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Abstract

Objectives This article provides a commentary in

response to ‘‘Varni et al. (Qual Life Res. doi:10.1007/

s11136-013-0370-4, 2013).‘‘

Methods and results The commentary argues that the

approximate model fit indexes commonly used in maxi-

mum-likelihood confirmatory factor analysis and factorial

invariance testing are seriously flawed, as they overlook

potentially serious model misspecifications that could bias

parameter estimates and compromise inference.

Conclusions Flexible and convenient Bayesian estima-

tion approaches are presented that can substantially aid in:

(1) resolving commonly encountered specification errors in

confirmatory factor models and (2) locating specific mea-

surement parameters that are non-invariant across popula-

tion subgroups. It is recommended that these methods

should be more widely adopted for evaluating the factorial

invariance of patient-reported outcome measures and other

types of instruments.

Keywords Factorial invariance � Fatigue � Patient-

reported outcome measures � Quality of life � Bayesian

analysis
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PPP Posterior predictive p value
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Introduction

With the ongoing proliferation of patient-reported outcome

measures (PROMs) for assessing health-related quality of

life (HRQoL) in addition to more clinical and objective

indicators of intervention impact [1–4], it is essential to

continually verify the reliability and validity of these tools

within different populations and contexts [5–7]. In partic-

ular, establishing that the content of a given PROM is

interpreted consistently by respondents across a wide

variety of patient subgroupings (e.g., different chronic

diseases, socioeconomic strata, ethnicity, age, and gender)

and modes of administration (i.e., paper-based vs. elec-

tronic) is necessary for performing accurate intergroup

comparisons of both baseline and post-treatment levels of

HRQoL [8, 9]. In this regard, the recent study by Varni

et al. [10] fills an important gap in the psychometric lit-

erature on PROMs by examining the factorial invariance of

the Pediatric Quality of Life InventoryTM Multidimen-

sional Fatigue Scale (PedsQLTM MFS) across gender and

three age groupings (5–7, 8–12, and 13–18 years of age).

Beginning with the best-fitting confirmatory factor analysis

(CFA) model for the PedsQLTM MFS within each age and

gender group—namely a bi-factor model consisting of a

global fatigue factor and three domain-specific factors of

General, Sleep/Rest, and Cognitive Fatigue—Varni et al.

conducted the following sequence of cross-group invari-

ance tests in order to detect potential interactions of age

and gender with the measurement properties of the scale:
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(1) metric (i.e., equality constraints on factor loadings); (2)

strong (i.e., equality constraints on factor loadings and

intercepts); (3) strict (i.e., equality constraints on factor

loadings, intercepts, and measurement errors); and (4)

homogeneity of variance (i.e., equality constraints on factor

variances). Strict and strong invariance were found to hold,

respectively, across the gender and age groups, and there-

fore, it was concluded that the meaning of the PedsQLTM

MFS items was sufficiently similar across these subpopu-

lations to allow the intergroup comparison of scores and

justify the interpretation of any differences as true rather

than artifactual.

Despite these encouraging findings, however, there are

some serious limitations in the methodological strategy

employed in this study to both locate the optimal baseline

model structure for the PedsQLTM MSF and perform the

series of factorial invariance tests. Therefore, the present

commentary consists of two parts: (1) a discussion of the

main statistical problems with Varni et al.’s [10] approach

and (2) the presentation of a flexible and innovative reso-

lution for these issues, based on a recently developed

Bayesian framework for conducting CFA.

Evaluating model fit in CFA: two perspectives

Varni et al. [10] make a distinction between ‘‘traditional’’

and ‘‘practical’’ perspectives on assessing global model fit

and factorial invariance in CFA. The traditional perspec-

tive entails using the maximum-likelihood chi-square (v2)

test of exact fit for establishing a cleanly fitting baseline

model [11], and then evaluating the tenability of succes-

sive, nested factorial invariance constraints using v2 dif-

ference (Dv2) tests [12, 13]. On the other hand, the practical

perspective focuses on the use of supplemental or

approximate fit indices (AFIs) with associated ‘‘cut-off’’

thresholds to locate a well-fitting baseline model [14–16],

followed by assessing the magnitude of the differences in

fit indices across the series of equality constraints imposed

on the measurement parameters [17–19]. In keeping with

what is still popular mainstream CFA practice, Varni et al.

