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Abstract

Purpose Response shift (RS) is an important phenome-

non that influences the assessment of longitudinal changes

in health-related quality of life (HRQOL) studies. Given

that RS effects are often small, missing data due to attrition

or item non-response can contribute to failure to detect RS

effects. Since missing data are often encountered in lon-

gitudinal HRQOL data, effective strategies to deal with

missing data are important to consider. This study aims to

compare different imputation methods on the detection of

reprioritization RS in the HRQOL of caregivers of stroke

survivors.

Methods Data were from a Canadian multi-center longi-

tudinal study of caregivers of stroke survivors over a one-

year period. The Stroke Impact Scale physical function

score at baseline, with a cutoff of 75, was used to measure

patient stroke severity for the reprioritization RS analysis.

Mean imputation, likelihood-based expectation–maximi-

zation imputation, and multiple imputation methods were

compared in test procedures based on changes in relative

importance weights to detect RS in SF-36 domains over a

6-month period. Monte Carlo simulation methods were

used to compare the statistical powers of relative impor-

tance test procedures for detecting RS in incomplete lon-

gitudinal data under different missing data mechanisms and

imputation methods.

Results Of the 409 caregivers, 15.9 and 31.3 % of them

had missing data at baseline and 6 months, respectively.

There were no statistically significant changes in relative

importance weights on any of the domains when complete-

case analysis was adopted. But statistical significant

changes were detected on physical functioning and/or

vitality domains when mean imputation or EM imputation

was adopted. There were also statistically significant

changes in relative importance weights for physical func-

tioning, mental health, and vitality domains when multiple

imputation method was adopted. Our simulations revealed

that relative importance test procedures were least power-

ful under complete-case analysis method and most pow-

erful when a mean imputation or multiple imputation

method was adopted for missing data, regardless of the

missing data mechanism and proportion of missing data.

Conclusions Test procedures based on relative impor-

tance measures are sensitive to the type and amount of

missing data and imputation method. Relative importance

test procedures based on mean imputation and multiple

imputation are recommended for detecting RS in incom-

plete data.
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Introduction

Response shift (RS), a change in an individual’s internal

standards, values, or conceptualizations of health and well-

being, has been acknowledged as an important phenome-

non that influences the assessment of longitudinal changes

in health-related quality of life (HRQOL) studies [40, 41].

While RS is increasingly being investigated in longitudinal

studies that adopted HRQOL instruments, this field of

research has witnessed an increased number of advanced

statistical methods such as structural equation modeling

[30, 31], latent trajectory model [28]; classification and

regression trees [3, 19, 20], and discriminant analysis and

logistic regression analysis [23, 42] for RS detection in

patient-reported HRQOL data.

Although these statistical procedures rest on different

underlying model assumptions, they are all sensitive to the

data analytic conditions that are inherent in longitudinal

HRQOL data such as non-normality, missing data, and

measurement error. Missing values arise because study

participants drop out or are absent at intermittent occasions

throughout the study [12, 22, 29] and because of ques-

tionnaire item non-response. Ignoring missing observations

can lead to incorrect inferences about the size of a treat-

ment effect or the magnitude of longitudinal change.

Missing data may also result in incorrect conclusions about

the presence of RS in longitudinal data.

Although several statistical methods have been devel-

oped to handle missing data in HRQOL studies [2, 29], the

choice of a method is generally dependent on the pattern of

missingness. Little and Rubin [22] summarized these pat-

terns into three missing data mechanisms: missing com-

pletely at random (MCAR), missing at random (MAR), and

missing not at random (MNAR). MCAR arises when the

reason for the missingness is not related to any observed

covariate or the true unknown values of the missing data.

For the MAR mechanism, missing observations are unre-

lated to the true values of missing data but are associated

with one or more observed covariates. Both MCAR and

MAR are considered ignorable missing data mechanisms

because the distribution of the missing observations is

independent of the unobserved data, whereas MNAR is a

non-ignorable pattern because missingness is related to

unobserved underlying values of the missing data.

Missing data methods include conventional approaches

such as complete-case analysis, last-observation-carried-

forward, hot-deck imputation, pair-wise deletion, average-

available-observations-carried-forward, and mean imputa-

tion [9, 18]. Although complete-case analysis has been

shown to be valid when the missing observations are

MCAR, such analyses may not be valid when the mecha-

nism is MAR or MNAR, resulting in reduced statistical

power and biased parameter estimates. However, all of

these conventional methods for missing data have been

shown to induce bias in the parameter estimates from

longitudinal models under MAR or MNAR assumptions. A

limitation of complete-case analysis is that it reduces

sample size, resulting in a loss of statistical power. The true

trajectory of change may be underestimated when the last

observation is carried forward to account for missingness in

longitudinal data. Moreover, mean imputation may under-

estimate the variability in the data, resulting in underesti-

mated correlations among questionnaire items or summary

scores [9]. Other statistical approaches for dealing with

missing observations may be less frequently adopted by

researchers because they are computationally intensive.

