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Abstract

Objectives In order to compare multidimensional fatigue

research findings across age and gender subpopulations, it

is important to demonstrate measurement invariance, that

is, that the items from an instrument have equivalent

meaning across the groups studied. This study examined

the factorial invariance of the 18-item PedsQLTM Multi-

dimensional Fatigue Scale items across age and gender and

tested a bifactor model.

Methods Multigroup confirmatory factoranalysis (MG-CFA)

was performed specifying a three-factor model across three age

groups (5–7, 8–12, and 13–18 years) and gender. MG-CFA

models were proposed in order to compare the factor structure,

metric, scalar, and error variance across age groups and gender.

The analyses were based on 837 children and adolescents

recruited from general pediatric clinics, subspecialty clinics, and

hospitals in which children were being seen for well-child

checks, mild acute illness, or chronic illness care.

Results A bifactor model of the items with one general

factor influencing all the items and three domain-specific

factors representing the General, Sleep/Rest, and Cognitive

Fatigue domains fit the data better than oblique factor

models. Based on the multiple measures of model fit, con-

figural, metric, and scalar invariance were found for almost

all items across the age and gender groups, as was invari-

ance in the factor covariances. The PedsQLTM Multidi-

mensional Fatigue Scale demonstrated strict factorial

invariance for child and adolescent self-report across gender

and strong factorial invariance across age subpopulations.

Conclusions The findings support an equivalent three-

factor structure across the age and gender groups studied.

Based on these data, it can be concluded that pediatric

patients across the groups interpreted the items in a similar

manner regardless of their age or gender, supporting the

multidimensional factor structure interpretation of the

PedsQLTM Multidimensional Fatigue Scale.

Keywords Fatigue � PedsQL � Pediatrics � Self-report �
Factorial invariance � Confirmatory factor analysis �
Bifactor model � Age � Gender

Introduction

Children are uniquely positioned to self-report their per-

spectives on their health and well-being through their

perceptions of their health-related quality of life (HRQOL)

outcomes. The last 15 years have evidenced a significant

increase in the development and utilization of pediatric

HRQOL and symptom-specific measures in an effort to

improve pediatric patient health and determine the value of

The PedsQLTM is available at http://www.pedsql.org.
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health care services [1]. Although the measurement of

pediatric self-reported HRQOL in clinical trials has been

advocated for a number of years [2], the emerging para-

digm shift toward patient-reported outcomes (PROs) has

provided the opportunity to further emphasize the value for

child self-report HRQOL measurement as efficacy out-

comes in clinical trials [3, 4].

Age groups and health-related quality of life

measurement

Recent US Food and Drug Administration guidelines rec-

ommend that instrument development and validation test-

ing for children and adolescents be conducted within fairly

narrow age groupings, and to determine the lower age limit

at which children can provide reliable and valid responses

that can be compared across age categories [4]. Consistent

with these recommendations, it has been an explicit goal of

the PedsQLTM Measurement Model to develop and test

brief measures for the broadest age group empirically

feasible, specifically including pediatric patient self-report

for the youngest children possible [1, 5]. The PedsQLTM

scales include child self-report for aged 5–18 and parent

proxy-report for aged 2–18 [6]. The items chosen for

inclusion were initially derived from the measurement

properties of the child self-report scales, while the parent

proxy-report scales were constructed to directly parallel the

child self-report items. Thus, the development and testing

of the PedsQLTM as a pediatric PRO explicitly emphasizes

the child’s perceptions, including children as young as

5 years of age [7], and consequently serves as an age-

appropriate instrument to test the lower age limits

achievable for factorial invariance of child self-report.

Gender differences and health-related quality of life

measurement

Gender differences in health outcomes have been exten-

sively documented in children and adolescents [8]. In

children, adolescents, and young adults, gender differences

in self-reported HRQOL have been demonstrated irre-

spective of the instrument utilized [9–13]. However, in

order to have greater confidence that a HRQOL instrument

is measuring the same constructs across different gender

groups (i.e., that the items have the same meaning for boys

and girls), it is essential to demonstrate measurement

invariance across gender [14, 15].

