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Abstract

Purpose Some IRT models have the advantage of being

robust to missing data and thus can be used with complete

data as well as different patterns of missing data (infor-

mative or not). The purpose of this paper was to develop an

algorithm for response shift (RS) detection using IRT

models allowing for non-uniform and uniform recalibra-

tion, reprioritization RS recognition and true change esti-

mation with these forms of RS taken into consideration if

appropriate.

Methods The algorithm is described, and its implemen-

tation is shown and compared to Oort’s structural equation

modeling (SEM) procedure using data from a clinical study

assessing health-related quality of life in 669 hospitalized

patients with chronic conditions.

Results The results were quite different for the two

methods. Both showed that some items of the SF-36

General Health subscale were affected by response shift,

but those items usually differed between IRT and SEM.

The IRT algorithm found evidence of small recalibration

and reprioritization effects, whereas SEM mostly found

evidence of small recalibration effects.

Conclusion An algorithm has been developed for

response shift analyses using IRT models and allows the

investigation of non-uniform and uniform recalibration as

well as reprioritization. Differences in RS detection

between IRT and SEM may be due to differences between

the two methods in handling missing data. However, one

cannot conclude on the differences between IRT and SEM

based on a single application on a dataset since the

underlying truth is unknown. A next step would be to

implement a simulation study to investigate those

differences.
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Département de santé publique, AP-HP, Hôpital Paul Brousse,

Villejuif, France

C. E. Schwartz

DeltaQuest Foundation, Inc., 31 Mitchell Road, Concord,

MA 01742, USA

C. E. Schwartz

Department of Medicine and Orthopeadic Surgery, Tufts

University School of Medicine, Boston, MA, USA

J.-B. Hardouin � V. Sébille

Clinical Research Unit, Department of Methodology and

Biostatistics, University Hospital of Nantes, Nantes, France

123

Qual Life Res (2015) 24:553–564

DOI 10.1007/s11136-014-0876-4



Introduction

Response shift (RS) is an important issue in clinical

research, and missing data remain a challenge when

assessing longitudinal patient-reported outcome (PRO)

data and possibly associated response shift (RS) phenom-

enon. Indeed, most proposed analytical statistical strate-

gies, such as structural equation modeling (SEM) [1]

allowing for the detection of all forms of RS (recalibration,

reprioritization and reconceptualization), assume that data

are either missing completely at random (MCAR) or

missing at random (MAR). In these cases, the missingness

probability either depends on the observed data (MAR) or

is independent of all previous, current and future assess-

ments (MCAR). However, it is very likely that most data

are not missing at random (MNAR) [2] and that the

probability of missingness depends on unobserved data

(e.g., patients might be too tired to fill in the PRO on

fatigue). This type of data is truly problematic since it can

lead to very poor and biased estimates of RS and true

change in PRO data [3]. The issues regarding the choice of

the most appropriate methodological approach for both the

identification of RS occurrence and its appropriate adjust-

ment in the analyses of longitudinal PRO data with pos-

sibly informative missing data (MNAR data) are

challenging and remain debated.

Item response theory (IRT), and in particular Rasch

family models [4], could be an interesting alternative for

response shift detection, with some advantages compared to

SEM. Indeed, with IRT it is possible to estimate a latent trait

with interval scale property, unlike raw scores or their linear

transformations [5]. That is, a unit difference characterizes

the same amount when measured from different initial levels

on the latent trait scale. Furthermore regarding the man-

agement of missing data, Rasch-based IRT models possess a

very interesting property of specific objectivity, which

allows one to obtain consistent estimates of the parameters

associated with the latent trait (quality of life for instance)

whether or not an item is observed [6, 7]. Consequently,

unbiased estimates of the latent trait can be obtained even

when some items are missing, in a framework that can be

ignorable (MCAR or MAR data) or not (MNAR data) [8–

11]. Rasch family models could therefore provide a valid

methodological approach for RS identification in longitudi-

nal studies with potentially informative missing data.

The purpose of this paper was to develop an algorithm for

RS detection using IRT models allowing for non-uniform

and uniform recalibration, reprioritization RS recognition

and true change estimation with these forms of RS taken into

consideration if appropriate. The algorithm follows the

sequence of the algorithm of Oort’s procedure for SEM and

relies on longitudinal polytomous IRT models including the

partial credit model (PCM) of the Rasch family model and

the generalized partial credit model (GPCM). The algorithm

is described, and its implementation is shown and compared

to Oort’s SEM procedure using data from a clinical study

assessing health-related quality of life in hospitalized

patients with chronic conditions.