These alternative techniques for parameter estimation

include expectation–maximization (EM) imputation, full

information maximum likelihood (FIML) imputation,

multiple imputation, inverse-probability weighting, pattern

mixture, and selection models [1, 9, 17, 18]. While impu-

tation-based methods rest on the assumption that the

missing observations are MAR, pattern mixture and

selection models assume that the data are MNAR.

Despite the existing range of statistical methods for

handling missing data in HRQOL studies, the influence of

missing data on the detection of RS in longitudinal

HRQOL data is unknown. We hypothesize that the choice

of methods for handling missing data can influence the

conclusion about the presence of RS in longitudinal

HRQOL. More importantly, we argue that, although,

imputation methods tend to result in increased sample size,

these methods can result in either upward or downward

bias in domain correlations and RS effect sizes, which in

turn, may affect the statistical power to detect the presence

of RS. Therefore, the purpose of this study is to investigate

the effect of the choice of methods on conclusions about

the presence of reprioritization RS. Data from an existing

longitudinal data set of caregivers of stroke patients are

used to demonstrate the implementations of these methods.

Recommendations about strategies for handling missing

data will be developed based on these study results.

Methods

Data Source

Data are from a multicentre observational longitudinal

study ‘‘Understanding Quality of Life Post-Stroke: A Study

of Individuals and Their Caregivers’’ [26, 27]. This study

aimed to understand the effects of stroke severity on

HRQOL of stroke survivors and their caregivers over a

one-year period post-stroke. Data were collected on 678

stroke patients and their 409 caregivers at 1, 3, 6, and

12 months post-stroke. Study non-participation was low;
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only 67 individuals who were approached refused to par-

ticipate (16.3 %).

Data on stroke patients’ and their caregivers’ HRQOL

were collected using both generic and stroke-specific

measures, including the Medical Outcomes Study 36-Item

Short-Form Health Survey (SF-36), Health Utility Index

[11, 25], and Stroke Impact Scale [8] and other stroke-

specific HRQOL measures such as the Stroke Impact Scale

[7, 46]. The SF-36, which is the focus of this study,

encompasses eight domains of HRQOL, including role

physical, bodily pain, physical functioning, general health,

role emotional, mental health, vitality, and social func-

tioning. The domain scores are scaled to range in value

from zero (poor health) to 100 (good health).

Severity of stroke was measured in survivors using the

16-item Stroke Impact Scale (SIS-16) [7]. The items

encompass four physical functioning domains Scores range

in value from zero (poor functioning) to 100 (good func-

tion). A score below 75 reflects severe disability in physical

functioning, while scores above 75 indicate less-severe

disability; these two stroke severity groups were used in the

RS analysis. This instrument has been shown to possess

good psychometric properties [7]. Data on caregivers’

characteristics such as age, sex, previous experience as a

caregiver, number of children, and relationship with

patients were also collected at baseline.

Missing data methods

Three commonly adopted missing data methods for lon-

gitudinal data were selected for comparison. These were

mean imputation, EM imputation, and multiple imputation

[15, 32, 38].

Mean imputation

The mean imputation method for longitudinal data

replaces missing values on each variable and measure-

ment occasion by the mean of the total sample for each

domain at each measurement occasion [15, 32, 38, 43].

While this imputation method is easy to implement, it

can underestimate standard errors of parameter estimates,

which may lead to erroneous conclusions on tests of

significance. Mean imputation can be applied to missing

item scores or domain scores. One advantage of item-

level mean imputation over domain-level mean imputa-

tion is that it maximizes the number of observations.

However, there have been few comparisons of the effect

that item- and domain-level mean imputation has on

study conclusions [13, 20].

EM likelihood-based imputation

Likelihood-based methods, such as EM and FIML, have

been developed for handling missing data in cross-sec-

tional data but also extended to longitudinal data [6, 10,

37]. The missing values are predicted based on maximum

likelihood estimates from the available data. The EM

algorithm is an iterative process that consists of two steps:

the expectation (E) step and the maximization (M) step. In

the E step, the expectation of the complete data log-like-

lihood is derived, given the observed data and the esti-

mated parameters from a previous iteration. In the M step,

the conditional expectation of the complete data log-like-

lihood is maximized. The observed data log-likelihood is

increased until the algorithm converges. The EM imputa-

tion method is advantageous in that it allows the inclusion

of the maximum number of observations. The EM method

provides unbiased and efficient parameter estimates when

data are MCAR or MAR but not when the data are MNAR.