Factorial invariance

Generic HRQOL and symptom-specific instruments enable

comparisons across diverse pediatric populations [5, 16]. In

order for these comparisons to be valid, items on such an

instrument must have equivalent meaning across the sub-

populations being compared [17, 18], that is, they must

demonstrate factorial invariance [19]. Multigroup confir-

matory factor analysis (MG-CFA) is one method used to

assess these levels of factorial invariance across groups

[17, 19]. To the degree that the components of the factor

model (i.e., factor patterns, intercepts, and covariances) are

determined to be equal across subpopulations, factorial

invariance of an instrument can be inferred [17].

While the use of MG-CFA for invariance testing has

grown substantially in recent years, there has been a rela-

tive absence of studies that have examined the factorial

invariance of symptom-specific measures particularly in

pediatric populations. Further, most of these studies have

focused on establishing configural and metric invariance,

ignoring higher levels of invariance that assess group dif-

ferences in item-specific intercepts (i.e., strong/scalar or

strict invariance) [19]. Without establishing stricter levels

of invariance, age and gender differences in scores on

health outcome instruments may be confounded by dif-

ferences in what the instrument is measuring among the

groups [20]. Table 1 shows the levels of invariance, the

constraints imposed by the level, and the between-group

comparisons allowed if the invariance level is tenable.

Recently, studies have demonstrated the factorial

invariance of the PedsQLTM 4.0 Generic Core Scales lon-

gitudinally and across a number of subpopulations [21–26],

including age and gender [27, 28]. However, the factorial

invariance of the fatigue construct utilizing the PedsQLTM

Multidimensional Fatigue Scale across age and gender has

not been previously reported.

The PedsQLTM Multidimensional Fatigue Scale

The PedsQLTM Multidimensional Fatigue Scale was

designed as a generic symptom-specific instrument to

measure fatigue across pediatric populations [29, 30].

Previously, the PedsQLTM Multidimensional Fatigue Scale

scores have demonstrated good to excellent pediatric

patient self-report reliability and validity in pediatric

patients across a number of pediatric chronic health con-

ditions, demonstrating significant correlations with generic

HRQOL (more fatigue symptoms associated with lower

generic HRQOL) [29–39], including an expanding number

of international translations and studies with young adult

and adult patients [40–43]. However, we are not aware of a

study which has used the Multigroup CFA framework to

compare the factorial invariance of the PedsQLTM Multi-

dimensional Fatigue Scale, which may have significant

utility as a statistical method for international cross-cultural

assessment research in which different age and gender and

other subpopulations are compared within and across

countries.
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Consequently, the objective of the present study was to

examine the factorial invariance of child self-reported

multidimensional fatigue across three age groups and

gender utilizing the Multigroup CFA framework with the

PedsQLTM Multidimensional Fatigue Scale.

Methods

Participants and settings

The sample contains item-level data from previously pub-

lished child self-reports (n = 837) [29, 30, 33, 35–37].

Participants were recruited from general pediatric clinics,

subspecialty clinics, and hospitals in which children were

being seen for well-child checks, mild acute illness, or

chronic illness care. Participants were assessed in person or

by telephone. For in-person mode of administration,

research assistants obtained written parental informed

consent and child assent. Paper-and-pencil surveys were

self-administered for children aged 8–18 and interview-

administered for children aged 5–7 (and also in situations

where the child was unable to read or write as a conse-

quence of either physical or cognitive impairment). For

telephone administration, parents of children aged 5–18

were called by a research assistant who explained the study

and obtained verbal parental informed consent and child

assent. The research assistant verbally administered the

PedsQLTM Multidimensional Fatigue Scale to the child. If

the child was not home at the time of the initial call, the

research assistant arranged for a call at another time. These

research protocols were approved by all appropriate Insti-

tutional Review Boards (IRBs).

The average age of the 379 girls (45.3 %) and 377 boys

(45.0 %) was 12.32 ± 4.98 years. Gender data were

missing for 81 participants (9.7 %). With regard to race/

ethnicity, the sample contained 308 (36.8 %) White

non-Hispanic, 195 (23.3 %) Hispanic, 58 (6.9 %) Black

non-Hispanic, 25 (3.0 %) Asian/Pacific Islander, 71

(8.5 %) American Indian or Alaskan Native, and 40

(4.8 %) other. Race/ethnicity data were missing for 140

participants (16.7 %). Seventy-five percent of the sample

had a chronic health condition.

