms with at least one pair 01 at the end, i.e., containing
at least one 0. What is left is the set of 01-partitions without parts equal to 0, hence built
on (· · · 111). The second relation is similar. These are equivalent to the recurrence relations
(52). Let us explain the last term: the jagged partitions (· · · 121212+) can be characterized
by the following property: subtracting from these elements the partition (1m) (reducing the
weight by m but without affecting the length) makes them elements of the set enumerated
by j(m, n − m). The functional retranscription of the other terms is obvious.

Theorem 16. The generating function of j(m, n) is

J (z; q) = (−zq)∞
(z2q)∞

. (55)
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Proof: Let us introduce the two generating functions

J (z; q) =
∞∑

m,n=0

j(m, n)zmqn, K (z; q) =
∞∑

m,n=0

k(m, n)zmqn. (56)

The recurrence relations (52) are then lifted to

J (z; q) = z2q J (z; q) + K (z; q)
K (z; q) = zq K (z; q) + J (zq; q). (57)

Since the q-dependence is never affected, it is usually omitted. The solution of the above
relations is easily obtained

J (z) = K (z)

1 − z2q
= J (zq)

(1 − zq)(1 − z2q)
= · · · = (−zq)∞

(z2q)∞
, K (z) = (−zq)∞

(z2q2)∞
, (58)

(where the dots stand for the infinite iteration of the preceding result).
Note that in contrast with p(m, n), the function j(m, n) does not necessarily vanish if

n < m. For instance j(4, 2) = 1 and the corresponding 01-partition is (0101). As a further
illustration, the q3 coefficient of J (z) obtained by expanding (55) and the corresponding
01-partitions are:

z + 2z2 + 2z3 + z4 + z5 + z6: {(3), (21), (12), (201), (111), (1101), (10101), (010101)}.
(59)

The following lemma presents an application of the previous result to the enumeration
of 01-partitions with at most m parts. Recall that pm(n), the number of partitions of n into
at most m parts, is equal to p(m, n + m). The analogous relation in the jagged case is given
in the following lemma.

Lemma 17. The partition function jm(n) that counts the number of 01-partitions of n with
at most m parts satisfies

jm(n) = j(m, n + m) − j(m − 2, n + m − 1) = k(m, n + m), (60)

where k(m, n) is defined in Lemma 15.

Proof: We have

j(m, n + m) = jm(n) + j(m − 2, n + m − 1). (61)

Indeed, by adding the partition (1m) to those counted by jm(n) we obtain all 01-partitions
of weight n +m having no 0. To generate the whole set of 01-partitions of weight n +m we
simply need to add to this set all those 01-partitions that contain at least one 0, that is, one
pair of 01. By stripping this tail 01, we see that all these elements are in correspondence
with those counted by j(m − 2, n + m − 1). This yields the above relation. The derivation
makes clear that jm(n) is exactly the set k(m, n + m). Moreover, (60) is simply the first
relation in (52).
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Let us recall the bijection introduced in [10]: by adding the staircase (m − 1, m −
2, . . . , 1, 0) to the vector (n1, · · · nm), we transform it into an ordinary partition. With
λ j = n j + m − j , the weakly decreasing conditions (2) become

λ j ≥ λ j+1 and λ j ≥ λ j+2 + 2. (62)

To transform a generating function for jagged partitions to one for partitions subject to (62),
we replace zN by zN q N (N−1)/2 within the sum defining the generating function. We thus
reproduce the result of Andrews [2] (his F3,3(z; q)) as follows (cf. Corollary 9 of [10]):

Corollary 18. The generating function for the number of partitions satisfying λ j ≥ λ j+2+
2 is given by

∑

m,n≥0

j(m, n)zmqm(m−1)/2+n =
∑

m0,m1≥0

q (m0+m1)2+m2
1 zm0+2m1

(q)m0 (q)m1

. (63)

Remark 19. Let us argue that the jagged-partition formulation of the problem is efficient
by reworking the counting problem directly at the level of partitions. Let us then introduce
three sets of partitions subject to (62):

a(m, n) : (· · · 553311+), b(m, n) : (· · · 55331+), c(m, n) : (· · · 765432+). (64)

These sets obey the recurrence relations

a(m, n) = a(m, n − m) + b(m − 1, n − 1)

b(m, n) = a(m − 1, n − 2m + 1) + c(m, n) (65)

c(m, n) = a(m, n − 2m) + c(m − 1, n − m − 1).