opt for the practical perspective, using AFIs for all of their

model assessments and dismissing the v2 and Dv2 tests due

to a presumed ‘‘oversensitivity’’ to sample size. However,

there is somewhat of a sleight of hand with this oft-used

claim. More specifically, in any given CFA or structural

equation modeling (SEM) application where a significant

v2 statistic is obtained, there is always the possibility that

model misspecification is the culprit, regardless of how

high the sample size is. Unfortunately, AFIs cannot be used

to safely ‘‘override’’ a failed v2 test because, as highlighted

by several CFA/SEM methodologists for more than a

decade, these indexes cannot shed further light on the

precise sources of model misfit [20–27]. Thus, relying on

AFIs could potentially lead to grossly incorrect models

being misjudged as good representations of the phenomena

or behaviors under study. And by a straightforward

extension, differences in AFIs cannot speak to the tena-

bility of factorial invariance across population subgroups,

in the event that the Dv2 tests do not support the various

sets of equality constraints.

In the Varni et al. [10] study, the v2 statistic obtained for

the overall bi-factor model (all participants combined) for

the PedsQLTM MSF was 250.23 (N = 837, df = 117,

p \ 0.001). Concerning the configural models for the age

and gender invariance testing, the v2 values were reported,

respectively, as 535.49 (N = 837, df = 357, p \ 0.001)

and 379.91 (N = 756, df = 234, p \ 0.001). These find-

ings indicate a strong possibility of model misspecification,

which could have also resulted in distortions in parameter

estimates and their associated significance tests [28, 29].

Moreover, while a number of the exact Dv2 tests obtained

by Varni et al. were actually non-significant and thus

appeared to support the invariance constraints (particularly

for the gender-based analysis), these can only be taken as

accurate if the initial baseline or configural model shows a

non-significant v2 [12]. Therefore, a more focused diag-

nosis and resolution of model misspecification would have

been much more prudent than simply deferring to AFIs for

establishing the baseline models.

Where might CFA/SEM model misspecifications lie?

Encountering some degree of specification error tends to be

the norm rather than exception in virtually all CFA/SEM

applications, given that the relationships among certain

variables are typically set precisely at zero. For example, it

is conventionally specified that each observed variable

loads on one and only one latent factor [30]; in the case of a

bi-factor model, as used by Varnie et al. [10] for the

PedsQLTM MFS, it is specified that each variable loads on

the global factor and only one of the domain-specific fac-

tors [31]. Furthermore, it is also typically assumed that the

observed items are conditionally independent given the

factor model; in other words, absolutely no additional

covariation should exist among the measurement error

terms (i.e., the portion of the variance in the items not

explained by the factor). In practice, however, the observed

variables will load to some degree on factors other than

their hypothesized ‘‘parent’’ latent variables [32, 33], and

the presence of minor unmodeled factors will often lead to

residual covariances among the items [34–36]. The latter

finding is often due to what Meehl [37] aptly dubbed as

‘‘the crud factor’’ (p. 204), which essentially means that to

some extent, all variables are intercorrelated in the world of
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social science research. Even though these types of mis-

specifications may be small in a practical sense when

considered individually, they will have a cumulative del-

eterious effect on both model fit and parameter estimates if

they are not accounted for. To be sure, more serious vari-

eties of CFA misspecification are also entirely possible

(e.g., too few factors in the model), but the ubiquity of

cross-loadings and correlated errors means that they should

always be the focus of an initial diagnosis of the sources of

ill fit.

Conventionally, specification checks on constrained

parameters are performed post hoc and one-at-a-time, using

modification indices that show the improvement in model

fit that would result from freeing a single fixed parameter.