Missing survey data

On the 18-item PedsQLTM Multidimensional Fatigue

Scale, one or more item responses were missing for 38

(5 %) of the respondents. Of those 38, 28 (74 %) were

missing only one response, 7 (18 %) were missing only

two responses, 1 (3 %) was missing 4 responses, 1 (3 %)

was missing 8 responses, and 1 (3 %) was missing all

responses. The respondent with missing values for all items

was removed from the analysis and the other missing data

were handled by using full information maximum likeli-

hood estimation [44].

Measures

The PedsQLTM Multidimensional Fatigue Scale

The PedsQLTM Multidimensional Fatigue Scale (MFS) is

an 18-item instrument encompassing three scales: (1)

General Fatigue (6 items, e.g., ‘‘I feel tired.’’; ‘‘I feel too

tired to do things that I like to do.’’), (2) Sleep/Rest Fatigue

(6 items, e.g., ‘‘I feel tired when I wake up in the morn-

ing.’’; ‘‘I rest a lot.’’), and (3) Cognitive Fatigue (6 items,

e.g., ‘‘It is hard for me to keep my attention on things.’’; ‘‘It

is hard for me to remember what people tell me’’). The

PedsQLTM MFS was developed based on the research and

clinical experiences in pediatric chronic health conditions,

and the instrument development literature [45–47], which

consisted of a review of the extant literature on fatigue in

both adult and pediatric patients, patient and parent focus

Table 1 Levels of measurement invariance from least to most restrictive

Model Title Description Comparisons allowed

between groups

1 Configural The factor model for all groups is the same. No parameter constraints are imposed None

2 Weak/metric 1 ? all factor pattern coefficients constrained to be equal between groups (but can

vary within a group). Factor (co)variances allowed to vary between groups

Factor (co)variances

[weak evidence]

3 Strong/scalar 2 ? all intercepts are constrained to be equal between groups (but can vary within a

group). Factor means allowed to vary between groups

Factor means, factor

(co)variances

[strong evidence]

4 Strict 3 ? measurement error variances are constrained to be the same between groups (but

can vary within a group)

5 Homogeneity of

construct variance

Constrain the factor variances to be the same across groups Construct reliability
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groups and individual focus interviews, item generation,

cognitive interviewing, pretesting, and subsequent field

testing of the new measurement instrument [29, 30]. In

addition to the original studies [29, 30], subsequent studies

have continued to support the reliability and validity of the

PedsQLTM MFS scores for use with children and adoles-

cents diagnosed with multiple chronic health conditions

[29–36, 39, 42, 43, 48, 49].

The format, instructions, response scale, and scoring

method are identical to the PedsQLTM 4.0 Generic Core

Scales, with higher scores indicating lower fatigue symp-

toms. The instructions ask how much of a problem each

item has been either during the past month or the past

7 days. The PedsQLTM MFS has two forms, a child self-

report and a parent proxy-report. There are three separate

child and adolescent self-report forms: ages 5–7, 8–12, and

13–18 years. Only child self-report was utilized in the

present study. The self-report forms were designed to be

parallel, with the items only differing in reading level. A

5-point Likert-type response scale is utilized for the 8–12

and 13–18-year-old forms (0 = never a problem; 1 =

almost never a problem; 2 = sometimes a problem;

3 = often a problem; 4 = almost always a problem). The

5–7-year-old form was simplified to a 3-point scale to

increase the ease of use (0 = not at all a problem;

2 = sometimes a problem; 4 = a lot of a problem), with

each response choice anchored to a happy to sad faces

scale. Items are reverse-scored and linearly transformed to

a 0–100 scale (0 = 100, 1 = 75, 2 = 50, 3 = 25, 4 = 0),

so that higher scores indicate better HRQOL (i.e., fewer

symptoms of fatigue). Scale scores are computed as the

sum of item scores divided by the number of answered

items. If more than 50 % of the items in the scale are

missing, the Scale score is not computed [50].

PedsQLTM Family Information Form

The PedsQLTM Family Information Form [6] is a demo-

graphic questionnaire for parents to complete that asks

about the child’s date of birth, gender, and race/ethnicity.

Statistical analysis

Multiple group factor analysis

The purpose of this study was to examine the invariance of

the PedsQLTM MFS items for the self-report forms across

both age and gender. To assess invariance, we used a

MG-CFA approach, which assesses the invariance of

measurement parameters (e.g., factor patterns) across two

or more groups by using a series of increasingly stringent,

nested models (see Table 1) [51]. We tested model fit with

a bifactor model of the items [52–54], which posits one

general factor influencing all the items and three domain-

specific factors representing the General, Sleep/Rest, and

Cognitive Fatigue domains.