For their generating functions (defined in the obvious way), this becomes

A(z) = A(zq) + zq B(z)

B(z) = zq A(zq2) + C(z) (66)

C(z) = A(zq2) + zq2C(zq).

Solving for A(z), we end up with

A(z) = (1 + zq)A(zq) + z2q2 A(zq2) − z3q5 A(zq3). (67)

Although there are ways to solve this relation (using suitable transformations), ending up
with a third-order q-equation instead of a first-order one is enough to illustrate our point:
reformulating the problem in terms of jagged partitions bear some magic simplifications.

5. Generating function for generalized jagged partitions of prescribed length

We now consider three types of generalized jagged partitions, for which we also find
generating functions by solving a first-order recurrence relation. Since the construction
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of these generating functions follow the same pattern as for the 01-case, we condense the
presentation by including the derivations of the recurrence relations within the proof of the
theorems in the first two cases and limit ourself to displaying the key recurrence relation
and the final result in the last case.

5.1. 02-partitions

Definition 20. 02-partitions are defined as vectors (n1, . . . , nm) of non-negative entries
n j ≥ 0,with nm ≥ 2, subject to the weak ordering conditions:

n j ≥ n j+1 − 2, n j ≥ n j+2. (68)

Theorem 21. The generating function for J (m, n), the number of 02-partitions of n with
length m, is

J̃ (z) =
∑

n,m≥0

J (m, n)zmqn = (z3q6; q3)∞
(zq2)∞(z2q2)∞

. (69)

Proof: The first step of the proof amounts to derive appropriate recurrence relations. We
introduce the following pictorial representation (function-set bijection) for the J (m, n) and
two auxiliary functions K(m, n) and L(m, n)

J (m, n) : (· · · 020202+), K(m, n) : (· · · 121212+), L(m, n) : (· · · 222222+). (70)

again with the understanding that all vectors have m components. While J (m, n) counts all
02-partitions, K(m, n) counts those with no 0 and L(m, n) enumerates those having neither
0 nor 1. The following relations hold between the different ‘ground-state fillings’:

(· · · 0202+) = (· · · 02+02) + (· · · 1212+)

(· · · 1212+) = (· · · 12+12) + (· · · 2222+) + (· · · 13+13) (71)

(· · · 2222+) = (· · · 222+2) + (· · · 2323+).

These translate into the recurrence relations:

J (m, n) = J (m − 2, n − 2) + K(m, n)

K(m, n) = K(m − 2, n − 3) + L(m, n) + J (m − 2, n − m − 2) (72)

L(m, n) = L(m − 1, n − 2) + K(m, n − m).

As usual, these recurrence relations are then lifted to q-difference equations for their gen-
erating functions and these take the form

J̃ (z) = z2q2J̃ (z) + K̃(z)

K̃(z) = z2q3K̃(z) + L̃(z) + z2q4J̃ (zq) (73)

L̃(z) = zq2L̃(z) + K̃(zq).
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The auxiliary functions K̃(z) and L̃(z) can be eliminated and we get

J̃ (z) = (1 + zq2 + z2q4)

(1 − z2q2)(1 − z2q3)
J̃ (zq) = (1 − z3q6)

(1 − zq2)(1 − z2q2)(1 − z2q3)
J̃ (zq), (74)

whose solution is (69).
The expression (69) can be easily expressed as a q-series:

J̃ (z) =
∑

m1,m2,m3≥0

(−1)m3 q2m1+2m2+3m3(m3+3)/2 zm1+2m2+3m3

(q)m1 (q)m2 (q3; q3)m3

. (75)