Multiple imputation

For the multiple imputation method, several datasets are

created based on random draws from a distribution of

plausible missing values, the analytic technique is applied

to each dataset, and the relevant parameter or estimate is

summarized [14, 39]. This method overcomes the under-

estimation of standard errors of parameter estimates that

arises with single imputation. Three widely used multiple

imputation methods are the predictive model method,

propensity score method, and Monte Carlo Markov Chain

(MCMC) method. While the first two methods are appro-

priate for monotone missingness, the MCMC method can

be applied to non-monotone missingness. A dataset is said

to have a monotonic missing pattern when Yijk, the ith

(i = 1, … n) subject’s measurement on the kth (k = 1, …,

p) domain variable in the jth (j = 1, … J) group, is missing

for an individual implies that all subsequent measurements

are missing for the individual. Standard statistical proce-

dures are applied to each of the imputed datasets to esti-

mate the parameters, and the results are combined, as

recommended by Rubin [34]. Let Qm be an estimate of the

parameter of interest obtained from the mth (m = 1, …, M)

imputed dataset and Um is the standard error associated

with Qm. The overall parameter estimate is calculated as

the average of the parameter estimates from the imputed

datasets,

Q ¼ 1

M

XM

m¼1

Qm; ð1Þ

while its standard error is calculated as
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T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U þ ð1þ 1

M
ÞB

r
; ð2Þ

where U ¼ 1
M

PM
m¼1 Um is the average of the within-impu-

tation variance, and B ¼ 1
M

PM
m¼1 ðQm � QÞ2 is the

between-imputation variance. Previous research has shown

that the efficiency of parameter estimates based on multiple

imputations increased as the number of imputation

increased [34] Although three to five imputations have been

found to be sufficient in many applications especially when

the proportion of missing data is \30 %, as many as 100

imputations have been recently recommended when the

proportion of missing data is more than 30 % [14]. Standard

multiple imputation strategies are readily implemented in

standard statistical software packages including SAS [16]

(SAS Inc 2011). Moreover, even though the multiple

imputation model for continuous outcomes rests on the

assumption of a multivariate normal distribution, previous

research has shown that multiple imputation based on the

MCMC method can be robust to non-normality when

compared to other methods [24, 37]. As a result, the mul-

tiple imputation method for continuous outcomes can also

be used to impute missing data on HRQOL items that are

binary or ordinal. A rounding strategy is recommended so

that the imputed responses can fit the range of values for the

binary or ordinal variables [16, 37].

Relative importance measures for reprioritization RS

Statistical tests based on measures of relative importance

derived from descriptive discriminant analysis and logistic

regression models have been recently developed for

detecting RS in longitudinal HRQOL data [23]. These test

procedures are based on the premise that there is a statis-

tically significant longitudinal change in the relative

importance of the HRQOL domains when reprioritization

RS is present in the data (Figs. 1, 2).

Measures of relative importance derived from discrim-

inant analysis or logistic regression models use weights

(i.e., variable coefficients) or ranks (i.e., rank order of the

coefficients based on magnitude). This approach has been

proposed to quantify the relative importance of variables

that discriminate between two or more groups defined a

priori. These include standardized discriminant function

coefficients (SDFC), discriminant ratio coefficients, stan-

dardized logistic regression coefficients (SLRC), and

Pratt’s index for logistic regression [35, 44, 45]. The first

two measures are developed based on discriminant ana-

lysis, and the latter two are derived from logistic regression

models. These measures have been described in detail

elsewhere [35]. In the logistic regression model, the group-

membership variable (e.g., stroke severity) is the dependent

variable, while independent variables are the domain

scores. In contrast, in discriminant analysis, the domains

are the dependent variables model, while group-member-

ship variable is the independent variable. To test for rep-

rioritization RS, discriminant analysis or logistic regression

models are conducted independently at each measurement

occasion. To generate the sampling distribution of the

differences in relative importance weights, bootstrap sam-

ples in each group were centered by subtracting the group

means from the original data. The relative importance
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Fig. 1 Changes in Standardized

Discriminant Function

Coefficients for SF-36 Domains

between Baseline and 6 Months

by Missing Data Methods BP

SF-36 Bodily pain domain, PF

SF-36 Physical functioning

domain, RP SF-36 Role

physical domain, RE SF-36

Role emotional domain, SF SF-

36 Social functioning domain,

MH SF-36 Mental health

domain, VT SF-36 Vitality

domain, and GH SF-36 General

health domain
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weights were then calculated from the centered data at each

measurement occasion, and the bootstrap difference in

relative importance weights was estimated. For each of the

relative importance measures, reprioritization RS was

considered present in a domain if the change in signed

values of the relative importance weight or for a domain is

statistically significant at a pre-specified level of signifi-

cance (i.e., a = 5 %) [23].