Researchers [20, 55] suggest two sets of criteria when

testing for factorial invariance. The first (‘‘traditional per-

spective’’) examines the change in chi-square values (D v2)

across nested models. If, as the models grow more

restrictive, the D v2 values do not ‘‘significantly’’ change

(using a given a level), this is evidence that a more

restrictive model fits the data as well as the less restrictive

model; thus, the more restrictive (i.e., more parsimonious)

model should be favored over the less restrictive one.

The use of D v2 values has been criticized because of the

sensitivity to sample size [56]. Recently, Cheung and

Rensvold [56] and Meade et al. [57] have argued that some

alternative fit indices were not prone to this problem.

Specifically, they found that the Comparative Fit Index

(CFI) [58] and McDonald’s [59] Noncentrality Index (NCI)

were more robust across a variety of sample sizes. Thus,

the second line of evaluations criteria (‘‘practical per-

spective’’) recommends that invariance can be based on

two criteria: (a) the multigroup factor model exhibits an

adequate fit to the data and (b) the change in values for fit

indices (e.g., D CFI, D NCI) is negligible.

Based on Byrne and Stewart’s [55] and Little’s [20]

recommendation, this study used two sets of fit indices: one

to assess overall model fit and the other to assess change in

model fit between two models. As Hu and Bentler [60]

recommend, we used multiple fit indices for both. For

overall model fit, we included the root mean square error of

approximation (RMSEA) [61], Comparative Fit Index

(CFI) [62], McDonald’s Noncentrality Index (NCI) [63],

and the standardized root mean square residual (SRMR)

[64]. These indices were chosen as they represent a variety

of fit criteria and they tend to perform well in evaluating

different models [65]. For both overall model fit as well as

change in model fit, we looked for patterns in the fit sta-

tistics and judged acceptance/rejection of the specific

model based on the majority of the indices. For this study’s

criteria of overall model data fit, we used the following:

(a) RMSEA B0.08 [61, 66]; (b) SRMR B0.08, [60, 67];

(c) CFI C0.96 [68]; and (d) NCI C0.90 [67, 69].

To test the change in fit between nested models, we used

the D CFI and D NCI. Cheung and Rensvold [56] suggested

0.01 as the threshold of D CFI and 0.02 as the threshold for

D NCI. Meade et al. [57], however, suggested more

restrictive values of 0.002 for D CFI and 0.007 for D NCI

(based on having 3 factors and 18 indicators, p. 586) to

maximize power. As this issue is not yet resolved, we

considered both values for the D CFI and D NCI, with

values less than Meade et al.’s [57] criteria indicating

stronger evidence of invariance than values only meeting

Cheung and Rensvold’s [56] criteria. All analysis was done
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in R [70] using the lavaan [71] and psych [72] statistical

packages.

Analyzing item-level data

Before testing for invariance, the data were inspected to see

whether a categorical data model or a continuous data

model should be used. Previous research has shown that

treating categorical variables as continuous is usually not

problematic when the variables have at least three cate-

gories and do not have substantial differential skew (i.e.,

one variable is highly skewed positively and another is

highly skewed negatively) [73–75].

To assess for skew, we first examined all items together

using Mardia’s test [76]. The results (b1p = 48.46,

v2 = 6,453.78, df = 1,140) indicate that some of the items

might have substantial skew, so we examined each item

independently. The only items with a skew statistics substan-

tially above 1 were the fourth item on the General Fatigue

Scale (skew = 1.74) and the fifth item on the Sleep/Rest

Fatigue Scale (skew = 1.52). We subsequently plotted the

frequency of each items response to examine whether the skew

was in the same direction or different directions. Figures 1, 2,

3 indicate that any skew that exists is all in the same direction.

Next, we compared the correlation matrices between

categorical (polychoric) and continuous (Pearson) estima-

tors. The difference was minimal for the items within a

domain (SRMR = 0.06) as well as items between domains

(SRMR = 0.05). Second, separate exploratory factor

analysis was conducted assuming the indicators were either

continuous or categorical. Both the parallel analysis [77]

and the minimum average partial analysis [78] (using both

Pearson and the polychoric correlations) [79, 80] indicated

that three factors should be extracted. Consequently, the

indicators were treated as continuous for the purpose of this

study, but we used a maximum likelihood estimator with

robust standard errors [81], which is a better estimator to

use when the data may not meet the multivariate normal

assumption of traditional ML estimation [82], and help the

performance of full information estimation [83].

