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Abstract

Objective Fatigue is one of the most prevalent and sig-

nificant symptoms experienced by breast cancer patients.

This study aimed to investigate potential population het-

erogeneity in fatigue symptoms of the patients using the

innovative non-normal mixture modeling.

Methods A sample of 197 breast cancer patients completed

the brief fatigue inventory and other measures on cancer

symptoms. Non-normal factor mixture models were ana-

lyzed and compared using the normal, t, skew-normal, and

skew-t distributions. Selection of the number of latent classes

was based on the Bayesian information criterion (BIC). The

identified classes were validated by comparing their demo-

graphic profiles, clinical characteristics, and cancer symp-

toms using a stepwise distal outcome approach.

Results The observed fatigue items displayed slight

skewness but evident negative kurtosis. Factor mixture

models using the normal distribution pointed to a 3-class

solution. The t distribution mixture models showed the

lowest BIC for the 2-class model. The restored class

(52.5 %) exhibited moderate severity (item mean =

2.8–3.2) and low interference (item mean = 1.1–1.9). The

exhausted class (47.5 %) displayed high levels of fatigue

severity and interference (item mean = 5.8–6.6). Compared

to the restored class, the exhausted class reported signifi-

cantly higher perceived stress, anxiety, depression, pain,

sleep disturbance, and lower quality of life.

Conclusions The non-normal factor mixture models

suggest two distinct subgroups of patients on their fatigue

symptoms. The presence of the exhausted class with

exacerbated symptoms calls for a proactive assessment of

the symptoms and development of tailored interventions

for this subgroup.

Keywords Brief Fatigue Inventory � Breast cancer �
Mixture modeling � Population heterogeneity � Non-normal

distribution

Introduction

Cancer-related fatigue is a subjective symptom experience

that is rarely relieved by sleep or rest [1]. It is described as

persistent feelings of exhaustion and lack of energy and is

one of the most commonly reported symptoms among

breast cancer patients [2]. It can occur during the course of

the disease and persist for years after treatment completion

[3]. An essential characteristic of cancer-related fatigue is

the inability of the patient to maintain a prior level of

physical functioning, thus affecting daily life and work

performance. Rather than as an isolated symptom, fatigue

often arises in symptom clusters [4] and has been associated

with other symptoms such as pain, anxiety, depression, and

sleep problems [5, 6]. Given its prevalence and influence on

breast cancer patients, valid and precise assessment of

fatigue is necessary. A common goal of categorical analytic

approach is to explore the cluster patterns in study samples.

The conventional practice of artificial categorization of

continuous variables (e.g., dichotomization on a median

split) suffers from methodological drawbacks, namely,

attenuation in correlations among variables, measurement

precision, and statistical power [7].
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Dirksen, Belyea, and Epstein [8] conducted a latent

profile analysis to investigate the cluster patterns of fatigue

symptoms among 86 breast cancer survivors. Three latent

classes, including exhausted (35 %), tired (41 %), and

restored (24 %) subgroups, were identified. The exhausted

subgroup showed significantly higher levels of insomnia,

anxiety, depression, and lower quality of life than the other

subgroups. Latent profile analysis is a categorical modeling

technique that classifies individuals into unobserved sub-

groups with distinct profiles [9] and is methodologically

more applicable than artificial categorization. Yet, this

technique assumes conditional independence for the fati-

gue items and does not account for expected within-sub-

group heterogeneity. Factor mixture analysis is a hybrid

and flexible mixture modeling technique which simulta-

neously investigates the existence of unobserved subgroups

while accounting for the underlying factor structure [10]. It

explicitly models the heterogeneity both between and

within the latent classes.

The aim of this study was to investigate potential pop-

ulation heterogeneity in fatigue symptoms of breast cancer

patients via factor mixture modeling. However, it is well

known that traditional mixture modeling relies heavily on

the within-class normality assumption [11]. Violation of

this assumption can result in formation of spurious classes,

i.e., latent subgroups that exist only to accommodate the

heavy tails of non-normal distributions [12]. That non-

normality can lead to extraction of non-substantive latent

classes in traditional mixture modeling could compromise

the authenticity of the results. The present study adopted

the non-normal mixture modeling approach implemented

recently in Mplus version 7.2 by Asparouhou and Muthén

[13]. This pioneering approach explicitly allows the within-

class distributions to be skewed and to have heavy tails,

thereby preventing the formation of spurious classes that

merely compensate for distributional deviations from

standard normal distribution [14]. To our knowledge, this

study is the first to apply non-normal mixture modeling in

the context of fatigue symptoms.