Statistical analysis

We investigated the impact of missing data methods on test

procedures based on changes in the relative importance of

HRQOL domains in detecting reprioritization RS in longi-

tudinal data. Data from the self-reported HRQOL of stroke

caregivers at baseline and month 6 post-stroke are used to

demonstrate the implementation of these methods. This

analysis focuses on detecting reprioritization RS among the

SF-36 domains over the 6-month period post-stroke for

caregivers of patients with severe and less-severe stroke.

Preliminary descriptive analyses of the demographic char-

acteristics and self-reported SF-36 domain scores for the

stroke caregivers were conducted at baseline. To determine

the pattern of missing data, patients with complete data at

both occasions and those with incomplete data were com-

pared on demographic characteristics and SF-36 domain

scores at study baseline using t tests or v2 tests. The missing

data methods were compared using test procedures based on

changes in relative importance weights to detect repriori-

tization RS among the SF-36 domains.

For the multiple imputation model, each SF-36 domain at

baseline and month 6 were included in the imputation

model along with age of caregivers, number of children,

gender, and relationship with spouse as ancillary variables.

Given the apparent arbitrary missing data pattern observed

for this dataset, a MCMC multiple imputation model was

adopted and developed independently for each stroke

severity group [24]. Given that about 40 % of the study

participants had missing data on at least one measurement

occasion, 100 imputed datasets were created from the

multiple imputation model, in keeping with recommenda-

tions from previous research [14].

Given that no single relative importance measure has

been uniformly recommended, the relative importance

weights are derived from more than one relative impor-

tance measure, namely: SDFC derived from discriminant

analysis and SLRC derived from the logistic regression

model. For each measure, discriminant analysis and

logistic regression analysis were conducted on data at

baseline and 6-month post-baseline. Statistical significance

of the changes in the relative importance weights was

determined by the empirical bootstrap method, in which

the distribution of the test statistic is approximated using

B = 500 bootstrap samples, in keeping with previous

research recommendations [4, 5]. Reprioritization RS was

considered present in a domain if the change in the coef-

ficients derived from each relative importance measure was

statistically significant (a = 0.05).

Given that our example data contain missing observa-

tion, the assessment of statistical significance may vary
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Fig. 2 Changes in Standardized

Logistic Regression Coefficients

for SF-36 Domains between

Baseline and 6 Months by

Missing Data Methods. BP SF-

36 Bodily pain domain, PF SF-

36 Physical functioning domain,

RP SF-36 Role physical

domain, RE SF-36 Role

emotional domain, SF SF-36

Social functioning domain, MH

SF-36 Mental health domain,

VT SF-36 Vitality domain, and

GH SF-36 General health

domain
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depending on the missing data method adopted. For com-

plete-case analysis, relative importance test procedures for

RS detection were conducted on the remaining data, after

case-wise deletion of observations with missing data. For

mean imputation and EM imputation methods, test proce-

dures of relative importance were conducted on the

imputed datasets. For the multiple imputation method, the

differences in relative importance weights over the two

occasions for the original data were estimated by using

Rubin’s rule [34] to combine the imputation-specific esti-

mates of differences in relative importance weights. The

distribution of the differences in relative importance

weights was obtained by repeatedly sampling from the

original incomplete data with replacement (i.e., bootstrap)

to create B bootstrap datasets. For each bootstrap sample,

the differences in relative importance weights were esti-

mated based on multiple imputation of the bootstrap sam-

ple. A detailed description of the implementation of

relative importance test procedures for multiple imputed

dataset is described in ‘‘Appendix 1’’. All analyses were

conducted using SAS version 9.3 [36].

Results

Table 1 describes the demographic characteristics and self-

reported SF-36 domain scores for caregivers of survivors

with severe and less-severe stroke conditions at study

baseline. Of the 409 caregivers, about 344 patients had

complete data on the SF-36 domains at baseline, while 281

patients had complete data on all domains at month 6.

Spousal caregivers comprised 64.7 % of the sample;

39.9 % of the caregivers were caring for patients with

severe stroke conditions. The caregivers were predomi-

nantly female.

