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Abstract

Aims To examine evidence of QOL response shift in

patients with multiple sclerosis (MS) using recursive par-

titioning tree analysis (RPART) technique.

Methods Subjects: MS patients from the NARCOMS

registry assessed an average of 6 times at a median interval

of 6 months. Outcomes: SF-12v2 Physical & Mental

Component Scores (PCS, MCS). Covariates: Patient-

determined disease steps, Performance Scales, and symp-

tomatic therapies. RPART trees were fitted separately by 3

disease-trajectory groups: (1) relapsing (n = 1,582); (2)

stable (n = 787); and (3) progressive (n = 639). The

resulting trees were interpreted by identifying salient

terminal nodes that showed the unexpected quantitative

patterns of contrasting MCS and PCS scores (e.g., PCS

deteriorates but MCS is stable or improves), using a

minimally important difference of at least 5 points on the

SF-12v2. Qualitative indicators of response shift were

different thresholds (recalibration), content (reconceptual-

ization), and order (reprioritization) of disability domains

in predicting PCS change by group.

Results Overall, 20% of patients demonstrated response

shift quantitatively, with 10% in the ‘‘progressive’’ cohort,

8% in the ‘‘relapsing’’ cohort, and 2% in the ‘‘stable’’

cohort. RPART trees differed qualitatively across disease-

trajectory groups in patterns suggestive of recalibration,

reprioritization, and reconceptualization. Disability sub-

scales, but not symptom management, distinguished

homogenous groups.

Conclusions PCS and MCS change scores are obfuscated

by response shifts. The contingent true scores for PCS

change scores are not comparable across patient groups.
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Introduction

The recent expansion of data mining methods and tech-

nology has opened the door to new tools for studying

patterns in data. These tools have been applied in a number

of fields, including marketing research [1], economic pre-

diction [2], epidemiologic research [3], and health services

research [4], but their application to quality-of-life (QOL)

research is only recent [5–9]. Such methods present

intriguing tools for hypothesis generation in evaluating the

role of qualitative processes in quantitative assessment. As

QOL measurement matures and methods become increas-

ingly sophisticated, the onus for mixed methods that inte-

grate qualitative and quantitative data becomes clear [10,

11]. The present work applies a data mining technique to a

large registry of multiple sclerosis (MS) patients to

examine evidence of qualitative differences in patient-
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reported outcomes (PROs) as a function of disease

trajectory.

Background on MS

MS is the most prevalent chronic progressive neurological

disease among young adults worldwide and in the United

States. The National Multiple Sclerosis Society [12] has

estimated that there are approximately 400,000 cases of

MS in the United States with an incidence of nearly 200

new cases each week. The majority of people with MS are

diagnosed between 20 and 50 years of age, and women are

affected two to three times as often as men [12].

The clinical course of MS is generally characterized by

reversible periods of neurological impairment and disabil-

ity (relapsing-remitting disease) that may be followed by

continuous irreversible impairment and disability (sec-

ondary progressive disease), or progression from clinical

onset with occasional plateaus or temporary minor

improvements (primary progressive disease) [13]. MS is

associated with immune dysregulation and neurodegener-

ative processes [14]. The past decade has witnessed vast

development in disease-modifying agents for MS [15–17].

A large number of MS-specific measures have also been

developed in this period of time [18–23]. Although these

measurement advances are substantial, meta-analyses of the

impact of disease-modifying agents suggest that their impact

is small [24–26]. It is possible that the magnitude of detected

effects is obfuscated by adaptive processes or ‘‘response

shifts’’. Such ‘‘response shifts’’ represent health-related

changes in the meaning of measured concepts, due to

changes in the individual’s internal standards, values, and

conceptualization of the concept(s) being measured [27].

Response shifts would be expected in a patient popula-

tion that has changeable and unpredictable disease trajec-

tories that affect a broad range of symptoms. For example,

an ambulation difficulty such as stumbling in the period

after diagnosis might be experienced and reported as

‘‘badly off’’ by an individual with MS, whereas later in the

disease experience an ambulation difficulty that requires a

walker might be reported as satisfactory functioning.

Similarly, the meaning of ‘‘severe fatigue’’ may depend on

whether the patient just experienced an exacerbation. This

experience or health state can affect the person’s internal

standards of what ‘‘severe’’ fatigue means, their values in

terms of what activities take higher priority in thinking

about their quality of life, and even their conceptualization

of key health-related QOL concepts such as role perfor-

mance (e.g., what is ‘‘role performance’’ if one is in the

middle of an exacerbation as compared to in remission?

How do expectations of one’s functioning change during an

exacerbation as compared to before or much later follow-

ing remission?).