Methods

Sample

A secondary analysis was conducted with data obtained

from a randomized clinical trial that evaluated the efficacy

of a movement-based psychotherapy program between

January 2011 and December 2012. Study participants were

female patients diagnosed with breast cancer and aged

18 years old or above. The exclusion criteria included

metastases of breast cancer, a history of psychiatric illness,

pregnancy, and inability to understand Chinese. A total of

370 breast cancer patients were invited via mail and tele-

phone and 53 of them were not eligible to join the study.

The data used in this analysis were obtained at baseline

from 197 women who were recruited via convenience

sampling from local hospitals and community cancer sup-

port centers in Hong Kong. Ethical approval was obtained

from the local institutional review board.

The participants provided written informed consents and

completed a self-report questionnaire in a paper-and-pencil

format. The participants reported a mean age of 49.4 years

(SD = 8.0) and an average cancer duration of 23.1 months

(SD = 7.5). Most of the participants were married

(64.5 %), had completed at least secondary education

(77.7 %), and were diagnosed with stage I (26.0 %) or II

(43.2 %) breast cancer. The majority of the sample had

received lumpectomy (56.4 %), chemotherapy (78.1 %),

and was receiving adjuvant radiotherapy (70.1 %).

Measures

Fatigue symptoms among the cancer patients were assessed

by the 9-item, 11-point brief fatigue inventory (BFI) [15].

The first three items inquire fatigue severity at the current,

usual, and worst times during the past 24 h. The following

six items assess the interference caused by fatigue on

general activity, mood, walking ability, normal work,

relationships with other people, and enjoyment of life.

Previous studies [15, 16] suggest a unidimensional struc-

ture for the BFI. Nevertheless, none of these studies sys-

tematically verify the structure against alternative factor

models. In the present study, the model fit of the one-factor

model was statistically evaluated and compared with the

two-factor model via confirmatory factor analysis.

The self-report questionnaire also included measure-

ment instruments on several psychopathological variables.

Perceived stress was measured by the 10-item, 5-point

Perceived Stress Scale [17], with the scale score ranging

from 0 to 40. Anxiety and depression were assessed using

the 14-item, 4-point Hospital Anxiety and Depression

Scale [18], with the scale scores for anxiety (7 items) and

depression (7 items) ranging from 0 to 21. Pain was mea-

sured by the 11-item, 11-point Brief Pain Inventory [19],

with the scale scores for pain severity (4 items) and pain

interference (7 items) ranging from 0 to 10. Sleep distur-

bance was assessed by the 19-item Pittsburgh Sleep Quality

Index [20]. The scale measures seven components on a

4-point format, with the scale score ranging from 0 to 21.

Quality of life was measured by the 36-item, 5-point

Functional Assessment of Cancer Therapy—Breast [21],

with the scale score ranging from 0 to 144. In this study,

satisfactory reliability was found for all of the measure-

ment scales (Cronbach’s a = 0.79–0.97).

2910 Qual Life Res (2014) 23:2909–2916

123



Data analysis

Confirmatory factor analysis

The factor structure of the BFI was examined using con-

firmatory factor analyses on the one- and two-factor

models. The two-factor model specified two factors on

fatigue severity (measured by three items) and interference

(measured by six items). The model fit was evaluated via

the following fit indices: comparative fit index (CFI), root

mean square error of approximation (RMSEA), and stan-

dardized root mean square residuals (SRMR) [22]. chi-

square difference test was used to compare the model fit of

the two models. All analyses were carried out in Mplus

version 7.2 [23] using robust maximum-likelihood esti-

mator. Missing data were handled via full-information

maximum likelihood under the missing-at-random

assumption [24].