Although this is not a manifestly positive q-series, the positivity is inherited from the first
equality in (74). To illustrate this result, we see that the coefficient of z5 is q6 +2q7 +4q8 +
7q9 + · · · and the seven corresponding 02-partitions of weight 9 are

J (5, 9) = 7 : {(50202), (41202), (32202), (31212), (31302), (23202), (22212)}. (76)

Corollary 22. The generating function for the number of partitions of n into m parts and
subject to the restriction

λi ≥ λi+1 and λi ≥ λi+2 + 4, (77)

is

P(z) =
∑

m1,m2,m3≥0

(−1)m3 q2m1+2m2+3m3(m3+3)/2+(m1+2m2+3m3)(m1+2m2+3m3−2) zm1+2m2+3m3

(q)m1 (q)m2 (q3; q3)m3

.

(78)

Proof: 02-partitions are transformed into ordinary partitions by adding the staircase
(· · · , 9, 7, 5, 3, 1, −1):

λi = ni + 2(m − i) − 1. (79)

It is immediate to verify that the λi ’s satisfy (77). Hence, by modifying the power of q
within J̃ (z) to take into account the addition of the staircase, which amounts to replace
qnzm → qn+m(m−2)zm , we obtain the generating function P(z) for partitions satisfying (77)
in the form (78).

This expression appears to be a new result. It differs from the generating functions
pertaining to the same counting problem presented in Theorem 5.14 of [7] and Theorem
2.7 of [6].

There is of course a whole tower of 0p-partitions, with p ≥ 1. We have seen that for
p = 1 and p = 2, the generating functions for jagged partitions with specified length are
solutions of a first-order q-equation. This does not seem to be the case for p > 2. For
instance, the counting of 03-partitions lead to a second-order equation.
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5.2. 012-partitions

We now turn to the analysis of jagged partitions of another type, namely the 012-partitions.

Definition 23. 012-partitions are defined as vectors (n1, . . . , nm) of non-negative entries
n j ≥ 0,with nm ≥ 2, subject to the weak ordering conditions:

n j ≥ n j+1 − 1, n j ≥ n j+2 − 2, n j ≥ n j+3. (80)

Theorem 24. The generating function for J ′(m, n), the number of 012-partitions of n
with length m, is

J̃ ′(z) =
∑

n,m≥0

J ′(m, n)zmqn = (−zq2)∞(−z2q3)∞
(z3q3)∞

. (81)

Proof: Introduce the following function-set bijections:

J ′(m, n) : (· · · 012+), K′(m, n) : (· · · 112+), L′(m, n) : (· · · 122+),
(82)

M′(m, n) : (· · · 212+), N ′(m, n) : (· · · 222+).

These are related as follows

(. . . 012012+) = (. . . 012+012) + (. . . 112+)

(. . . 112112+) = (. . . 112+112) + (. . . 122+12) + (. . . 122+)

(. . . 122122+) = (. . . 212+2) + (. . . 123+) (83)

(. . . 212212+) = (. . . 122+12) + (. . . 222+)

(. . . 222222+) = (. . . 222+2) + (. . . 223+).

The functional retranscription of these recurrences reads

J ′(m, n) = J ′(m − 3, n − 3) + K′(m, n)

K′(m, n) = K′(m − 3, n − 4) + L′(m − 2, n − 3) + L′(m, n)

L′(m, n) = M′(m − 1, n − 2) + J ′(m, n − m) (84)

M′(m, n) = L′(m − 2, n − 3) + N ′(m, n)

N ′(m, n) = N ′(m − 1, n − 2) + K′(m, n − m).

leading to

J̃ ′(z) = z3q3J̃ ′(z) + K̃′(z)

K̃′(z) = z3q4K̃′(z) + z2q3L̃′(z) + L̃′(z)

L̃′(z) = zq2M̃′(z) + J̃ ′(zq) (85)

M̃′(z) = z2q3L̃′(z) + Ñ ′(z)

Ñ ′(z) = zq2Ñ ′(z) + K̃′(zq).
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The auxiliary functions can be eliminated and we get

J̃ ′(z) = (1 + z2q3)(1 − z4q8)

(1 − zq2)(1 − z3q3)(1 − z3q4)(1 − z3q5)
J̃ ′(zq). (86)

for which the solution is (81).