Trying to achieve good model fit using this strategy can

involve a long series of model modifications that carry a

substantial risk of type I error, which makes it potentially

dangerous to generalize a substantially revised model to the

population under study [38]. Given these issues, research-

ers engaged in estimating and testing CFA models might be

tempted to just simply free all measurement errors and

cross-loadings a priori in order to maximize fit. However,

under Frequentist estimation methods such as ML or least

squares-based procedures, such an approach will lead to the

model being statistically underidentified, that is, having too

little numerical information in the raw data for estimating

the unknown parameter values [39]. However, a new

Bayesian framework for CFA/SEM allows practitioners to

incorporate the possibility of nonzero cross-loadings and

measurement error covariances in advance, minimizing the

potential for post hoc data snooping while still ensuring

that the model parameters are identified [40–42]. The fol-

lowing section provides an overview of the key basic

principles of Bayesian estimation, followed by a discussion

of their application to both establishing baseline CFA

models and testing whether factorial invariance holds

across population subgroups.

Bayesian statistical analysis: an overview

While still certainly not yet as commonplace as conven-

tional Frequentist approaches to statistical analysis, the use

of Bayesian methods in applied research has grown dra-

matically over the last two decades, largely due to an

increase in the number of high-quality introductory and

advanced textbooks, as well as the development of versatile

software packages for implementing Bayesian estimation

[43–45]. Briefly, the two fundamental, overarching differ-

ences between the Bayesian and Frequentist paradigms are

that Bayesians: (1) view model parameters as variables

with probability distributions, not as constants with one and

only one true population value and (2) advocate combining

empirical data with a researcher’s prior beliefs about model

parameters in order to ultimately arrive at a posterior dis-

tribution for those parameters, rather than estimating

parameters based strictly on the observed data only. More

formally, these principles can be compactly expressed

using Bayes’ rule [46–48]:

pðhjDataÞ ¼ pðDatajhÞ � pðhÞ
pðDataÞ ; ð1Þ

where p(h|Data) is the posterior probability (p) distribution

of the model parameters (h) given the empirical data,

p(Data|h) is the likelihood of observing the empirical data

given the set of model parameters, p(h) is the prior prob-

ability distribution of the model parameters, and p(Data) is

simply the probability distribution of the observed data.

Therefore, the posterior distribution is essentially a statis-

tical combination of observed data and prior beliefs about

model parameters; in other words, the posterior reflects the

extent to which the empirical evidence modifies the

researcher’s initial convictions about the distribution of

the model parameters.

It is important to point out that the prior distribution—

which is constructed based on the theory, expert opinion, or

empirical findings from previous research—can vary

widely in informativeness, or the degree of influence on the

results of a Bayesian analysis [48, 49]. As a simple

example, consider that a normal distribution for any model

parameter q can be represented as q * Normal(lq, rq
2),

where lq and rq
2 are the population mean and variance of

q, respectively. Whatever prior value is selected for lq in a

Bayesian application, the value chosen for rq
2 reflects how

certain the researcher is about the chosen value for lq. For

instance, a researcher with no available prior knowledge of

lq could simply assign it an infinite prior variance, such

that the likelihood portion of Eq. [1] would dominate the

prior in determining the form of the posterior distribution,

rendering the analysis essentially Frequentist in nature. On

the other hand, smaller prior values for rq
2 reflect greater

degrees of certainty about lq and would therefore give the

prior more weight in shaping the posterior. Note also that

priors need not be normal or even part of the family of

parametric distributions at all, if the data being analyzed

typically depart from these standard forms [50, 51]. Thus,

the researcher has considerable flexibility in dealing with

non-normality up front and ensuring that it is appropriately

reflected in the posterior distribution, rather than applying

post hoc non-normality corrections to standard errors and

test statistics.

In practice, the posterior distribution is almost always

too complex to be calculated directly or even estimated

iteratively using familiar ML or least squares techniques.

Instead, sophisticated Markov chain Monte Carlo (MCMC)

algorithms are required for gradually locating and mapping
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out the entire posterior distribution, using a long sequence

of random samples of parameter values [52]. Point esti-

mates for parameters (e.g., mean, median, and mode) can

then be computed directly using the samples from the

posterior, while inference is done using credible intervals,

which are fundamentally different from Frequentist confi-

dence intervals [53, 54]. In particular, a credible interval is

a range of parameter values in the posterior distribution

that cover a certain percentage of the probability. For

example, a 95 % credible interval means that given the

observed data, there is a 95 % chance that the interval

contains the true value of the parameter in question; if this

interval does not include zero, then the estimate is con-

sidered substantively meaningful. On the other hand, the

more familiar 95 % confidence interval means that if we

repeated the exact same study 100 times, 95 % of those

replications will contain the true value of the parameter.