Factor mixture models

We first scrutinized the skewness, kurtosis, and distribu-

tions of the BFI items. For conventional mixture models,

violations of within-class normality assumption can result

extracting non-substantive latent classes that merely rep-

resent statistical features of the data [12]. Non-normal

mixture modeling resolves this problem by facilitating

specification of a mixture of non-normal distributions to

the data [13]. In addition to normal distributions, a range of

non-normal distributions, namely, skew-normal, t, and

skew-t [25], can be specified. The skew-normal distribution

accounts for excessive skewness by adding a skew

parameter to the model [26, 27]. The t distribution accounts

for excessive kurtosis by adding a degree of freedom

parameter. The skew-t distribution accounts for both

excessive skewness and kurtosis, by adding skew and

degree of freedom parameters [14, 28]. Essentially, non-

normal mixture models can fit the data considerably better

than normal mixtures and reduce the risk of extracting

spurious latent classes due to non-normality.

In the present study, non-normal mixture modeling was

performed using the new DISTRIBUTION = TDIST/

SKEWNORMAL/SKEWT command in Mplus version 7.2.

We first estimated the one-class factor mixture model using

default normal distributions and compared its model fit to

the non-normal mixture counterparts using t, skew-normal,

and skew-t distributions. Skew and degree of freedom

parameters were incorporated in the mixture models when

necessary to correct for non-normality of the variables.

Factor mixture models with increasing classes were then

specified subsequently to the data to determine the optimal

number of class in the sample. The models were fitted with

class-invariant factor loadings and residual variances and

class-varying item intercepts, factor variances, and factor

covariance. To avoid convergence on a local solution, all

mixture models were estimated using 100 random starting

values and 20 final stage optimizations to replicate the best

log-likelihood.

Model selection was based on the Bayesian information

criterion (BIC) [29, 30]. The BIC balances the model log-

likelihood by imposing a penalty term for the number of

model parameters, with a lower value of BIC to be pre-

ferred. Differences of 2 to 6, 6 to 10, and greater than 10

denote positive, strong, and very strong evidence against

the models with higher BIC, respectively. Average pos-

terior class probabilities and entropy of the models were

reported [31]. Entropy is a measure of the model’s classi-

fication accuracy with a value close to 1 denotes greater

accuracy. Substantive checking of the latent classes was

performed in relation to the demographic profiles, clinical

characteristics, and psychopathological variables [32].

Equality of means or proportions across the classes were

tested for continuous or categorical variables, respectively,

using the stepwise distal outcome method [33].

Results

BFI items statistics

Table 1 displays the descriptive statistics of the BFI items.

The participants reported moderate (&5) mean levels of

fatigue severity. On average, they showed low to moderate

levels of fatigue interference, with a range of 3.3 (rela-

tionships with others) to 4.5 (normal work). The items

showed small degree of skewness (|skew| & 0.5). How-

ever, negative kurtosis was found for all items, in particular

the six items assessing fatigue interference (kurtosis =

-1.00 to -1.30). Figure 1 shows as an example the his-

togram for item 9 (enjoyment of life). Despite the overall

mean of 4.0, only 6.1 % of the participants showed a score

of 4 for this item, with 24.5 % scoring 3 or 5. Comparable

proportions of participants showed either high (22.9 %

scoring 7 or 8) or low (26.6 % scoring 0 or 1) levels of

interference. The platykurtic distributions found for the

items revealed signs of bimodal distributions.

Confirmatory factor analysis

The one-factor model fitted the data poorly, with

v2(27) = 291.7, p \ .001, CFI = 0.73, RMSEA = 0.22,

and SRMR = 0.07. The two-factor model yielded an

acceptable fit to the data with v2(26) = 67.3, p \ .001,

CFI = 0.96, RMSEA = 0.09, and SRMR = 0.04 and

provided a significantly better fit than the one-factor model

(Dv2(1) = 70.1, p \ .001). As shown in Table 1, the factor
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loadings for the two factors (severity and interference)

were significant (p \ .001) and salient (k C 0.74). The two

factors were positively and strongly correlated (r = 0.79,

p \ .001).