Corollary 25. The generating function for the number of partitions of n into m parts and
subject to the restriction

λi ≥ λi+1 and λi ≥ λi+3 + 3, (87)

is

P ′(z) =
∑

m1,m2,m3≥0

qm1(m1+3)/2+m2(m2+5)/2+3m3+(m1+2m2+3m3)(m1+2m2+3m3−3)/2 zm1+2m2+3m3

(q)m1 (q)m2 (q)m3

.

(88)

Proof: To generate partitions from 012-partitions of length m, we add the staircase (m −
2, . . . , 1, 0, −1) of weight m(m − 3)/2, i.e., λ j = n j − m − j − 1. The weak ordering
conditions (80) imply the restrictions (87). Therefore, by replacing zN by zN q N (N−3)/2 in
the generating function for J ′(m, n), whose series expansion reads

J ′(z) =
∑

m1,m2,m3≥0

qm1(m1+3)/2+m2(m2+5)/2+3m3 zm1+2m2+3m3

(q)m1 (q)m2 (q)m3

, (89)

we recover the above expression for P ′(z).
This expression P ′(z) agrees with the suitable specialization of the generating function

displayed in Eq. (1.6) of [8] (see also Theorem 9.9 of [9]).
The consideration of 0123-partitions leads to a second-order q-equation. We thus expect

that counting jagged partitions with ground state of period 0123 . . . p will always lead to
higher-order q-equations for p ≥ 3.

5.3. 001-partitions

The final class of jagged partitions to be considered are the 0 · · · 01-ones (with p zeros),
written for short as 0p1-partitions.

Definition 26. 0p1-partitions are defined as vectors (n1, . . . , nm) of non-negative entries
n j ≥ 0,with nm ≥ 1, subject to the weak ordering conditions:

n j ≥ n j+s − 1 for 1 ≤ s ≤ p, n j ≥ n j+p+1. (90)
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For all the cases we have considered (namely, 1 ≤ p ≤ 6), we always end up with
a first-order q-equation, suggesting that this is a generic feature of this class of jagged
partitions. Unfortunately, the resulting generating functions we obtain do not have a nice
form for p > 2, in particular, we cannot write them as a multi-sum. For this reason, we limit
ourself to displaying the generating function for 001-partitions. Moreover, since its proof
is quite similar to the previous ones, we simply give the recurrence relation underlying its
construction:

(· · · 001001+) = (· · · 001+001) + (· · · 011+01) + (· · · 011011+)

(· · · 011011+) = (· · · 011+011) + (· · · 1111+) (91)

(· · · 111111+) = (· · · 111+1) + (· · · 112112+).

Theorem 27. The generating function for J ′′(m, n), the number of 001-partitions of n
with length m, is

J̃ ′′(z) = (−z2q; q2)∞
(zq)∞ (z3q; q3)∞ (z3q2; q3)∞

. (92)

Again, we can apply this result to the enumeration of partitions subject to some restrictions.
In the present case, the restriction is a superposition of a ‘difference-1 condition at distance
2’ and ‘difference-3 condition at distance 3’. The partition λ = (λ1, . . . , λm) is obtained
from the vector (n1, . . . , nm) augmented by the staircase (m − 1, . . . , 1, 0).