Methods

Algorithm for response shift detection using IRT

models

We propose a new algorithm for response shift analyses

using polytomous IRT models following the sequence of the

algorithm of Oort’s procedure for SEM [1]: the RespOnse

Shift ALgorithm in Item response theory (ROSALI). This

algorithm makes it possible to detect two types of RS using

data from two measurement occasions: non-uniform and

uniform recalibration and reprioritization. After this detec-

tion, the true change (the mean change of the latent trait

between the two times) can be estimated taking RS into

account. Unlike the Oort’s SEM method, ROSALI is cur-

rently based on unidimensional IRT models and does not yet

include the possibility of reconceptualization detection

which would require multidimensional IRT modeling.

Finally, the observed change can be separated into two

components: change due to response shift and true change in

the level and variability of the latent construct the PRO is

intended to measure. The different steps of the algorithm are

the following: a preliminary step for estimating the item dif-

ficulties at the first measurement occasion (step 0), estab-

lishing a measurement model (step 1), fitting a model with no

RS and overall evaluation of RS (step 2), RS detection (step 3)

and true change estimation (step 4). Figure 1 summarizes each

step for both methods, IRT and SEM.

Item response theory models

Suppose patients’ quality of life is measured using a

questionnaire which includes polytomous items on two

measurement occasions t (t = 1, 2). The presentation of

the IRT algorithm will focus on one dimension of this

questionnaire assumed to be composed of J items.

The items’ responses of the patients on the two mea-

surement occasions can be modeled using a longitudinal

GPCM as follows:

P X
tð Þ

ij ¼ hjh tð Þ
i ; dj1; . . .; djmj

; gðtÞj1 ; . . .; gðtÞjmj
; a tð Þ

1 ; . . .; a tð Þ
j

� �

¼
exp aðtÞj hh tð Þ

i �
Ph

p¼1 djp þ gðtÞjp

h i� �� �

Pmj

l¼0 exp aðtÞj lh tð Þ
i �
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H 1ð Þ

H 2ð Þ

� �
�N

l1

l2

� �
;
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with X
tð Þ

ij the response of patient i (i = 1, …, N) to item

j (j = 1, …, J) at time t (t = 1, 2), hðtÞi a realization of the

random variable H, that is the latent trait of patient i at time

t.
P

is the covariance matrix
r2

1 r2;1

r1;2 r2
2

� �
where r1

2 and

r2
2 are the variances of the latent trait at times t = 1 and

t = 2, respectively, and r1, 2 = r2, 1 is the covariance

between the latent traits at times t = 1 and t = 2. The

parameter djp corresponds to the item difficulty for each

positive category p of item j, and the number of positive

response categories for this item is equal to mj. gjp
(t) is the

change in item difficulties between time t = 1 and time

t = 2 with g 1ð Þ
jp ¼ 0 8j; p. a tð Þ

j are the discriminating powers

at time t = 1 and t = 2, respectively, for each item j = 1,

…, J. In order to obtain a PCM at time t = 1, the following

constraints are used: a 1ð Þ
j ¼ 18j ¼ 1; . . .; J.

Fig. 1 Steps and constraints for

each method: SEM and IRT.

PCM partial credit model,

GPCM generalized partial credit

model, CFA confirmatory factor

analysis, IRT item response

theory, SEM structural equation

modeling, RS response shift,

LRT likelihood ratio test
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If no RS is assumed, aj
(t) = 1 for all values of t (t = 1, 2)

and j (j = 1, …, J), and the former longitudinal GPCM

becomes a longitudinal PCM. In this model, only charac-

teristics of the latent trait (level of the individuals on the

measured concept) can vary over time, unlike the item

parameters which are held fixed.

Response shift can be considered as a modification of the

perception of the questionnaire over time by the patients. If

RS is assumed, the most flexible model allowing for response

shift is used to model the data: the longitudinal GPCM

(Eq. 1) which includes parameters allowing for change in

item difficulties and in discriminating powers between time

t = 2 and time t = 1 for each item j = 1, …, J to allow for

modeling possible non-uniform and/or uniform recalibration

and/or reprioritization response shift.

Modeling and interpretation of different sources

of response shifts

Recalibration Recalibration is considered as change in the

respondent’s internal standards of measurement [12]. For

non-uniform recalibration (Fig. 2), it is assessed by a change

of item difficulties (parameter gjp
(t) with g 1ð Þ

jp ¼ 0 8j; p) that

can occur in various directions and magnitude toward lower

or greater difficulties. For uniform recalibration (Fig. 3), this

phenomenon is assessed by a change of all difficulties of a

given item in the same direction and to the same extent.

Figures 2 and 3 show the two types of recalibration (non-

uniform and uniform) when IRT was applied on the clinical

data from the illustrative example. For both, recalibration

involves a change of item difficulties between the two times,

gjp
(2). For example, if we observe a non-uniform recalibration

on item j, each curve on the graph can be shifted in different

directions and/or magnitude. If we observe a uniform

recalibration on item j, each curve on the graph will be

shifted at time t = 2 by the same amount.