Factor mixture models

For the factor mixture models, the two latent factors, fati-

gue severity and interference, were modeled either as

normal, t, skew-normal, or skew-t variables. The residuals

of the factor indicators were assumed normal. Fit statistics

of the factor mixture models under various distributions are

presented in Table 2. Among the four 1-class models, both

the t and skew-t distribution models showed improvements

in BIC over the normally distributed model while the skew-

normal distribution model resulted in a higher BIC. In the

skew-t distribution model, the degree of freedom parameter

(df = 3.34, SE = 0.66, p \ .001) deviated considerably

from that of the normal distribution (with df C 30).

Insignificant skew parameters were found for fatigue

severity (skew = 0.72, SE = 0.71, p = .31) and interfer-

ence (skew = -0.45, SE = 0.80, p = .57). These results

suggest the need to account for excessive kurtosis but not

excessive skewness in the present sample. Subsequent

multi-class mixture models were estimated only under

normal and t distributions. Under the normal distribution,

the 3-class model displayed the lowest BIC (the 4-class

model did not converge). Using the t distribution for the

latent factors, however, showed the lowest BIC for the

2-class model. Importantly, the 2-class t distribution mix-

ture model provided a substantially better BIC than the

3-class normal mixture model.

The 2-class t distribution mixture model

Figure 2 displays the estimated overall and class-specific

distributions for BFI item 9 in the 2-class t distribution

mixture model. In the figure, the overall bimodal

Table 1 Descriptive statistics

of the BFI items and factor

loading pattern for the two-

factor model

All factor loadings are

statistically significant

(p \ .001)

Item Mean (SD) Skewness Kurtosis Severity Interference

Current fatigue 5.0 (2.4) -0.51 -0.64 0.93

Usual fatigue 5.0 (2.3) -0.43 -0.57 0.97

Worst fatigue 5.6 (2.5) -0.55 -0.47 0.91

General activity 4.0 (2.5) -0.18 -1.04 0.85

Mood 3.9 (2.5) -0.12 -1.00 0.85

Walking ability 4.0 (2.9) 0.05 -1.22 0.74

Normal work 4.5 (2.9) -0.26 -1.17 0.86

Relationships with others 3.3 (2.7) 0.18 -1.30 0.82

Enjoyment of life 4.0 (2.8) 0.03 -1.21 0.85

Fig. 1 Histogram and descriptive statistics for BFI item 9 (enjoyment

of life)

Table 2 Fit statistics of the factor mixture models under various

distributions for the BFI

Model Description LL # BIC Entropy

1-Class, 2-factor

mixture

1 Normal distribution -3,356.2 28 6,860.3 –

2 t distribution -3,230.1 29 6,613.3 –

3 Skew-normal

distribution

-3,356.2 30 6,870.9 –

4 Skew-t distribution -3,222.7 31 6,609.3 –

2-Class, 2-factor

mixture

5 Normal distribution -3,298.5 41 6,813.7 0.895

6 t distribution -3,160.0 43 6,547.2 0.738

3-Class, 2-factor

mixture

7 Normal distribution -3,246.9 54 6,779.1 0.906

8 t distribution -3,160.0 57 6,621.2 0.835

LL log-likelihood, # free parameters, BIC Bayesian information

criterion
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distribution (denoted by solid curve) was decomposed into

two t-distributed classes (denoted by the dotted and dashed

lines) with df = 2.77 and 2.91. Figure 3 displays the

response profile plot for the BFI items in the 2-class t

distribution mixture model. The first class (N = 103,

52.5 %) was labeled the ‘restored’ class and showed

moderate severity (item mean = 2.8–3.2) and low inter-

ference (item mean = 1.1–1.9). The second class (N = 94,

47.5 %) was labeled the ‘exhausted’ class and showed a

consistent pattern of high levels of fatigue severity and

interference (item mean = 5.8–6.6). Each of the item

means in the exhausted class was above 5.0 and substan-

tially higher than that in the restored class. The average

posterior class probabilities (0.92 and 0.93 for the restored

and exhausted class, respectively) suggest good classifica-

tion accuracy for the model.

