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Abstract

Purpose In order to test the difference between group

means, the construct measured must have the same

meaning for all groups under investigation. This study

examined the measurement invariance of responses to the

patient-reported outcomes measurement information sys-

tem (PROMIS) pain behavior (PB) item bank in two

samples: the PROMIS calibration sample (Wave 1,

N = 426) and a sample recruited from the American

Chronic Pain Association (ACPA, N = 750). The ACPA

data were collected to increase the number of participants

with higher levels of pain.

Methods Multi-group confirmatory factor analysis (MG-

CFA) and two item response theory (IRT)-based differen-

tial item functioning (DIF) approaches were employed to

evaluate the existence of measurement invariance.

Results MG-CFA results supported metric invariance of

the PROMIS–PB, indicating unstandardized factor load-

ings with equal across samples. DIF analyses revealed that

impact of 6 DIF items was negligible.

Conclusions Based on the results of both MG-CFA and

IRT-based DIF approaches, we recommend retaining the

original parameter estimates obtained from the combined

samples based on the results of MG-CFA.

Keywords Multi-group confirmatory factor analysis �
Differential item functioning � Item response theory �
Patient outcome measures � Pain measurement �
Psychometrics

Abbreviations

ACPA American Chronic Pain Association

CFA Confirmatory factor analysis

DIF Differential item functioning

IRT Item response theory

MG-CFA Multi-group confirmatory factor analysis

PB Pain behavior

PROMIS Patient-reported outcomes measurement

information system

Introduction

Pain behaviors (PBs) are behaviors that communicate to

others that a person is experiencing pain [1–3]. PB is an

important outcome in studies of persons living with chronic
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pain [4, 5] because PBs may predict development of dis-

ability [6].

The National Institutes of Health’s (NIH) patient-

reported outcomes measurement information system

(PROMIS) included PBs among its targeted outcomes [7].

All PROMIS measures were developed as item banks, and

candidate items were administered to a large sample of

predominantly healthy community participants (Wave 1).

Few individuals from Wave 1 reported higher levels of

pain, requiring additional data collection. Participants were

recruited from the American Chronic Pain Association

(ACPA) with higher levels of pain and completed an online

survey that included the PROMIS–PB items. The data from

Wave 1 and from the ACPA were combined for the pur-

pose of calibrating the items. However, calibration of the

PB items was conducted in the combined sample without

an investigation of measurement invariance.

Measurement invariance means that the same construct

is measured similarly across groups. For instance, cancer

pain typically has unique emotional components not nec-

essarily found in other types of chronic pain, and this

emotional component of the pain might influence several

dimensions of PBs. Researchers may be concerned that test

score differences observed in various subgroups are due to

measurement instrument problems rather than true differ-

ences in the trait being measured. Lack of measurement

invariance has been mainly investigated using two meth-

ods: multi-group confirmatory factor analysis (MG-CFA)

and item response theory (IRT).

MG-CFA procedures are commonly employed to test

for measurement equivalence [8–12]. The main question

underlying tests of measurement equivalence across groups

is whether certain factor analytic parameters such as

loadings, intercepts, error variances, factor variances, fac-

tor covariances, and factor means can be assumed equiv-

alent across groups [10, 12, 13].

In the IRT framework, when a lack of measurement

invariance occurs at item level, it is referred to as differential

item functioning (DIF). DIF is defined as ‘‘a difference in the

probability of endorsing an item across comparison groups

when the scores are on a common metric’’ [14]. Several

researchers have investigated similarities and differences of

the two models in detecting a lack of measurement invari-

ance [14–16]. Stark et al. [14] reported both CFA and IRT

methods showed similar results in detecting DIF across a

majority of simulated conditions. The authors found that the

CFA approach performed slightly worse than the IRT

approach in dichotomous data; however, it performed better

under condition of polytomous data with a small sample size.