Of the 409 caregivers recruited into this study, 209

(50.0 %) has complete data on all the SF-36 domains and

at all four measurement occasions. At baseline, 344

(84.1 %) of the participants had complete data, while

68.7 % of the participants had complete data at month 6.

Further analyses shows that the pattern of missingness was

significantly associated with severity of stroke for the

patients receiving care; caregivers of patients with less-

severe stroke conditions were more likely to have complete

data on all four more occasions than caregivers of patients

with severe stroke conditions. However, there was no

significant association between the likelihood of missing

data and the stroke severity after adjusting for caregiver’s

relationship with the stroke patients. We therefore assume

that the missing data mechanism was MAR.

The results of the comparison of relative importance

weight analyses as a function of the missing data method

used are presented in Table 2. These analysis results are

based on changes in relative importance of the domains

between baseline and 6-month follow-up. The magnitudes

of changes in SDFCs were largest for role physical domain

for complete-case analysis. The vitality domain had the

largest changes in SDFC for mean imputed, EM imputed,

and multiple imputed datasets.

When the complete-case analysis method was adopted,

there was no evidence of statistical significant change in

the SDFCs over the two measurement occasions for any of

the SF-36 domains. But there were statistically significant

changes in SDFC on physical functioning and vitality

domains when mean imputation method was adopted. For

EM imputation methods, the magnitude of change in

SDFCs over time was statistically significant for the

vitality domain only. There were statistically significant

changes in SDFCs for mental health and vitality domains,

when multiple imputation method was adopted.

Furthermore, unlike test procedures based on SDFC, the

range of changes in the SLRCs among the domains and the

corresponding standard errors were smaller. There was no

statistically significant change in the SLRCs for any of the SF-

36 domains when complete-case analysis method was

adopted. But there were statistically significant changes in the

coefficients for the physical functioning and vitality domains

when mean imputation or EM imputation method was

adopted. Statistically significant changes in SLRCs were also

noted on physical functioning, mental health, and vitality

domains when multiple imputation method was adopted.

Table 1 Characteristics of stroke caregivers at study baseline

Patients’ characteristics Severe stroke

(N1 = 246)

Less-severe

stroke

(N2 = 163)

Age, mean (SD) 60.43 (14.82) 55.60 (14.62)

Gender (% male) 33.04 26.92

Relationship to patient

(% spousal)

30.49 26.99

Children (% yes) 18.14 20.75

Experience as a caregiver (% yes) 56.44 56.33

Patient-reported outcomes, mean (SD)

Stroke Impact Scale Physical 44.44 (20.51) 89.24 (8.05)

SF-36 bodily pain 76.69 (27.60) 79.94 (25.01)

SF-36 physical functioning 84.71 (21.26) 87.03 (19.27)

SF-36 role physical 73.06 (39.77) 81.13 (24.04)*

SF-36 role emotional 70.66 (40.52) 79.25 (35.64)*

SF-36 social functioning 71.63 (30.91) 84.11 (21.93)*

SF-36 mental health 71.83 (21.02) 75.14 (19.08)

SF-36 vitality 50.56 (25.32) 58.42 (23.16)*

SF-36 general health 73.92 (19.01) 75.23 (20.88)

SD standard deviation

* p \ 0.05
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Simulation study

A Monte Carlo simulation study was conducted to examine

the statistical power of test procedures based on SDFC and

SLRC under complete-case analysis, as well as with mean

imputation, EM imputation, and multiple imputation

methods. All procedures were investigated for two inde-

pendent groups. The simulation conditions investigated

included: (a) total sample size, (b) number of study vari-

ables, (c) missing data mechanisms, and (d) proportion of

missing data. Total sample sizes of N = 100 and 250 were

investigated, representing small and medium population

sizes. For each group, unequal group sizes were considered

using a 3:2 ratio. The number of outcome variables was

fixed at p = 4. Given that the investigated procedures are

likely to be influenced by the missing data mechanism, we

compared the relative importance test procedures under

MCAR, MAR, and MNAR missingness mechanisms. The

percentages of missing observations were set at 15 and

25 %.

The multivariate longitudinal data over two measure-

ment occasions for each group. First, the multivariate data

at baseline were generated from a multivariate normal

distribution with known means and group covariances

using the mvtnorm package in R [33]. The data at the

second measurement occasion was generated as a linear

combination of baseline data, change from baseline, and

multivariate latent factor representing reprioritization RS

effects on the domains. The multivariate data at the second

occasion were therefore obtained as.