Characteristics of the two latent classes

As shown in Table 3, the two classes did not differ sig-

nificantly in age (v2(1) = 0.44, p = .51), cancer duration

(v2(1) = 0.51, p = .48), education (v2(2) = 4.72, p =

.09), marital status (v2(1) = 0.23, p = .63), stage at diag-

nosis (v2(3) = 1.38, p = .71), surgery type (v2(1) = 1.00,

p = .32), chemotherapy (v2(1) = 0.01, p = .94), and

adjuvant radiotherapy (v2(1) = 1.49, p = .22). The

restored class was composed of a significantly greater

proportion of participants who received patient support

service (v2(1) = 3.99, p = .046).

Table 4 shows the participant scores on the psychopath-

ological variables for the two fatigue classes. The exhausted

class reported significantly higher levels of perceived

stress (v2(1) = 60.98, p \ .001), anxiety (v2(1) = 56.03,

p \ .001), depression (v2(1) = 57.68, p \ .001), pain

severity (v2(1) = 30.82, p \ .001), pain interference

(v2(1) = 40.72, p \ .001), and sleep disturbance

(v2(1) = 4.78, p = .029) than the restored class. The

exhausted class had a significantly lower level of quality of

life (v2(1) = 84.11, p \ .001) than the restored class.

Discussion

As Piper and Cella [34] remarked, it is clinically relevant to

determine whether cancer patients can be classified into

specific distinct and meaningful subgroups based on their

fatigue symptoms. The present study investigated potential

population heterogeneity in fatigue symptoms in a sample

of breast cancer patients via an innovative use of non-

normal mixture modeling. Regarding the latent structure of

the BFI, the two-factor model composing of fatigue

severity and fatigue interference was found to be superior

to the one-factor model. This finding suggests future

research to differentiate the degrees of severity and inter-

ference caused by fatigue in various aspects of life for a

deeper understanding of cancer-related fatigue.

Results of factor mixture modeling suggest the existence

of two latent subgroups with distinct profiles of fatigue

symptoms. Nearly, half of the sample (47.5 %) belonged to

the exhausted class with consistently high levels of fatigue

severity and interference. This class showed significantly

greater perceived stress, anxiety, depression, pain severity,

pain interference, and sleep disturbance than the restored

class. In line with the literature on symptom clustering [35,

36], these exacerbated symptoms may coexist and interact

in leading to a poor quality of life in the exhausted class.

This finding informs clinicians to be aware of a compre-

hensive treatment of not only the fatigue symptoms, but

also the comorbid symptoms of the patients for a holistic

improvement. Active management of the associated

Fig. 2 Estimated overall and class-specific distributions for BFI item

9 (enjoyment of life) in the 2-class t distribution mixture model

Fig. 3 Response profile plot for the BFI items in the 2-class t

distribution mixture model
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symptoms in an earlier stage of treatment may facilitate

prevention or amelioration of cancer-related fatigue in the

patients.

The present results somewhat resemble the findings by

Dirksen, Belyea, and Epstein [8], which pointed to a three-

class model including the exhausted, restored, and tired

classes. However, the tired class did not differ from the

restored class in most of the symptoms, which weakens the

discriminant validity and substantive meanings of their

model. The overextraction of latent class can be attributed

to violations of the local independence assumption in latent

profile analysis [10]. Our factor mixture model, which

allows for both within-class covariation and non-normality

of the variables, is likely a more realistic and parsimonious

model of the fatigue symptoms.

Identifying the population heterogeneity in fatigue

symptoms could provide future directions in providing

quality care to the patients. From a substantive point of

view, the present two-class two-factor mixture model may

hold greater clinical utility over a regular two-factor model

and facilitate diagnostic decision making [37]. The current

results call for a proactive assessment of the heightened

symptoms and development of tailored interventions for

the exhausted class. Similar to the findings by Dirksen,

Belyea, and Epstein [8], our two subgroups displayed

similar demographic and clinical characteristics. An

exception was that the restored class comprised a signifi-

cantly greater proportion of patients who had received

patient support service. This appears to suggest beneficial

effects of patient support service for patients with breast

cancer.