Results

General model

Initially, we fit a baseline model using all the groups

combined for each domain separately. Within each domain,

there was a single factor that accounted for all the item

covariance. For the General (Model General 1 in Table 2),

Sleep/Rest (Model Sleep/Rest 1), and Cognitive (Model

Cognitive 1) domains, the model did not fit the data badly,

indicating that, within a domain, the items appear to be

unidimensional. We then fit a model combing items from

all three domains. First, we fit a combined model (Model

All 1) that had the six items within a domain as the sole

indicators of their intended factor and allowed the three

domain factors to covary (i.e., oblique factors). According

to most of the alternative fit indices, the model fits the data

adequately, but the NCI was below the suggested value of

0.90. We then fit a bifactor model of the items [52, 53],

which posits one general factor influencing all the items

and three domain-specific factors representing the General,

Sleep/Rest, and Cognitive Fatigue domains (Model All 2).

All the alternative fit indices indicate that this model fits

the data better than the three oblique factor model. Con-

sequently, we then used the bifactor model (Model O2) as

the baseline model to test for invariance. For a graphical

representation of the model, see Fig. 4.

Gender

To examine invariance across gender, we split the data by

gender. Eighty-one of the respondents’ parents did not

indicate the child’s gender, so were not used for this

analysis, leaving 756 in the data set. First, we assessed for

configural invariance (see Model S1 in Table 3). The

results suggest that the model fits the data relatively well,

although the CFI and NCI values were on the border of the

‘‘acceptable’’ range.

The next step involved assessing for metric invariance,

which we did by examining whether the factor pattern

coefficients were the same across both genders. The results

(Model S2) indicate that the overall model fits the data

slightly better than model S1. Thus, there was enough

evidence to continue the invariance assessment.

In the next model (Model S3), we examined scalar

invariance by constraining all the indicator variables’

intercepts (i.e., the scales’ origins) across groups. The

results suggest that the model fits the data relatively well,

and the D CFI and D NCI values met both the Cheung and

Rensvold’s [56] and Meade et al.’s [57] criteria. Conse-

quently, we tested for further levels of invariance.

The next step involved examining whether any of the

subtests’ unique (residual) variances (Model S4) were

invariant across gender. While such invariance is not required

to compare the latent constructs between male and females, it

is a necessary step (along with the invariance of the factor

variances) to determine whether the constructs’ reliabilities

are the same across groups [19]. The results indicated that this

model fits the data fairly well, although the CFI and NCI

values drop below the ‘‘acceptable’’ range. The D CFI and D
NCI meet the Cheung and Rensvold [56] criteria, but not the

Meade et al. [57] criteria. Consequently, we tested homoge-

neity of factor variances using both the scalar (Model S3) and

strict (Model S4) models as the baseline (Table 4).
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For the last step, we assessed whether the factor vari-

ances were invariant across the two groups (Models S5a

and S5b). As both models fit the data as well as Model S3

and Model S4, respectively, the results indicate that the

latent variances are not substantially different between

genders. Subsequently, we assessed the reliability of each

latent construct using x [84]. Using the scalar invariance

model, which allows different residual variances for males

and females, the Sleep/Rest and Cognitive Fatigue Scales’

construct reliabilities are 0.99 for both males and females.

For the General Fatigue Scale, the construct reliability is

0.98 for males and 0.97 for females. For the general fatigue

factor (i.e., the factor related to all fatigue items), the

construct reliability was 0.99 for males and females. Using

the strict invariance model, the construct reliabilities were

0.99 for all three of the domain factors, as well as for the

general fatigue factor.

Age

To assess for invariance across age, we then split the data

by age form: Young Child (5–7 years), Child (8–12 years),

and Adolescent (13–18 years). There were 87 participants

(10.4 %) who completed the Young Child (5–7) form, 343

participants (41.0 %) who completed the Child (8–12)

form, and 407 participants (48.6 %) who completed the

Adolescent (13–18) form.

First, we assessed for configural invariance (see Model

A1 in Table 5). All the alternative fit indices except NCI

indicate that the model does not fit the data badly. Conse-

quently, we used it to test the subsequent invariance model.