Yij2 ¼ Yij1 þ Dij þ Iij

where Yij1 is the p 9 1 vector of observations for the ith

(i = 1, …, nj) subject in the jth (j = 1, 2) group at baseline,

Dij is the p 9 1 change from baseline for the ith subject,

and Iij is the p 9 1 latent factor vector representing the RS

effect for the ith subject. Assume Yij1�Npðlj1;R1Þ,
Dij�Npðgj;UjÞ, Iij�Npðhj;WjÞ, where gj; hj, Wj, and Uj

are the p 9 1 vector of mean change from baseline, p 9 1

vector of mean latent factors, p 9 p covariance matrix for

the change from baseline, and p 9 p covariance matrix for

the latent factors, respectively, for the jth group. The data

for the second measurement occasion, Yij2, were generated

from a multivariate normal distribution with jth group

mean as.

lj2 ¼ lj1 þ gj þ hj

and the jth group covariance is

Rj2 ¼ Rj1 þUj þWj

The mean configurations for the multivariate data at

baseline, change from baseline, and the latent RS effectsT
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are described in Table 3. For multivariate data at baseline,

a quadratic mean configuration across the domains in

Group 1 while a constant mean configuration, represented

by a unit vector, was assumed as the mean vector for Group

2. On the other hand, a linearly decreasing mean configu-

ration was assumed across the domains for hj in Group 1,

while a null vector was assumed for hj in Group 2.

Moreover, relative importance measures are known to

be influenced by both the magnitude and pattern of corre-

lation among the observations [45]. A compound sym-

metric (CS) structure was assumed for the correlation

among the domains at baseline. More specifically, the

following CS correlation matrices were assumed for mul-

tivariate data at baseline and multivariate change from

baseline: (a) Q1: CS with q = 0.3 and (b) Q2: CS with

q = 0.7. On the other hand, a CS correlation structure was

adopted for the latent factor variables such that the mag-

nitude of the correlation among the latent factors was

assumed q = 0.2.

Conditions for statistical power are investigated by

simulating known RS effects, as measured by the multi-

variate latent factor, in the multivariate data at the second

measurement occasion. RS effects were assumed to be

present on all the domains in Group 1, but not in Group 2.

The statistical power for each procedure was measured

using all-variable power (ALLV), the power of a test

procedure to reject the p non-null hypothesis in the family

of p hypotheses. A total of 500 simulations were conducted

for each of the combination of simulation conditions. For

each procedure, B = 500 bootstrap samples were used to

generate the distribution of differences between relative

importance weights. For a = 0.05, a Bonferroni correction

was used to adjust for multiple correlated tests of signifi-

cance. Differences in statistical power \5 % were con-

sidered negligible, while differences greater than 10 %

were considered substantial.

Simulation results

Table 4 describes the average ALLV power for relative

importance test procedures based on SLRC and SDFC

when complete-case analysis was conducted, as well as

with mean imputation, EM imputation, and multiple

imputation methods. These results were stratified by total

sample size, percentage of missing data, and missingness

mechanism. In general, the average ALLV power for test

procedures based on the SDFC was at least 9.0 % higher

than the average ALLV power for test procedures based on

SLRCs, regardless of the percentage of missing data,

missingness mechanism, and method for adjusting for

missing data. On the other hand, the average ALLV power

for each procedure decreased as the percentage of missing

data increased, regardless of the sample size, mechanism of

missing data, and imputation method. For example, when

N = 250, the average ALLV power for tests based on

SLRC and SDFC procedures were 19.3 and 30.8 %,

respectively, for complete-case analysis method when

15 % of the data were missing via the MCAR mechanism.

Table 3 Description of mean patterns for the simulation study

Mean configurations Group 1 Group 2

Mean at baseline (l) (0.5, 2, 1.5, 1) (1, 1, 1, 1)

Mean change (g) (1, 1, 1, 1) (1, 1, 1, 1)

Latent variable mean (h) (3, 1.5, -1.5, -1.5) (0, 0, 0, 0)

Table 4 Average all-variable

power (%) for relative

importance tests by missing data

method when p = 4 (simulation

results)