Reprioritization Reprioritization corresponds to a change

in the respondent’s values, that is to say a shift in the

importance of items constituting the target construct. The

change in discriminating power for each item between the

two times aj
(2) can be used to assess this type of RS. If there

is reprioritization on an item, the value of its discriminating

power, which is equal to 1 at time t = 1, is different from 1

at time t = 2 (Fig. 4 illustrates the application of IRT on

the clinical data from the illustrative example). In this case,

this item has become more or less discriminating at time

t = 2 than at time t = 1. For example, for item j, if its

discriminating power is higher than 1 at time t = 2, item

j is more predictive of the latent trait level, and conversely,

if it is lower than 1 at time t = 2, item j is less predictive of

the latent trait level.

Procedure

The procedure was developed with the SAS software to

obtain an algorithm for RS detection using IRT models. It is

composed of 5 steps and 4 models. A preliminary step (step

0) was added to estimate item parameters at time t = 1.

Step 0: estimation of item parameters

This preliminary step allows estimating the item difficulties

at time t = 1 djp by fitting a PCM whose fit is assessed

Fig. 2 Category probability curves for non-uniform recalibration on

item 1 for the SatisQoL data. Item 1 is one of the items of the General

Health (GH) subscale of the SF-36: ‘‘In general, would you say your

health is’’ with responses: Excellent/Very good/Good/Fair/Poor. The

parameter g1p is the change in item difficulties between time t = 2

and time t = 1 for item 1 with g1p = 0 at time t = 1 for all p (p = 1,

…, 4)

Fig. 3 Category probability curves for uniform recalibration on item

4 for the SatisQoL data. Item 4 is one of the items of the General

Health (GH) subscale of the SF-36: ‘‘I expect my health to get worse’’

with responses: Definitely true/Mostly true/Don’t know/Mostly false/

Definitely false. The parameter g4 is the change in item difficulties

between time t = 2 and time t = 1 for item 4 with g4 = 0 at time

t = 1 for all p (p = 1, …, 4)
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using the MIRT software [13, 14]. For all the next steps of

the algorithm, the item difficulties are fixed to their esti-

mated values at step 0.

Step 1: establishing a measurement model (model 1)

Model 1 is a GPCM (Eq. 1) which takes into account the

two possible types of RS: recalibration (non-uniform or

uniform) and reprioritization. The discriminating powers

are all equal to 1 at time t = 1, and their values are esti-

mated at time t = 2 as well as the change in item diffi-

culties between the two times gjp
(2).

Step 2: overall evaluation of response shift (model 2)

Model 2 is a model assuming no RS. It is a longitudinal

PCM because we impose invariance constraints such that

we assume no non-uniform or uniform recalibration and no

reprioritization. To evaluate the presence of overall RS, we

compare model 1 and model 2 using a likelihood ratio test.

If the test is significant, we go to step 3 to improve model 2

and detect which type of RS occurs on which item. If the

test is not significant, we may assume that there is no RS,

and we skip step 3.

Step 3: response shift detection (model 3)

Step 3 is an iterative step in which model 3 is updated

constantly according to the results. The first model used at

this step corresponds to model 2, and we remove the con-

straints of model 2 one by one to identify RS. The algorithm

first tests the presence of recalibration on each item j. For

each j, a test to detect whether a change in item difficulties,

estimated by gð2Þjp , has occurred is performed using the

likelihood ratio test to compare the new model with the

previous one. If the test is significant, we consider the pre-

sence of recalibration on item j. Among the items for which

significant tests are found, we choose the item associated

with the model with the maximum value for the likelihood.

Then, we determine the type of recalibration on this item by

testing whether the item difficulties change in the same

direction and to the same magnitude. If this test is signifi-

cant, non-uniform recalibration is suspected, else uniform

recalibration is assumed. Finally, the model is updated to

take into account recalibration if appropriate. This first part

of step 3 may be repeated on the updated model until there

are no more items displaying recalibration remaining, and

we obtain a model taking into account all non-uniform and

uniform recalibrations that have been detected.

After detecting recalibration, the algorithm determines

whether there is reprioritization by looking at the change in

discriminating powers between the two times. To begin, a

global test is performed to determine whether there is

reprioritization on some items by testing whether all dis-

criminating powers on all items are equal to 1 at time t = 2

using a likelihood ratio test. If the test is significant, we

consider that reprioritization has occurred on at least one

item. To locate the involved item(s), a likelihood ratio test

is performed on the discriminating power of each item to

determine whether there is reprioritization. Among the

significant tests, we choose the item associated with the

model which maximizes the likelihood. Finally, the model

is updated to take into account the detected reprioritization.

This part of step 3 may be repeated until there are no more

items displaying reprioritization remaining.

Step 4: true change assessment (model 4)

During the last step, the true change is estimated and tested.