From an analytical perspective, non-normal factor

mixture modeling is a flexible methodology that allows us

to examine the potential unobserved heterogeneity and

within-class item covariation simultaneously. This tech-

nique relaxes the usual within-class normality assumption

Table 3 Demographic and

clinical characteristics for the

two fatigue classes

SE standard error; comparison

was done using stepwise distal

outcome method

Characteristic Restored class

n = 103 (52.5 %)

Exhausted class

n = 94 (47.5 %)

Statistics

Mean (SE) Mean (SE)

Age (years) 49.7 (0.8) 49.0 (0.9) v2 = 0.44, p = .51

Cancer duration (months) 22.8 (0.7) 23.6 (0.8) v2 = 0.51, p = .48

Education % %

Primary/Secondary/Tertiary 24.4/48.0/27.6 19.7/36.9/43.4 v2 = 4.72, p = .09

Marital status

Single/married 37.1/62.9 33.6/66.4 v2 = 0.23, p = .63

Stage at diagnosis

0/I/II/III 7.1/23.3/46.6/22.9 6.3/29.8/38.6/25.4 v2 = 1.38, p = .71

Surgery type

Mastectomy/lumpectomy 40.3/59.7 47.9/52.1 v2 = 1.00, p = .32

Chemotherapy

Yes/no 77.8/22.2 78.4/21.6 v2 = 0.01, p = .94

In adjuvant radiotherapy

Yes/no 73.8/26.2 65.3/34.7 v2 = 1.49, p = .22

Patient support service

Yes/no 67.7/32.3 52.6/47.4 v2 = 3.99, p = .046

Table 4 Scores on

psychological distress,

symptoms, and quality of life

measures for the two fatigue

classes

SE standard error; comparison

was done using stepwise distal

outcome method

Variables Restored class

n = 109 (55.3 %)

Exhausted class

n = 88 (44.7 %)

Statistics

Mean (SE) Mean (SE)

Perceived stress 17.1 (0.5) 21.8 (0.4) v2 = 60.98, p \ .001

Anxiety 5.0 (0.3) 8.4 (0.3) v2 = 56.03, p \ .001

Depression 4.2 (0.3) 7.8 (0.4) v2 = 57.68, p \ .001

Pain severity 2.0 (0.2) 3.6 (0.2) v2 = 30.82, p \ .001

Pain interference 1.6 (0.2) 3.6 (0.3) v2 = 40.72, p \ .001

Sleep disturbance 7.0 (0.4) 8.3 (0.5) v2 = 4.78, p = .029

Quality of life 107.4 (1.6) 85.5 (1.8) v2 = 84.11, p \ .001
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and accommodates skewed or heavy tails in the distribu-

tions. Mixture of skew-t distributions avoids the formation

of spurious classes due to non-normality and skewness and

is more likely to extract substantive latent classes that are

of theoretical interest. In the present study, the non-normal

mixture models resulted in largely insignificant skew

parameters. This finding is consistent with the slight

skewness of the BFI items. However, the items appeared to

violate the normal distribution assumption with consider-

able negative kurtosis. The use of t distribution mixture

model not only accounts for the observed kurtosis but also

helps remove one of the classes found in the normally

distributed model. In addition to eliminating the potentially

spurious class that lack proper interpretation, a notably

better fitting model was actually found via the non-normal

mixture model. These findings support further use of non-

normal mixture modeling in exploring potential underlying

heterogeneity in the likely presence of non-normality of the

variables.

The present study is the first of its kind to apply non-

normal factor mixture modeling to evaluate the underlying

population heterogeneity of cancer-related fatigue symp-

toms. The current findings may be limited in their general-

izability due to the modest sample size and self-selection

sampling bias. The present study was based on cross-sec-

tional self-report measures and may be subject to common

method bias. Despite these limitations, the results of non-

normal mixture models demonstrate clear support for a two-

class two-factor structure for fatigue symptoms that has

clinical implications. Further studies are recommended to

investigate the potential unobserved heterogeneity in larger

samples of cancer patients. It would be of particular interest

to elucidate significant predictors of the fatigue classes and

study the longitudinal change in the fatigue-based class

membership in future studies.
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