Corollary 28. The generating function for the number of partitions of n into m parts and
subject to the restrictions

λi ≥ λi+1, λi ≥ λi+2 + 1 and λi ≥ λi+3 + 3, (93)

is

P ′′(z) =
∑

m0,m1,m2,m3≥0

qβ z2m0+m1+3m2+3m3

(q2; q2)m0 (q)m1 (q3; q3)m2 (q3; q3)m3

, (94)

with

β = m2
0 + m1 + m2 + 2m3 + (2m0 + m1 + 3m2 + 3m3)(2m0 + m1 + 3m2 + 3m3 − 1)/2.

(95)

Appendix A: Proof of identity (48)

We first obtain an identity for ζ 2
0 + 4qζ 2

4 . Starting from the expression of the ζi ’s given in
(43), we have

[
(q8; q8)2

∞
(q16; q16)∞

]2

(ζ 2
0 + 4qζ 2

4 ) =
[

(q4; q4)5
∞

(q2; q2)2∞(q8; q8)2∞

]2

+ q

[
2(q8; q8)2

∞
(q4; q4)∞

]2

=
[ ∞∑

n=−∞
q2n2

]2

+ q

[ ∞∑

n=−∞
q2n(n+1)

]2
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=
∞∑

n,m=−∞

[
q2n2+2m2 + q2n2+2n+2m2+2m+1

]

=
∞∑

n,m=−∞

[
q (n+m)2+(n−m)2 + q (n−m)2+(n+m+1)2]

=
∞∑

n,m=−∞
q (n−m)2[

q (n+m)2 + q (n+m+1)2]

=
∞∑

n,m=−∞
qn2[

q (n+2m)2 + q (n+2m+1)2]

=
∞∑

n,m=−∞
qn2

q (n+m)2 =
∞∑

n,m=−∞
qn2

qm2

=
[ ∞∑

n=−∞
qn2

]2

= (q2; q2)10
∞

(q)4∞ (q4; q4)4∞
. (96)

The starting trick is to multiply the sum ζ 2
0 + 4qζ 2

4 by an appropriate factor to transform
it into a sum of squares. Each square is then rewritten as an infinite sum by means of the
Jacobi triple-product identity. In the fifth line, we replace n by n − m. In the sixth one, we
see that the second summation is broken into its even and odd parts; grouping them together
leads to the seventh line. There, we replace m by m − n. At the end, Jacobi triple-product
identity is used once more. The core identity in (96) is of course

[ ∞∑

n=−∞
q2n2

]2

+ q

[ ∞∑

n=−∞
q2n(n+1)

]2

=
[ ∞∑

n=−∞
qn2

]2

, (97)

which is actually well-known1. With

θ2(q) =
∞∑

n=−∞
q (n+1/2)2

, θ3(q) =
∞∑

n=−∞
qn2

, (98)

(97) is nothing but

θ2
2 (q2) + θ2

3 (q2) = θ2
3 (q), (99)

an identity that arises naturally from the parametrization of the arithmetic-geometric mean
iteration using theta functions - cf. Section 2.1 of [5] (and (97) is precisely Eq. (2.1.8)
there). Let us now return to (96) in order to finish the proof of (48). Isolating ζ 2

0 + 4qζ 2
4 and

multiplying the result by ζ0ζ
3
1 ζ4 yields:

ζ0ζ
3
1 ζ4

(
ζ 2

0 + 4qζ 2
4

) = (q2; q2)14
∞ (q16; q16)7

∞
(q)7∞ (q8; q8)14∞

= ζ 7
1 , (100)

as desired.
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Note added in proof

A bijection between jagged partitions and overpartitions has also been obtained by
K. Mahlburg, The overpartition function modulo small powers of 2, Discrete Math. 286
(2004), 263–267. This article describes an extension of the congruence mod 64 obtained
here.

Note

1. It also has a natural combinatorial interpretation. Write the q-series expansion of (97) as
∑∞

p=0 apq p . The right
hand side shows that ap is the number of ways p can be written as a sum of two squares. The left hand side
shows that for p even, ap is also the number of ways of writing p/2 as a sum of two squares, while for p odd,
ap stands for the number of ways (p −1)/2 can be written as a sum of two near squares, i.e., products n(n +1).
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