The true change is evaluated using model 4 that contains

the significant parameters found in step 3 for RS adjust-

ment. True change is evidenced if the difference of the

means of the latent variable between the two times of the

study is significantly different from 0. The test of true

change is performed with a Wald test.

Response shift detection using SEM

Detection of RS using SEM was performed using Oort’s

procedure [1]. This procedure has four steps: (1) establishing

an appropriate measurement model, (2) fitting a no RS model,

(3) RS detection, and (4) assessment of true change. Each of

these steps is associated with a particular longitudinal con-

firmatory factor analysis model. SEM models were fitted

Fig. 4 Item characteristic curves on item 2 for reprioritization for the

SatisQoL data. Item 2 is one of the items of the General Health (GH)

subscale of the SF-36: ‘‘I seem to get sick a little easier than other

people’’ with responses: Definitely true/Mostly true/Don’t know/

Mostly false/Definitely false. The parameter a2
(t) is the discriminating

power at time t (t = 1, 2) for item 2
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using robust maximum-likelihood estimator with a Satorra–

Bentler correction [15]. SEM analyses were conducted using

lavaan 0.5-13 package [16] for R software 3.0.1 [17].

Step 1: establishing a measurement model (model 1)

The appropriate measurement model (model 1) is estab-

lished following the structure of the chosen questionnaire.

No across time constraints are imposed. A root mean

square error of approximation (RMSEA) close to 0.05 (p of

close fit [0.10), comparative fit index (CFI) C0.95 and

standardized root mean residual (SRMR) B0.05 are used as

indicators of good fit [18].

Step 2: overall evaluation of response shift (model 2)

Model 2 is a model assuming no RS in which all RS

parameters are constrained to be equal across times. Model

1 and model 2 are compared using a likelihood ratio test. If

the test is significant, we go to step 3 to improve model 2

and detect which type of RS occurs on which item. If the

test is not significant, we may assume that there is no RS,

and we skip step 3.

Step 3: response shift detection (model 3)

Untenable constraints on RS parameters are released one at

a time, starting from model 2. Each modification is tested

by likelihood ratio tests [19]. Specification search is guided

using modification indices. Releasing constraints on error

variances (non-uniform recalibration) is tested first, fol-

lowed by intercepts (uniform recalibration) and factor

loadings (reprioritization).

Step 4: true change assessment (model 4)

A final model is estimated, in which differences in factor

means are indicative of ‘‘true change’’ after accounting for

RS.

Handling of missing data

Missing data are not handled in the same way if IRT models

or SEM are used. With IRT models, there is no need for

imputation, which is usually associated with some unveri-

fiable assumptions, and it is possible to use these models on

all available data even if some items responses are missing.

This ‘‘available case’’ approach was chosen for IRT models

since Rasch family models were shown to provide unbiased

estimations and good power for MCAR but also MNAR data

[7, 10]. With SEM, several strategies can be used: complete

case analysis (observations with any missing values are

discarded) [20], assuming MCAR data, full information

maximum likelihood assuming MCAR or MAR data as well

as normality [21], or some data imputation technique under

ignorable missing data conditions (MCAR or MAR data)

[20]. For the latter, robust maximum-likelihood estimator

with a Satorra–Bentler correction can be used when data are

not assumed to be normally distributed [15]. This last

approach was used since SEM analyses were performed at

the item level to be comparable with IRT analyses.

Application of the IRT- and SEM-based procedures

for RS detection on clinical data—an illustrative

example

The algorithm that was developed for RS detection using

IRT models was applied on a clinical dataset and compared

to Oort’s procedure for SEM.

Study sample and data collection procedures

The application of both procedures based on IRT or SEM

was performed on a subsample of the SatisQoL study. The

SatisQoL study is a French multicenter (3 centers) cohort

study designed to assess the relationships between satisfac-

tion with care and health-related quality of life (HRQL) after

being hospitalized in a university hospital for a medical or

surgical intervention related to a chronic disease [22].

The exclusion criteria were the following: patients under

18 or above 75 years old, patients not suffering from a

chronic disease for less than 6 months at initial admission,

no medical or surgical intervention during hospitalization.

Patients were asked to fill in a variety of questionnaires

(including HRQL measurement) shortly after admission,

and at 6 months after discharge. In this study, we focused

on patients who underwent surgery which was believed to

initiate a response shift (catalyst).

Main outcome

HRQL was assessed at baseline and 6 months after dis-

charge using the SF-36 version 1.3 in French [23, 24]. As it

was necessary to work on a unidimensional psychometric

construct to allow comparisons of RS detection techniques

between SEM and IRT, it was decided to restrict the

application of both procedures to the general health (GH)

dimension of the SF-36.