The authors also pointed out that testing measurement

invariance via the IRT approach seemed more complicated

than the CFA approach. In the current study, we explored

measurement invariance across Wave 1 and ACPA samples

with both MG-CFA and IRT-based DIF approaches. Evi-

dence of measurement invariance provides support for using

the PROMIS–PB score to compare observed differences in

group means for both healthy and clinical samples. The data

for the study were collected in the process of instrument

development, and the study design is described in detail in

Cella et al. [7]. The purpose of the current study was to

investigate the level of measurement invariance of the

PROMIS–PB across a sample of individuals from the general

population who are generally healthy and a sample of indi-

viduals with chronic pain.

Methods

Participants

The PROMIS Wave 1 data included 21,133 research par-

ticipants. Of these, 19,601 were recruited from an internet

panel (YouGovPolimetrix; www.polimetrix.com), and

1,532 were recruited from primary research sites associated

with the PROMIS network. A detailed description on Wave 1

data collection is available at http://www.nihpromis.org/

science/ calibration testing. For purposes of this study, only

the data from participants who responded to the full bank and

had no missing data were used.

As described above, the sample size for Wave 1 was

quite large; however, few individuals reported higher levels

of pain. With IRT models, a sufficient number of responses

in every response category are essential for precise esti-

mates of item parameters [17]. Thus, research participants

with chronic pain were recruited through the ACPA. Eli-

gibility requirements included being 21 years of age or

older and having one or more chronic pain conditions for at

least 3 months prior to the survey.

Analyses

Three levels of measurement invariance were tested using

the MG-CFA approach. The first and weakest level, con-

figural invariance [18], assumes that the same pattern of

item-factor loadings exists across groups being compared;

the same items must have nonzero loadings on the same

factors. Metric invariance [19] requires, additionally, that

unstandardized factor loadings be invariant across the

comparison groups. Scalar invariance is the strongest level

of invariance [18, 20] and requires that all the assumptions

of configural and metric invariance be met. In addition, the

scale’s item intercepts be invariant across groups.

Mplus software 6.1 [21] was used with weighted least-

squares mean and variance adjusted (WLSMV) estimation.

Several fit indices were used in the current study: v2,

comparative fit index (CFI) [22], Tucker–Lewis index
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(TLI) [23], and root mean square error of approximation

(RMSEA) [24, 25]. CFI and TLI values above 0.90 are

considered acceptable [13, 26], and RMSEA values of

\0.08 are considered to indicate adequate fit [27].

In the MG-CFA approach, fit of a baseline model is

compared to the fit of increasingly constrained models. The

v2 difference test is utilized to compare the fit of two nested

models [28–30]. A nonsignificant v2 difference supports

the less parameterized model (i.e., the addition of the extra

parameters does not significantly improve model fit). To

account for the sensitivity of the v2 difference test to

sample size, a-level of 0.05 for v2 difference test was used.

Additionally, a difference of\0.01 in the D CFI index was

used to supports the less parameterized model [9, 10]. Note

that the model fit was compared only when both models of

interest individually fit the data.

Additionally, DIF was analyzed with the R software

package Lordif [31]. The Lordif utilizes an ordinal logistic

regression framework, and the graded response (GR)

model is used for IRT trait estimation [32]. Two criteria

were considered to detect meaningful DIF in the current

study: (1) \0.13 pseudo R2 statistic [33] and (2) 10 %

changes in beta [31, 34, 35].

Following Cook et al. [36] approach, the impact of DIF

on the scores was assessed; a Pearson correlation between

DIF-adjusted person scores and the original person scores

was calculated to examine the existence of meaningful

impact of DIF on the scores. A strong magnitude of cor-

relation would suggest that adjusting for DIF would make a

negligible difference in the person scores. This indicates

that item parameters calculated when combining all groups

together could be used without concern for substantial

impact of DIF on person’s scoring.

Items

The PROMIS–PB item bank provided good coverage of the

PB construct [37]. A census-weighted subsample of the

PROMIS Wave 1 data was used to anchor the PROMIS

scores on a T-score metric (M = 50; SD = 10) [38]. The

PROMIS–PB items have a seven-day time frame and are

rated on a six-point scale that ranges from 1 = had no pain

to 6 = always. Because of low frequencies of responses,

categories 1 and 2 (never) were subsequently combined.