The next step involved assessing for metric invariance,

which we did by examining whether the factor pattern

coefficients were the same across age groups. The results

(Model A2) indicate that the overall model fits the data no

worse than model A1, and the D CFI and D NCI values met

the Cheung and Rensvold [56] criteria. Thus, there

appeared to be enough evidence to continue the invariance

assessment.

In the next model (A3), we examined scalar invariance

by constraining all the indicator variables’ intercepts (i.e.,

the scales’ origins) across age groups. The evidence is

mixed on how the model fits the data. The RMSEA and

SRMR indicate that the model does not fit the data badly,

Fig. 1 Item response

distributions for General

Fatigue Scale
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but the NCI did not indicate a good fit to the data and the

CFI is on the border of the unacceptable range. The D CFI

met the Cheung and Rensvold [56] criteria, but the D NCI

values did not. Consequently, we examined the intercepts

in model A2 to determine whether there were any large

differences in intercepts among the groups. The differences

were minimal for a single intercept, so the model A3 was

kept for future model assessment (Table 6).

The next step involved examining whether any of the

subtests’ unique (residual) variances (Model A4) were

invariant across the age groups. Such invariance is not

required to compare the constructs across aged, but it is a

necessary step (along with invariance of the factor variances)

to determine whether the constructs’ reliabilities are the same

across groups [19]. All fit indices for this model indicate that

it did not fit the data well. Further data inspection showed

that the majority of the residual variances needed to be

unconstrained for this model to fit well, so none of them were

considered to be equivalent across the age forms.

We next examined whether the factor variances were

invariant across the age groups (Model A5). The results

indicate this model fits the data as well as Model A3, with

the D CFI meeting the Cheung and Rensvold [56] criteria

and the D NCI meeting both the Cheung and Rensvold [56]

and Meade et al. [57] criteria, so the variances were left

equal across the age forms.

Subsequently, we assessed the reliability of each latent

construct using x [84] using model A5, which allows dif-

ferent residual variances for the age groups, but constrains

the latent variables’ variances to be the same across groups.

For the Sleep/Rest and Cognitive Fatigue Scales, construct

reliability is 0.98 for the Young Child form and 0.99 for the

Child and Adolescent forms. For the General Fatigue Scale,

the construct reliability is 0.97 for the Young Child form and

0.99 for the Child and Adolescent forms. For the general

fatigue factor (i.e., the factor related to all fatigue items), the

construct reliability was 0.98 for the Young Child form and

0.99 for the for the Child and Adolescent forms.

Discussion

The present findings demonstrate that when self-reporting

their fatigue, pediatric patients who completed the PedsQLTM

Fig. 2 Item response

distributions for Sleep/Rest

Scale
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Multidimensional Fatigue Scale (MFS) across the three age

groups studied and gender had a similar three-factor multi-

dimensional fatigue model structure, that is, across gender

and age groupings, the MFS items related to their intended

constructs similarly and had similar conditional means

(intercepts). The factor covariances were the same across

gender and age groupings, as were the factor mean scores,

except for the cognitive domain across the age groups.

Thus, across both gender and age, the MFS scores have

the same meaning and can be interpreted similarly. While

the residual variances were similar between males and

females, they were not among the age groupings. Nonethe-

less, the reliability estimates were high across all groupings

(x C 0.97), meaning that while the reliability of scores might

differ among the age forms, the difference is minimal and, in

general, the variability among observed scores is largely due

to variance among the constructs they are designed to

measure.

Raju et al. [85] succinctly describe the importance of

measurement equivalence by stating that ‘‘When mea-

surement equivalence is present, the relationship between

the latent variable and the observed variable remains

Fig. 3 Item response

distributions for Cognitive Scale

Table 2 Results from confirmatory factor analysis of PedsQLTM Multidimensional Fatigue Scale using all respondents

Model Model description v2* df p Scaling RMSEA CFI SRMR NCI

General 1 General fatigue 59.74 9 0.00 1.97 0.08 0.95 0.04 0.97

Sleep/Rest 1 Sleep/rest fatigue 61.33 9 0.00 1.38 0.08 0.95 0.04 0.97

Cognitive 1 Cognitive fatigue 17.41 9 0.04 2.00 0.03 0.99 0.02 0.99

All 1 3-Factor, oblique 438.01 132 0.00 1.57 0.05 0.93 0.06 0.83

All 2 3-Factor, bifactor 250.23 117 0.00 1.55 0.04 0.97 0.03 0.92

v2*: Scaled v2, RMSEA root mean square error of approximation, CFI Comparative Fit Index, SRMR standardized root mean square residual, NCI

McDonald’s Noncentrality Index
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invariant across populations. In this case, the observed

mean difference may be viewed as reflecting only the true

difference between the populations’’ (p. 517). Factorial

invariance is an essential component of the iterative pro-

cess of demonstrating the measurement equivalence of

latent constructs across groups, including gender and age

subpopulations. MG-CFA across age and gender subpop-

ulations has previously not been conducted in fatigue

measurement in pediatric patients utilizing child and ado-

lescent self-reported multidimensional fatigue instruments.