Missing data

Handing of missing data in this study is depicted on Fig. 5. For

both methods (IRT and SEM), the 91 patients (13.6 %) who

did not respond to any of the 5 items of the GH subscale on one

or two of the measurement occasions were excluded from the

analyses. Missing data were subsequently handled in a

558 Qual Life Res (2015) 24:553–564
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different way according to whether IRT or SEM was used. For

IRT analyses, no imputation was done, and all available

remaining data were used: The IRT analyses were thus per-

formed on 578 patients, corresponding to 86.4 % of the initial

sample size. For SEM analyses, missing data were handled

according to guidelines of the SF-36 manual [25]. As such, if

no more than 2 items were missing at one time of measure-

ment for a patient, missing items were imputed by the mean of

other responses at the corresponding time of measurement.

Therefore, if there were more than 2 items missing at any time

of measurement for a patient, he/she was excluded from SEM

analyses. Hence, 537 patients (80 % of the initial sample size)

remained for SEM analyses since 41 patients had more than

two items missing at the first or second time of measurement.

For SEM, in accordance with the guidelines of the SF-36

manual, imputation by the mean was performed on 38 patients

(38/537 = 7.1 %), as responses to one or two items were

missing to at least one time of measurement for these 38

patients. Table 1 presents the characteristics of participants

with and without missing data.

Results

Sample characteristics

Table 2 summarizes characteristics of the 669 patients

included in the SatisQoL study. The average age was

55 years, and 356 (53.2 %) were men. These 669 patients

went through various surgical procedures belonging to 11

medical areas. The average observed GH score was 58.5 at

baseline, almost equal to the average GH score at 6 months

after discharge (58.1).

Detection of response shift using IRT and SEM

Step 1—model 1

For IRT, a measurement model (longitudinal GPCM,

model 1) was established for the 5 items of the GH sub-

scale dimension. The fit of model 1 was correct (p value =

0.34). For SEM, a longitudinal measurement model with

the 5 items of the GH subscale loading on one dimension at

each time point led to RMSEA (0.054, p of close fit =

0.32), CFI (0.982) and SRMR (0.038) being below the

desired cutoff.

Step 2—model 2 (no RS model)

For IRT and SEM, the test of overall RS was significant

(p \ 10-4 for IRT and p \ 0.016 for SEM) which was

considered as overall evidence for RS for both procedures.

Consequently, step 3 was realized for IRT and SEM to

determine the type of RS.

Step 3—model 3

For IRT, non-uniform recalibration on item 1 ‘‘In general,

would you say your health is …’’ (Fig. 2) and uniform

recalibration on item 4 ‘‘I expect my health to get worse’’

(Fig. 3) of the GH subscale were detected. Moreover, all

items seemed affected by reprioritization (example given

for item 2 ‘‘I seem to get sick a little easier than other

people’’ in Fig. 4). For SEM, non-uniform recalibration

was detected in two different items of the GH subscale as

compared to IRT: items 2 and 4; uniform recalibration was

Sample size
N=669  

All 5 GH items missing (T1 or T2)
N=91 (13.6%) 

Sample size available for IRT 
analyses

N=578 (86.4%)

Sample size available for SEM
N= 537 (80.3%)

More than 2 items missing (T1 or T2)
N=41 (7.1%) 

Fig. 5 Flow chart depicting

missing data patterns for the

General Health (GH) subscale

of the SF-36
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similarly found on item 4 but also on item 3 ‘‘I am as

healthy as anybody I know’’ of the GH subscale. Moreover,

reprioritization was only found on item 5 ‘‘My health is

excellent’’ for SEM.

Step 4—model 4

For IRT, the estimation of true change in model 4 was

nearly the same as in model 2 with no RS (0.027 vs.

-0.014). RS seemed to have a very small impact on the

true change estimation. Both true changes estimated in the

GH subscale dimension for model 2 (with no RS) and for

model 4 (RS accounted for) were not significantly different

from 0 at a = 5 %. For SEM, change in factor means over

time in model 4, as indicative of true change in GH after

taking RS into account, was slightly larger in absolute

value than in model 2 (-0.034 vs. -0.025). Both of them

were non-significantly different from 0 at alpha = 5 %.

The parameter estimates for IRT and SEM applied on

the SatisQoL data appear in Table 3.

Discussion

We proposed an algorithm, the RespOnse Shift ALgorithm

in Item response theory (ROSALI), following the sequence

of the algorithm proposed by Oort for SEM, to detect

response shift. IRT and, in particular, Rasch family models

are robust to missing data and thus can be used with

complete data as well as all patterns of missing data [7, 10].

This procedure allows detecting two types of RS: non-

uniform and uniform recalibration as well as reprioritiza-

tion. The true change can be subsequently estimated after

taking RS into consideration, if appropriate. The technical

feasibility of the IRT algorithm was assessed through its

application on a clinical dataset, and the results were

compared to the ones obtained using Oort’s procedure for

SEM on the same data. We may note that usually, the

methods used to detect RS are applied at the dimension

level and that one of the consequences of the use of IRT

models is that we worked at the item level; both applica-

tions presented here, comparing IRT and SEM, were thus

performed at the item level.