Results

Initial analyses

Initial analyses were conducted using data from all 36

items administered to combined PROMIS and ACPA

samples. The initial model, however, had poor fit: v2 (594,

N = 1,176) = 8,397.010, p \ .01, CFI = 0.894, TLI =

0.888, RMSEA = 0.106 (from 0.104 to 0.108). We

investigated potential local dependency among items

because it can cause biased parameter estimates. To iden-

tify the potential local dependency and to modify model

specifications, residual correlations and modification indi-

ces were inspected. Any items with absolute values of

residual correlations[0.20 indicate local dependency [39].

Based on the results, nine items were eliminated due to the

potential local dependency: PB2, ‘‘When I was in pain I

became irritable’’; PB9, ‘‘When I was in pain I became

angry’’; PB16, ‘‘When I was in pain I appeared upset or

sad’’; PB23, ‘‘When I was in pain I asked one or more

people to leave me alone’’; PB24, ‘‘When I was in pain I

moved stiffly’’; PB29, ‘‘When I was in pain I used a cane or

something else for support’’; PB31, ‘‘I limped because of

pain’’; PB43, ‘‘When I was in pain I walked carefully’’; and

PB53, ‘‘When I was in pain I moved my arms or legs

stiffly.’’ A schematic flow of the item analysis used in the

present study is illustrated in Fig. 1.

Descriptive analysis

A total of 426 PROMIS Wave 1 (Male = 192, Female =

234) and 750 ACPA participants (Male = 136, Female =

610, missing = 4) participants were included in the current

study. Table 1 describes demographic and clinical details of

the samples. The PROMIS Wave I and ACPA samples were

statistically different on age, t (1,172) = 4.990, p \ .001,

gender, v2 (1, N = 1,172) = 96.922, p \ .001, ethnicity, v2

(1, N = 1,170) = 50.485, p \ .001, marriage status, v2 (2,

N = 1,119) = 7.137, p \ .001, and education v2 (4, N =

1,174) = 30.957, p \ .001.

MG-CFA approach

Configural invariance

A configural invariance model (i.e., the same pattern of

item-factor loadings across groups) was tested across the

comparison groups. The findings supported configural

invariance between the PROMIS and ACPA samples: v2

(648, N = 1,176) = 3,453.968, p \ .01, CFI = 0.904,

TLI = 0.896, RMSEA = 0.086 (from 0.083 to 0.089)

(Table 2).

Metric invariance

A metric invariance model (i.e., equal constraints on

unstandardized item-factor loadings across groups) also

supported good fit: v2 (675, N = 1,176) = 3,486.512,

p \ .01, CFI = 0.904, TLI = 0.900, RMSEA = 0.084
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(from 0.081 to 0.087). Next, the model fit of the configural

and metric invariance models was compared. The Chi-

square difference test results were statistically significant:

Dv2 (Ddf = 27) = 428.170, p \ .01, indicating that some

unstandardized factor loading values were statistically

different between PROMIS Wave I and ACPA samples.

Since the v2 difference is sensitive to relatively larger

sample sizes, CFI different test (D CFI) is frequently used

in testing measurement invariance [9, 10]. Dissimilar to the

v2 difference, a decrease of \0.01 in the CFI value

(D CFI = 0.00) was found in the nested model comparison,

supporting the same unstandardized factor loading values

between PROMIS and ACPA samples.

Scalar invariance

After finding support for both configural and metric

invariance, the authors examined the PROMIS–PB for

scalar invariance (i.e., invariance of the unstandardized

item thresholds across groups). The results did not support

scalar invariance: v2 (771, N = 1,176) = 9,085.440,

p \ .01, CFI = 0.716, TLI = 0.742, RMSEA = 0.135

(from 0.133 to 0.138).

IRT-based DIF approach

The criterion of pseudo R2 (i.e., classifying pseudo R2 \ 0.13

as negligible DIF) resulted in no items being detected as DIF.

Using the DIF criterion of 10 % beta change, seven items were

identified as having meaningful DIF. The correlation between

the original and adjusted scores was 0.98, indicating no con-

cern for substantial impact of DIF on person’s scoring when

combining all groups together.