The MG-CFA statistical methods utilized in the present

study have important implications in general for interna-

tional comparative clinical research in children and ado-

lescents in which different age and gender subpopulations

are studies. Standardized assessment instruments must

demonstrate that test items are interpreted similarly across

age, gender, language, socioeconomic, health status, and

race/ethnicity subpopulations [86]. Demonstrating stricter

levels of the hierarchy of factorial invariance across these

subpopulations is critical given the growing importance of

patient-reported outcomes in international clinical trials,

health disparities analyses, and comparative health

research. Since fatigue has been found to be a common

symptom in adolescent populations [87, 88], with potential

gender differences in fatigue reporting [87, 89], then the

demonstration of factorial invariance across age and gender

is an essential step in further understanding any differences

in pediatric self-reporting of multidimensional fatigue

symptoms, including fatigue associations with, for exam-

ple, physical, emotional, social, and school functioning in

pediatric populations. Imperative to the evaluation of

interventions designed to reduce fatigue is the need for

reliable and valid assessment of multidimensional fatigue

in pediatric populations, particularly given that previous

longitudinal research in general pediatric populations of

adolescents indicates that persistently fatigued participants

demonstrate higher level of depression and anxiety, are less

physically active, and sleep a shorter duration at night

[88, 89].

The present findings contribute to the empirical litera-

ture on the PedsQLTM Measurement Model by demon-

strating strict factorial invariance for child and adolescent

multidimensional fatigue self-report across gender and

strong factorial invariance across age subpopulations. The

results of the present study suggest that when mean dif-

ferences are found utilizing the PedsQLTM Multidimen-

sional Fatigue Scale across the three age and gender

subpopulations studied, these differences are more likely

real differences in self-perceived multidimensional fatigue,

rather than differences in the interpretation of the items as a

function of age and gender. To our knowledge, the present

study represents the first empirical test of the multidi-

mensional fatigue construct in pediatric populations uti-

lizing a bifactor model while testing for factorial

invariance. These findings have important implications for

scoring the PedsQLTM Multidimensional Fatigue Scale and

suggest that both a total scale score comprised of all 18

items, as well as individual scale scores for each of the

Fig. 4 Bifactor model of PedsQLTM Multidimensional Fatigue Scale
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Table 3 Test for invariance by gender on PedsQLTM Multidimensional Fatigue Scale

Model Description v2 df D v2 p (D v2) RMSEA CFI D CFI SRMR NCI D NCI

S1 Same structure, but all parameters freely estimateda 397.91 234 – – 0.04 0.956 – 0.04 0.897 –

S2 S1 ? loadings equal (free variances, though) 412.89 266 36.79 0.26 0.04 0.961 * 0.05 0.907 *

S3 S2 ? intercepts equal (free means, though) 430.60 280 22.22 0.07 0.04 0.960 0.001 0.05 0.905 0.002

S4 S3 ? constrain unique variances 465.17 298 51.88 0.00 0.04 0.955 0.004 0.05 0.895 0.010

S5a S3 ? equal factor variance 434.62 284 6.10 0.19 0.04 0.960 0.000 0.05 0.905 0.000

S5b S4 ? equal factor variance 470.70 302 8.82 0.07 0.04 0.955 0.000 0.05 0.894 0.000

The p values for the v2 as well as the MLR scaling factors are not shown due to space considerations

All p values were \0.001 and all scaling factors were between 1.43 and 1.46. v2 and D v2 values represent the scaled values [91]

RMSEA root mean square error of approximation, CFI: Comparative Fit Index, SRMR standardized root mean square residual, NCI McDonald’s Noncentrality Index
a Model All 2 from Table 2 was used as the baseline model, only fit separately for the two gender groups