The whole procedure of the IRT algorithm could be per-

formed and applied on the clinical data as well as Oort’s

procedure for SEM. The results were quite different for the

two methods (Table 4) and showed that some items of the

GH subscale of the SF-36 were affected by response shift and

that they usually differed according to the chosen approach

(IRT or SEM). Non-uniform recalibration was found on item

1 for IRT, whereas it was found on item 2 and item 4 for

SEM. Uniform recalibration was found on item 4 for IRT and

SEM, but it was also detected on item 3 using SEM. Finally,

reprioritization was evidenced on all items of the GH sub-

scale for IRT: items 1, 3 and 5 became more predictive of the

latent trait level at 6 months, while items 2 and 4 became less

predictive of the latent trait level. However, in SEM, repri-

oritization was only detected on item 5, and it went in an

opposite direction as compared to IRT. Indeed, this item

became less predictive of the latent trait level at 6 months.

We cannot rule out, for IRT, the possibility that change in

item difficulties’ parameters with time (recalibration) can

affect the slope of the item characteristic curves and that it

could have an influence on the discrimination parameters

values. Consequently, recalibration could possibly create an

artificial detection of reprioritization. However, true change

estimations were close for both methods, and both were not

significantly different from 0.

Table 1 Comparison of patient characteristics with and without

missing data at baseline and at 6 months

Characteristic, measure Sample without

missing data

(n = 499)

Sample with

missing data

(n = 170)

Age (years), mean ± SD 54.3 ± 13.5 57.5 ± 13.4

Gender (M/F), n (%) 265/234 (53.1/46.9) 91/79 (53.5/46.5)

Medical diagnosis n (%)

ENT–Ophthalmology 103 (20.6) 36 (21.1)

Gastrointestinal 90 (18.0) 30 (17.6)

Rheumatology 92 (18.4) 27 (15.8)

Circulatory system 60 (12.0) 40 (23.5)

Urology–Nephrology 61 (12.0) 12 (7.1)

Others 93 (18.6) 24 (14.1)

SF-36 General Health (GH) score (/100), mean ± SD

Baseline 59.5 ± 20.9 55.2 ± 22.6

6 months after 58.8 ± 22.1 51.5 ± 26.2

Table 2 Patient characteristics at baseline and SF-36 scores on the

General Health (GH) subscale at baseline and at 6 months

Characteristic, measure Sample (n = 669)

Age (years), mean ± SD 55.1 ± 13.5

Gender (M/F), n (%) 356/313 (53.2/46.8)

Medical diagnosis n (%)

ENT–Ophthalmology 139 (20.8)

Gastrointestinal 120 (17.9)

Rheumatology 119 (17.8)

Circulatory system 100 (14.9)

Urology–Nephrology 73 (10.9)

Others 118 (17.7)

SF-36 General Health (GH) score (/100), mean ± SD

Baseline 58.5 ± 21.3

6 months after 58.1 ± 22.6
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Several reasons might explain some of the differences

obtained between the two methods. Firstly, these methods

do not handle missing data in the same way. For SEM,

missing data were imputed when it was possible, whereas,

in IRT, imputation was not realized. Therefore, these two

methods were not performed on the same number of

patients. In the framework of IRT, they were N = 578

patients available for analysis (patients who have respon-

ded to at least one item among the 5 items of the GH

dimension at the two times of measurement). However,

fewer patients were available for analysis for SEM

(N = 537) corresponding to the available sample for IRT

minus the patients who had more than 2 missing items to at

least one time of measurement (N = 41). Among those 537

patients, the data of 38 patients were imputed at least once.

For imputation, we assume that the missing data are MAR,

hence ignorable, but it is not possible to know whether

missing data in the SatisQoL study come from an ignorable

Table 3 Parameter estimates for item response theory (IRT) and structural equation modeling (SEM) applied on the SatisQoL data