MCAR missing completely at

random, MAR missing at

random, MNAR missing not at

random, CC complete-case

analysis, Mean mean

imputation, EM EM imputation,

MI multiple imputation, %

Missing percent of missing data

% Missing Missing data

mechanism

Standardized discriminant function

coefficients

Standardized logistic regression

coefficients

CC Mean EM MI CC Mean EM MI

N = 100

15 MCAR 30.8 41.3 40.4 41.5 19.3 26.1 27.5 27.9

MAR 31.2 40.8 39.9 41.4 19.4 26.6 27.5 27.5

MNAR 30.3 39.6 38.5 39.2 14.7 21.1 21.8 22.5

25 MCAR 25.5 43.7 41.4 44.3 15.5 29.0 29.1 29.9

MAR 25.1 40.5 41.3 42.8 15.0 26.6 29.5 29.6

MNAR 26.1 40.3 38.9 40.7 10.7 16.9 21.6 21.1

N = 250

15 MCAR 88.6 92.5 90.9 91.6 79.3 84.7 83.8 85.1

MAR 88.6 91.8 90.8 92.0 80.6 84.8 84.3 85.8

MNAR 87.0 90.5 88.5 90.0 72.6 77.5 77.3 78.8

25 MCAR 82.9 90.2 87.9 90.7 70.9 82.7 81.4 83.0

MAR 82.3 89.9 88.5 90.1 71.4 81.5 81.0 83.3

MNAR 78.9 87.5 83.5 86.2 56.8 67.9 69.00 70.5
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But when the percentage of missing data was 25 %, the

average ALLV power for the former and latter procedures

were 15.5 and 25.5 %, respectively.

There were negligible differences in average ALLV power

of the test procedures under both MCAR and MAR miss-

ingness mechanisms. However, both test procedures were not

equally robust to MNAR mechanism. More specifically, test

procedure based on SDFC was not influenced by the pattern

of missing data, but test procedure based on SLRC was

substantially less powerful when the data were missing via

the MNAR mechanism. For example, when 25 % of the data

were missing, the average ALLV power for test procedure

based on SDFC for MCAR, MAR, and MNAR were 82.9,

82.3, and 78.9 %, respectively, when complete-case analysis

method was adopted. In contrast, the average ALLV for test

procedure based on SLRC were 70.9, 71.4, and 56.8 %, when

the data are MCAR, MAR, MNAR, respectively.

Moreover, both test procedures were sensitive to the

missing data method. More specifically, the ALLV power

for each procedure was smallest when the complete-case

method was adopted and largest when an imputation method

was adopted. On the other hand, there were no substantial

differences in the average ALLV power for test procedures

based on mean, EM, and multiple imputation methods. For

example, for N = 250, when 25 % of the data were missing

via the MCAR mechanism, the average ALLV power for test

procedure based on SLRC under complete-case analysis,

mean imputation, and multiple imputation methods were

70.2, 83.5, and 82.7 %, respectively.

Finally, the average ALLV power for each procedure

when N = 250 was at least two times the average ALLV

power when N = 100, regardless of the mean configura-

tion, percentage of missing data, missing data mechanism,

and missing data method. For example, when 15 % of the

data were missing via the MCAR mechanism, the average

ALLV power for test procedures based on SDFC and

SLRC procedures under mean imputed data were 44.9 and

20.3 %,respectively, when N = 100. When N = 250, the

average ALLV power for the test procedures under mean

imputed data were 92.5 and 84.7 %, respectively.

Discussion

This study investigated the presence of reprioritization RS

in a stroke caregiver population characterized by missing

data. The choice of imputation methods used to address

missing data will influence conclusions about the presence

of RS. Neither of the two relative importance tests for

reprioritization RS showed any evidence of RS when

complete-case analysis was adopted. But the test proce-

dures based on SLRC and SDFC revealed the presence of

RS on physical function and vitality domains when mean

imputation or EM imputation was adopted. The multiple

imputation method showed evidence of RS on physical

functioning, mental health, and vitality domains.

The findings about RS detection in the numeric example

are consistent with results of our simulation study, which

revealed that relative importance tests procedure based on

complete-case analysis are less powerful in detecting RS

than tests based on imputation methods. The statistical

power of these test procedures decreased as the proportion

of missing data increased, but the power of the test pro-

cedures increased as the sample size increased. On the

other hand, there were negligible differences in statistical

power of the procedures when mean, EM, and multiple

imputation methods were adopted. Furthermore, our sim-

ulation results revealed that a test procedure based on

changes in SLRCs was substantially less powerful when

the data were MNAR compared to the power results when

the data are MCAR. There were negligible differences in

the average ALLV power of the test procedure based on

SDFCs when the data were missing via the MCAR or

MNAR mechanisms, regardless of the choice of missing

data method, percentage of missing data, and sample size.