Table 4 Standardized estimates of intercepts and factor loadings for MG-CFA model by gender

Domain Item Domain factor

loadings

SE General factor

loadings

SE Intercept SE

General Item 1 0.29 0.08 0.76 0.05 1.62 0.06

General Item 2 0.23 0.08 0.73 0.04 1.04 0.05

General Item 3 0.18 0.10 0.81 0.04 0.95 0.05

General Item 4 0.08 0.09 0.63 0.04 0.63 0.05

General Item 5 -0.46 0.11 0.78 0.05 0.85 0.05

General Item 6 -0.17 0.06 0.62 0.04 0.73 0.05

Sleep/Rest Item 1 0.66 0.06 0.55 0.05 1.50 0.06

Sleep/Rest Item 2 0.07 0.07 0.65 0.05 1.09 0.06

Sleep/Rest Item 3 0.11 0.06 0.76 0.04 1.91 0.06

Sleep/Rest Item 4 0.72 0.05 0.60 0.05 1.34 0.06

Sleep/Rest Item 5 0.67 0.06 0.49 0.05 0.73 0.05

Sleep/Rest Item 6 0.52 0.06 0.69 0.04 0.94 0.06

Cognitive Item 1 0.33 0.05 0.66 0.05 1.07 0.05

Cognitive Item 2 0.58 0.05 0.63 0.04 1.06 0.05

Cognitive Item 3 0.58 0.05 0.56 0.05 0.88 0.05

Cognitive Item 4 0.53 0.05 0.54 0.05 0.96 0.05

Cognitive Item 5 0.56 0.05 0.55 0.05 1.04 0.05

Cognitive Item 6 0.66 0.05 0.59 0.05 0.98 0.05

Parameter estimates are shown for Model S5a (see Table 3)

Table 5 Test for invariance by age form on PedsQLTM Multidimensional Fatigue Scale

Model Description v2 df D v2 p RMSEA CFI D
CFI

SRMR NCI D
NCI

A1 Same structure, but all parameters freely

estimateda
535.49 357 – – 0.04 0.965 – 0.04 0.899 –

A2 A1 ? loadings equal (free variances, though) 606.32 415 87.81 0.01 0.04 0.963 0.002 0.06 0.892 0.007

A3 A2 ? intercepts equal (free means, though) 677.47 443 83.72 0.00 0.04 0.955 0.008 0.06 0.869 0.023

A4 A3 ? constrain unique variances 1,257.39 479 706.71 0.00 0.08 0.849 0.106 0.07 0.627 0.242

A5 A3 ? Factor variances 693.79 451 14.27 0.08 0.04 0.953 0.002 0.07 0.865 0.004

The p values for the v2 as well as the MLR scaling factors are not shown because of space considerations. All p values were \0.001 and all

scaling factors were between 1.26 and 1.30

D v2 values represent the scaled values [91]

RMSEA root mean square error of approximation, CFI Comparative Fit Index, SRMR standardized root mean square residual, NCI McDonald’s

Noncentrality Index
a Model All 2 from Table 2 was used as the baseline model, only fit separately for the three age groups
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6-item individual scales (General Fatigue Scale, Sleep/Rest

Fatigue Scale, and Cognitive Fatigue Scale) are justified

[90].

The present study has several limitations. First, given

the available sample size, the age groups were limited to

the PedsQLTM instrument age groups of 5–7, 8–12, and

13–18 years. With a larger sample size, it would have been

more ideal to study each individual age group, as well as

race/ethnicity and mode of administration subgroups, as we

were able to do for the PedsQLTM 4.0 Generic Core Scales

factorial invariance analyses [23, 24, 27]. Further, the

sample size for the 5–7 age group would have ideally been

larger than what was available in the existing database in

order to increase statistical power. Working from an

existing database, information on nonparticipants was not

available nor were response rates from the groups studied.

Also, there were missing age and gender information for

some of the participants which may limit the generaliz-

ability of the findings. Nevertheless, these findings com-

plement the previous findings that the PedsQLTM 4.0

Generic Core Scales demonstrate factorial invariance for

child and adolescents self-report across age, gender, lan-

guage, socioeconomic, health status, and race/ethnicity

subpopulations [21–23, 26–28], and add factorial invari-

ance analyses across age and gender for the PedsQLTM

Multidimensional Fatigue Scale to this emerging list of

pediatric factorial invariance studies in HRQOL and

symptom-specific instruments.
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