Discussion

The current study examined the measurement invariance of

PB items using MG-CFA across two samples to evaluate

whether the construct of PBs is the same in healthy people

and those with chronic pain. The PROMIS Wave 1 com-

munity sample was comprised predominantly of healthy

participants, and the ACPA sample was comprised exclu-

sively of individuals living with chronic pain. There is still

little consensus in the literature in regard to the level of

equivalence necessary for inferring measurement invari-

ance across groups. Horn and McArdle required metric

invariance to sure that the same constructs are measures

36 
items

27 
items

• Administered toACPA
• 14 items dropped based on initial psychometric analyses and a secondary review by 

content experts

• Used in the initial MG-CFA 
• 36 items were calibrated into PROMIS-PB item bankbased on the
results of psychometric analyses and a secondary review by content experts

• The number of items used in the final MG-CFA
• 9 items dropped because of the potential local dependency 

Items for the analysis

56 
items

• The PROMIS pain behavior candidate bank has 56 items  

42 
items

More items are always tested than the final bank is expected to contain•

Fig. 1 A schematic flow of item analysis

Table 1 Demographics between the PROMIS Wave 1 sample and

the ACPA sample for pain behavior

PROMIS

Wave 1

(N, %)

ACPA

(N, %)

Gender

Male 192 45.07 136 18.13

Female 234 54.93 610 81.33

Missing – – 4 0.54

Ethnicity

White 339 79.58 695 92.67

Nonwhite 87 20.42 49 6.53

Missing – – 6 0.80

Marriage status

Never-married 58 13.62 65 8.67

Married/living with partner in

committed relationship

296 69.48 479 63.87

Separated/divorced/widowed 72 16.90 149 19.86

Missing – – 57 7.60

Education

Less than high school grad 8 1.88 13 1.73

High school grad/GED 63 14.79 118 15.73

Some college/technical degree/AA 144 33.80 362 48.27

College degree (BA/BS) 128 30.05 166 22.13

Advanced degree (MA, PHD, MD) 83 19.48 89 11.87

Missing – – 2 0.27

PROMIS patient-reported outcomes measurement information sys-

tem, ACPA American Chronic Pain Association
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across groups [19]. Chen, Sousa, and West argued that

comparing means across groups could be meaningful after

confirming the existence of scalar invariance [40]. Reise,

Widaman, and Pugh, however, claimed that a form of

partial loading invariance is actually required to permit

across-group comparisons [16]. The findings of the current

study supported measurement invariance at the level of

metric invariance, but not at the level of scalar invariance.

Conclusions and recommendations

Had the PROMIS-PI failed to support either configural or

metric invariance, we might need to consider a remedy such as

re-calibrating the item bank or removing items that function

differently in the two compared groups. The results from this

study found that a subset of 27 PROMIS–PB items met all but

the strictest from of measurement invariance. Based on IRT-

based DIF analysis results, it was concluded that although

statistically significant DIF was identified using 10 % beta

change, the adjustments for DIF would result in negligible

changes in person scores since correlations between adjusted

and nonadjusted scores were approximately 0.98. For this

reason, it was concluded that any DIF in this item set among

the MS and APCA groups could be disregarded. This implies

that the instrument measures the same construct in both

healthy and clinical including those with chronic pain. Based

on the findings of the current study, we conclude that using the

originally obtained parameter estimates from the combined

sample of PROMIS Wave I and ACPA participants are

acceptable, and the instrument can be scored and used as

originally published.

The current study could use only 27 of the 36 items in

the PROMIS–PB item bank mainly due to local depen-

dence. Local dependence may cause biased parameter

estimates [41, 42], and thus, we recommend that the

PROMIS–PB address the local dependence in the item

bank or utilize testlets to handle local dependence among

the items [42]. In summary, the results of the current study

support the use of PROMIS–PB item parameters obtained

from the combined general population and chronic pain

sample. The construct of PBs appears to function in the

same way in a community sample as well as in people

living with chronic pain. As a result, the PROMIS–PB

score can be used to compare mean differences between

groups.
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