Thus, Bayesian credible intervals focus on the credibility of

parameter values given the data at hand (and the prior), not

probabilities based on the theoretical replications and data

that were never actually observed. For this reason, credible

intervals are regarded as more useful and informative than

confidence intervals [55, 56].

Bayesian CFA for a single model

The flexibility of Bayesian priors can help CFA practitio-

ners to pre-empt some of the most commonly encountered

varieties of model misspecification. A helpful initial step in

understanding and using Bayesian CFA is to first view the

conventional Frequentist approach to model specification

through a Bayesian lens. In particular, the conventional

omission of cross-loadings and measurement error covari-

ances in CFA is essentially equivalent to specifying a prior

distribution where both the mean and variance of the

parameter are exactly zero [40, 41], which is extremely

unlikely to be true in the population. While freeing all of

these parameters en masse would lead to an underidentified

model from a Frequentist standpoint, the use of informative

Bayesian priors brings additional statistical information

into the analysis that can render the model identified [40,

41, 57]. More specifically, instead of exact zeros where

relationships are hypothesized to be absent, ‘‘approximate’’

zero priors can be used in which the distribution for a given

parameter is centered at zero, but allowed to vary within

the bounds of what might be considered as non-substantive

values.

For instance, guidance on what constitutes a nonzero yet

trivial range for a cross-loading can be taken from Comrey

and Lee’s [58] widely used classification of loading mag-

nitudes, according to which loadings C0.71 are considered

excellent; C0.63 very good; C0.55 good; C0.45 fair; and

C0.32 poor. Therefore, a prior that allows a cross-loading

to take on values up to even 0.44 might be reasonable,

providing that all major loadings of conceptual interest

were ultimately estimated to be in the good to excellent

range. Thus, assuming that all variables have been stan-

dardized for convenience, an approximate zero prior for a

given cross-loading kcross could be specified as kcross *
Normal(0.0, 0.05), which implies a prior 95 % credibility

interval of -0.44 to ?0.44. This strategy gives the pos-

terior estimate for kcross considerable leeway to depart its

zero prior mean—thereby reducing the potential for model

misfit—but at the same time helps to restrict it from

attaining a more substantively important value. Of course,

if one believes the cross-loadings to be even more trivial in

magnitude, lower prior variances could be used, for

example, kcross * Normal(0.0, 0.005) or kcross * Nor-

mal(0.0, 0.01) yield 95 % prior credible intervals of -0.14

to ?0.14 and -0.20 to ?0.20, respectively [40, 41].

Approximate zero priors could be set for measurement

error covariances in a similar manner, with the exception

that instead of the normal distribution, inverse-Wishart or

inverse-gamma priors are required for these parameters

[40, 41, 57].

Of course, the option of using informative Bayesian

priors should not be taken as giving CFA practitioners free

rein to fill their models with superfluous parameters, simply

for the purpose of mathematically improving model fit.

Prior distributions should always be carefully specified and

justified based on the content area knowledge and any

available findings from past research, which still renders

the Bayesian approach highly confirmatory. Further, the

adequacy of overall model fit should be evaluated using

posterior predictive p values (PPPs) [59], which are based

on the repeated comparisons of the observed dataset with a

series of simulated or ‘‘model-implied’’ datasets created

using MCMC-based random samples from the posterior

distribution of the model parameters. More formally, in the

CFA/SEM context, one computes the following discrep-

ancy measure for each iteration of the MCMC algorithm:

Di ¼ T sim
i ðY sim

i ; hiÞ � Tobs
i ðYobs; hiÞ ð2Þ

where Tsim
i is a summary test statistic (typically, v2) pro-

duced by fitting the ith posterior sample of model param-

eters hi to the simulated dataset Ysim
i , and Tobs

i is an

analogous test statistic generated by fitting hi to the

observed dataset Yobs. If the model is correct, the observed

and simulated data (and thus T sim
i and Tobs

i ) should match

very closely, yielding a distribution of the Di (across the

MCMC samples) that is symmetric around 0, and therefore

a PPP = 0.5. Thus, PPP values close to 0 (or 1) would

suggest that the model is not a good representation of the

data, and one could potentially use familiar ‘‘alpha’’ cut-

offs such as p \ 0.05 (or p [ 0.95). However, it is also
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recommended to inspect the bivariate scatterplot of T sim
i

and Tobs
i as an additional aid in evaluating overall model

quality [59]. Furthermore, cross-loadings and measurement

error covariances with approximate zero priors should have

posterior credible intervals that include zero; if not, then

the researcher might need to consider larger prior vari-

ances, or perhaps rethink the entire model structure.

However, a recent application of Bayesian CFA found that

the small variance prior strategy produces excellent fit,

without requiring any further model modifications [42].

Bayesian CFA for factorial invariance testing

After establishing a well-fitting baseline model, the flexi-

bility of Bayesian priors can be extended to factorial

invariance testing across population subgroups, where they

can also be used to relax some conventional yet typically

untenable parameter constraints [41]. More specifically, in

addition to the usual practice of setting cross-loadings and

measurement error covariances to exact zeros in single

group CFA, Frequentist-based factorial invariance testing

involves setting measurement parameters to be precisely

equal to each other across groups, which is also not likely

to hold in applications. Therefore, instead of imposing such

stringent equality constraints, practitioners can use

Bayesian priors to allow a given parameter some degree of

variability across groups. For example, a small, likely non-

substantive prior variance for the difference in a factor

loading between two groups could be specified as Dkg1,g2

* Normal(0.0, 0.005), which gives a narrow 95 % prior

credible interval of -0.14 to ?0.14 for the cross-group

discrepancy. (Whatever prior variance values are chosen

should be based on the knowledge of the conceptual

background for and psychometric properties of the scale).

In addition to improving the capacity of the multigroup

model to fit the data, the strategy of allowing some cross-

group variability in the measurement parameters greatly

simplifies the identification and correction of the sources of

non-invariance. Whereas the Frequentist approach to fac-

torial invariance involves the rather cumbersome specifi-

cation and testing of several nested models, accompanied

by a series of specification searches on individual invari-

ance constraints, the Bayesian method entails two simple

steps, which are implemented in a user-friendly manner in

the Mplus software package [41].

In the first step, the model is estimated using small

variance priors on the differences in the measurement

parameters across groups, and then the average cross-group

differences and accompanying 95 % posterior credible

intervals for each parameter are displayed in the output for

inspection. A parameter is considered non-invariant if the

credible interval for its cross-group differences excludes

zero. In the second step, all non-invariant parameters

identified in step one are set free (i.e., given infinite prior

variances), all invariant parameters are set exactly equal

across groups (i.e., zero mean and zero variance priors),

and then the model is re-estimated. While one could of

course still retain the small variance priors for the param-

eters that were found to be invariant across groups in the

first step, it has been demonstrated that switching to exact

equalities on these parameters in the second step actually

leads to superior overall fit in terms of PPPs [41].

Achieving a good fit in the second step allows factor means

to be compared without the risk of confounding by factorial

non-invariance across groups.

Conclusions

Establishing factorial invariance is an essential component

of the psychometric evaluation of a measuring instrument,

as it provides a sound statistical basis for the comparison of

scores across different population subgroups. This com-

mentary sheds further light on some common yet still

underappreciated problems encountered when using con-

ventional Frequentist estimation methods and AFIs for

developing a well-fitting baseline factor model, as well as

conducting a follow-up series of factorial invariance tests.

In response to these issues, a flexible and convenient

Bayesian framework was presented that can substantially

aid in: (1) effectively tackling the most ubiquitous sources

of model misspecification in CFA and (2) locating specific

measurement parameters that are non-invariant across

population subgroups. It is recommended that these

promising techniques be more widely adopted by HRQoL

researchers for evaluating the factorial invariance of

PROMS and other types of self-report instruments.
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