Item Response

category

IRT SEM

Time 1 Time 2 Time 1 Time 2

djp aj djp ? gjp
a djp ? gjp

b aj
c Interceptsa Errorb

variances

Factorc

loadings

Intercepts Error

variances

Factor

loadings

Item 1 1 1.67 3.37 0.32 0.62 3.37 0.32 0.62

1 -3.85 djp ? 0 djp 1 0.98

2 -1.28 djp ? 0 djp 1 0.46

3 1.7 djp ? 0 djp 2 0.55

4 2.39 djp ? 0 djp 1 0.24

Item 2 1 0.78 3.72 1.09 0.62 3.72 0.94 0.62

1 -2.11 djp ? 0 djp ? 0

2 -1.25 djp ? 0 djp ? 0

3 -0.47 djp ? 0 djp ? 0

4 0.12 djp ? 0 djp ? 0

Item 3 1 1.38 3.23 0.53 0.85 3.33 0.53 0.85

1 -2.24 djp ? 0 djp ? 0

2 -0.5 djp ? 0 djp ? 0

3 -0.38 djp ? 0 djp ? 0

4 1.91 djp ? 0 djp ? 0

Item 4 1 0.84 3.43 1.03 0.67 3.33 0.87 0.67

1 -2.69 djp 1 0.16 djp ? 0

2 -1.06 djp 1 0.16 djp ? 0

3 0.42 djp 1 0.16 djp ? 0

4 0.45 djp 1 0.16 djp ? 0

Item 5 1 1.78 2.98 0.36 1.04 2.98 0.36 0.96

1 -1.48 djp ? 0 djp ? 0

2 -0.25 djp ? 0 djp ? 0

3 -0.15 djp ? 0 djp ? 0

4 2.43 djp ? 0 djp ? 0

Mean of latent trait 0.004

0.017

0 -0.034

Variance of latent trait 1.239

1.329

1 1.193

djp: item difficulty for each positive category p of item j; gjp: change in item difficulties between time t = 2 and time t = 1 for item j with gjp = 0

at time t = 1 for all p; aj: discriminating power at time t (t = 1, 2) for item j with aj = 1 at time t = 1 for all j. Item 1–5 are the items of the

General Health (GH) subscale of the SF-36

Bold indicate the values are significantly different between time 1 and time 2
a Uniform recalibration
b Non-uniform recalibration
c Reprioritization
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(MCAR or MAR) or a non-ignorable mechanism (MNAR).

Some assumptions can only be made looking at the data

and the results: It seems that patients with missing data at

one or two measurement occasions (N = 170) were more

likely to have a deteriorated quality of life than patients

without missing data (N = 499). At baseline, the average

observed GH score was 59.5 ± 20.9 for patients without

missing data compared to 55.2 ± 22.6 (p = 0.04) for

patients with at least one missing item; at 6 months after

discharge, it was 58.9 ± 22.1 (without missing data) versus

51.5 ± 26.2 (patients with at least one missing item,

p = 0.03). This might suggest that the missing data could

be MNAR. Moreover, if the missing data were MCAR, we

could have expected that the results regarding RS detection

would have been similar between SEM and IRT which was

not the case, most items displaying RS being different for

the two methods. However, this is very speculative, and

testing the hypothesis of ignorable missing data relies on

strong and unverifiable assumptions because the data that

would allow testing for ignorability (MCAR or MAR

versus MNAR data) are actually missing [26]. Hence,

uncertainty caused by missing data is high and seriously

challenges appropriate inference from the data.

We have chosen to work with a method based on IRT

models because they have interesting performances in the

presence of missing data. They indeed allow estimating

parameters of the latent trait without making any assump-

tions regarding missing data. In particular, imputation is

not required for these models [9, 27]. Furthermore, using

Rasch family models, we benefit from the specific objec-

tivity property. This property implies that the estimation of

the latent trait is independent of the set of items used for

the measurement. Consequently, unbiased estimation of the

latent trait can be obtained even when some items

responses are missing. Previous simulation studies have

shown that Rasch family models provided unbiased esti-

mations and were more powerful than classical test theory-

based analyses in the framework of incomplete datasets

and especially in the presence of MNAR data [7, 10, 11].

We thus can hypothesize that the IRT-based algorithm may

provide an interesting tool for RS analysis in case of

missing data and in particular MNAR data as compared to

SEM which makes the assumption that missing data are

either MCAR or MAR. For SEM, simple imputation has

been made following the SF-36 manual; multiple imputa-

tion could also be of value for SEM and may provide

interesting results, but it is usually performed assuming

MCAR or MAR data as well. Finally, among the meth-

odological choices that were made, the use of the longi-

tudinal GPCM for reprioritization can be discussed. Indeed,

this model does not possess the specific objectivity prop-

erty of the Rasch family models, and hence, it implies that,

unlike the PCM (used for recalibration detection), we do

not know whether we are adequately dealing with missing

data regarding bias and power in the presence of repriori-

tization with possible MNAR data.

Conclusion

An algorithm has been developed for response shift anal-

yses using IRT models and allows the investigation of non-

uniform and uniform recalibration as well as reprioritiza-

tion. This IRT-based procedure has been applied and

compared to the procedure proposed by Oort’s for SEM on

a clinical dataset. This gives some clues regarding the

technical feasibility of the proposed procedure for IRT but

does not provide any formal conclusion on whether IRT

and SEM differ or not regarding RS analyses with missing

data or whether they both appropriately deal with missing

data at the item level. In fact, the underlying ‘‘truth’’ is

never known with certainty using a single dataset: Was RS

truly present or not? Which items were really affected by

RS? What was the population true change magnitude?