Although results from the simulation study revealed that

relative importance tests based on imputation methods are

more powerful to detect RS than tests based on complete-case

analysis, the analysis results of the example datasets showed

variations in estimates of differences in relative importance

weights over the 6-month period for various imputation

methods for each relative importance test procedure. The

observed variations can be attributed to several factors such as

imputation methodology, domain correlations, with-in

domain autocorrelations, and mechanism of missing data. For

example, the choice of an imputation method can affect the

estimates of the difference in relative importance weights on

the domains. Given that, mean imputation tends to underes-

timate the correlations among the SF-36 domains, estimates

of relative importance weights at each measurement occa-

sions, and estimates of differences in relative importance

weights over the two measurement occasions may be biased.

In contrast, both EM and multiple imputation models preserve

the correlation structure by estimating the missing data

through maximum likelihood and MCMC methods, respec-

tively. We recommend that the changes in relative importance

weights as well as the corresponding standard errors for the

imputation methods be considered when determining whether

the choice of imputation methods might influence the inter-

pretation of the original clinical study.

The study has some caveats. Our investigations of the

mechanism of missing data in the example data suggest

that the missing observations for participants over the two

measurement occasions are likely to be MAR, because the

pattern of missingness over the 6-month follow-up was

associated with self-reported domain scores at baseline.
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Nonetheless, it is not known whether the missing data

mechanism might also be associated with unobserved vari-

ables (i.e., MNAR), and this assumption cannot be tested. On

the other hand, the simulation study described here only

focused on the statistical power of the test procedures when

the correlations among the domains are assumed to be equal.

This assumption may not be realistic in longitudinal HRQOL

studies characterized by heterogeneous (i.e., unstructured)

between-domain correlation matrix.

In summary, this study investigates test procedures

based on relative importance measures for RS detection in

incomplete longitudinal HRQOL data in the context of

complete-case analysis, and three standard missing data

imputation methods. Our findings revealed that the detec-

tion of reprioritization RS among the HRQOL domains is

affected by the choice of both the proportion and type of

missing data mechanism and the imputation methods. More

specifically, relative importance test procedures for RS

based on changes in SDFCs and SLRCs are most powerful

when mean or multiple imputation methods are used to fill

missing observations. We therefore recommend that one of

these methods should be adopted when testing for RS in

incomplete longitudinal HRQOL data.
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Appendix 1

Relative importance tests for response shift detection in

incomplete longitudinal data.

To implement relative importance tests under complete-

case analysis method, observations with at least one

missing observation on any of the domains are deleted. The

differences in relative weights are conducted on the com-

plete data. Similarly, for the mean imputation and EM

imputation methods, tests of differences in relative

importance weights are conducted on the mean imputed

and EM imputed datasets, respectively.

In contrast, for multiple imputation methods, the fol-

lowing steps are taking to implement the relative impor-

tance tests.

1. Estimate the observed differences in relative impor-

tance weights for domains on the original data. This is

accomplished as follows:

a. Multiply impute the original incomplete longitudi-

nal data by creating M copies of the imputed dataset.

b. For each imputed dataset, estimate the relative

importance weights at each occasions (w1mk and

w2mk; m = 1, …, M; k = 1, …, p) and the

differences in relative importance weights over

the two occasions (i.e., Wmk = w1mk–w2mk).

c. Use Rubin’s rule as described in Sect. ‘‘Methods’’

to combine the estimates of the differences in

relative importance weights for the M datasets.

The average difference in relative importance

weights is called the observed relative importance

weights, Ŵk.

2. Generate the distribution of the differences in relative

importance weights by repeatedly sampling from the

original incomplete data with replacement (say

B times).

a. For each bootstrapped incomplete dataset, imple-

ment steps 1a–c to estimate the bootstrap-specific

differences in relative weights Ŵbk.

b. Sort the Ŵbk s (b = 1, 2, …, B) from the smallest

to the highest. This is the bootstrap distribution of

the difference in relative importance weights from

the B bootstrap samples.

c. Estimate the Wbks that corresponds to the 100 (a/

2)th percentile (WbkL) and the 100 (1-a/2)th

percentile (WbkU) of the bootstrap distribution.

3. Statistical significance of the differences in relative

importance weights on a domain is considered present

if Wk is outside the interval (WbkL, WbkU).

Appendix 2

Description of missing data patterns in the longitudinal

study of stroke caregivers.

See Table 5.

Table 5 Description of missing data patterns in the SF-36 domains

of the longitudinal study of stroke caregivers

Missing data

pattern

Baseline Month

3

Month

6

Month

12

N

1 O O O O 209

2 O O X X 43

3 O O O O 32

4 O X X X 60

5 X O O O 37

6 X O X X 19

7 X X O O 3

8 X X X X 6

O observed, X missing
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Appendix 3

See Tables 6 and 7.
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