Were the missing data MCAR, MAR or MNAR? etc.

Moreover, we have hypothesized that the IRT-based

Table 4 Uniform, non-uniform recalibration and reprioritization response shift detection using item response theory (IRT) and structural

equation modeling (SEM)

Non-uniform recalibration Uniform recalibration Reprioritization

IRT SEM IRT SEM IRT SEM

Item 1a In general, would you say your health is X – – – X –

Item 2b I seem to get sick a little easier than other people – X – – X –

Item 3b I am as healthy as anybody I know – – – X X –

Item 4b I expect my health to get worse – X X X X –

Item 5b My health is excellent – – – – X X

X: response shift detected; –: no response shift detected
a Answers: Excellent/Very good/Good/Fair/Poor
b Answers: Definitely true/Mostly true/Don’t know/Mostly false/Definitely false
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method for RS detection should be reliable in the presence

of missing data, but its performances have to be explored

more thoroughly according to the type and amount of

missing data.

The next step is to implement a simulation study to be

able to assess and compare the suitability of the different

statistical models as well as the bias in the parameter

estimates in relation to a known simulated truth. Such a

study would allow validating both IRT- and SEM-based

procedures and ensure that the different steps can detect

the correct form of RS, on the appropriate items, and that

true change estimation is unbiased. A simulation study

can help in investigating the complex relationship

between missing data and response shift detection by

controlling for the amount of missing data and missing

data mechanisms as well as the presence and type of

response shift.
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Appendix

The category probability curves (Fig. 6) represent the

responses’ probabilities for an individual to endorse each

response category for an item as a function of his latent

trait level. dj1 can be interpreted as the value of the latent

trait for which the probability to respond negatively to item

j is equal to the probability to answer positively to the first

positive category (coded 1) for item j. The item charac-

teristic curves (Fig. 7) are a representation of the expected

score to an item as a function of the latent trait level. For

example, for item j at time t, the slope of the curve is linked

to the value of the discriminating power aj
(t).
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11. Hamel J. F., Sébille V., Le Neel T., Kubis G., & Hardouin J. B.

(2012) Study of different methods for comparing groups by

analysis of patients reported outcomes: Item response theory

based methods seem more efficient than classical test theory

based methods when data is missing. Under review.

12. Schwartz, C. E., & Sprangers, M. A. (1999). Methodological

approaches for assessing response shift in longitudinal health-

related quality-of-life research. Social Science & Medicine,

48(11), 1531–1548.

13. Glas, C. A. W. (1988). The derivation of some tests for the Rasch

model from the multinomial distribution. Psychometrika, 53,

525–546.

14. Glas, C. A. W. (2010). http://www.utwente.nl/gw/omd/Medewerkers/

temp_test/mirt-manual.pdf

15. Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics

and standard errors in covariance structure analysis. In A. von &

C. C. Clogg (Eds.), Latent variables analysis: Applications for

developmental research (pp. 399–419). Thousand Oaks, CA, US:

Sage Publications, Inc.

16. Rosseel, Y. (2012). Lavaan: An R package for structural equation

modeling. Journal of Statistical Software, 48(2), 1–36.

17. R Development Core Team. (n.d.). R Development Core Team.

(2013). R: A language and environment for statistical computing.

Vienna, Austria: R Foundation for Statistical Computing.

18. Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003).

Evaluating the fit of structural equation models: Tests of signif-

icance and descriptive goodness-of-fit measures. Methods of

Psychological Research-Online, 8, 23–74.

19. Bryant, F. B., & Satorra, A. (2012). Principles and practice of

scaled difference Chi Square testing. Structural Equation Mod-

eling: A Multidisciplinary Journal, 19(3), 372–398.

20. Enders, C. K. (2013). Analyzing structural equation models with

missing data. In Structural Equation (Ed.), Modeling : a second

course (pp. 493–519). Charlotte, NC: IAP, Information Age Publ.

21. Enders, C. K., & Bandalos, D. L. (2001). The relative perfor-

mance of full information maximum likelihood estimation for

missing data in structural equation models. Structural Equation

Modeling, 8(3), 430–457.

22. Kepka, S., Baumann, C., Anota, A., Buron, G., Spitz, E., Auquier,

P., Guillemin, F., Mercier, M. (2013). The relationship between

traits optimism and anxiety and health-related quality of life in

patients hospitalized for chronic diseases: data from the SATIS-

QOL study. Health and Quality of Life Outcomes, 11(1), 134.

23. Ware, J. E., & Sherbourne, C. D. (1992). The MOS 36-item short-

form health survey (SF-36). I. Conceptual framework and item

selection. Medical Care, 30(6), 473–483.
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