Response shift as an epiphenomenon

Response shift is an epiphenomenon that is inferred when

changes in appraisal explain the discrepancy between

expected and observed indicators of QOL [28]. Li and

Rapkin [5] recently tested this model using recursive par-

titioning tree (RPART) analysis in longitudinal data of

people with HIV. Their analysis integrated qualitative data

from the QOL Appraisal Profile [28] and quantitative data

from the MOS-36 [29], revealed distinct patterns in

appraisal change that substantially increased the amount of

explained variance in mental health outcomes, and

revealed complex and non-linear patterns. These distinct

appraisal patterns supported the idea of the ‘‘contingent

true score’’ [30], where an observed PRO score is com-

parable across people or across time only if the appraisal

processes are similar across comparisons.

It is possible that RPART analysis could be used to

investigate appraisal processes even when they are not

measured directly. As an extension of this epiphenome-

nological approach, one could investigate indicators of

appraisal changes via emergent patterns of disease-specific

PRO subscales in explaining noticeable incongruent gen-

eric physical and mental health composite scores. One

would expect that disease-specific measures would be less

susceptible to response shifts if they query more specific

symptoms or functional limitations than generic measures,

although this issue has not been addressed empirically to

date to our knowledge. Response shifts are more detectable

in evaluative measures [30] that are less specific, such as

generic measures.

These incongruent patterns of PRO subscales would be

reminiscent of the paradoxical discrepancies in QOL val-

uations on chronic diseases between the general public and

the patients, e.g., the general public gives a QOL value of

0.39 to dialysis, whereas dialysis patients give a 0.56 to

their own QOL (e.g., [31, 32]). Some MS patients in our

sample may report improved mental health status despite

severe impairments in physical functioning. Conceivably,

if these patients were asked to evaluate their own QOL on a

scale where 0 represents death and 1 represents perfect

health, they might assign a number nearer 1 than 0. We

may therefore reasonably expect response shift to manifest

itself in a large registry data as patients reporting high

mental health scores despite severe physical limitations or

vice versa. Even though the psychometric properties may

dictate a low correlation between the PRO subscales we

study, we would nevertheless be surprised to find improved

mental functioning despite severe physical limitations.

The present work attempts a data mining approach in a

large registry sample of MS patients. As this data base did

not measure appraisal processes or other indicators of

response shift directly, response shift is inferred as an
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epiphenomenon in the interpretation of the apparent dis-

crepancies between mental health and physical functioning.

This analytic approach has the potential to be more infor-

mative than other response-shift detection methods because

it examines all possible relationships, that is both linear and

non-linear predictors, in partitioning patients into homog-

enous groups. It thus has the potential to show more

complex patterns of relationships that are qualitatively

distinct and meaningful. For example, response shift theory

predicts that response shift is inferred when changes in

appraisal explain the discrepancy between expected and

observed QOL. In the present work which does not have

direct measures of appraisal processes, we operationalize

response shift as unexpected patterns of contrasting MCS

and PCS scores (e.g., PCS deteriorates but MCS is stable or

improves).

Methods

Sample

The North American Research Committee on Multiple

Sclerosis (NARCOMS) Registry is a self-report Registry

developed in 1993 by the Consortium of Multiple Sclerosis

Centers and includes over 34,000 individuals who have

multiple sclerosis, with over 10,000 updating their data

every 6 months. Patients participate by completing either

paper or secure web-based survey forms capturing data on

demographics, disease characteristics, disability and

handicap, treatments, and access to health providers. For

the purpose of this project, a NARCOMS sample was

drawn of patients who had enrolled in the NARCOMS

registry within 1 year of diagnosis and who provided at

least annual updates to the Registry (N = 3,839).

Measures

Standardized PRO questionnaires include: (1) the perfor-

mance scales (PS) measure of disability [18], which

includes items for mobility, hand function, fatigue, cogni-

tion, bladder/bowel, sensory, spasticity, vision, depression,

tremor, and pain. Subscale scores range from 0 to 5, with

the exception of mobility, which ranges from 0 to 6; (2) the

9-level categorical patient-determined disease steps

(PDDS) measure of disease progression that was adapted

from the clinician-reported disease steps [19] and the gold-

standard clinical neurological exam, the Expanded Dis-

ability Status Scale (EDSS) [33]. PDDS scores range from

0 (normal) to 8 (bedridden) and correlate highly with the

EDSS [33]; and (3) the Short-Form 12v2 (SF-12) [34], a

generic health measure that yields composite scores for

mental health (MCS) and physical functioning (PCS). In

addition to the above PROs, patient responses to items on

symptom change and relapse experience were used to

classify patients’ disease course (i.e., relapsing, stable, or

progressive disease; see below).

Statistical analysis

Creating the ‘‘relapsing,’’ ‘‘stable,’’ and ‘‘progressive’’

patient cohorts

We focused on the 2005–2009 data because the more

recent data were associated with more complete assess-

ments. Each patient was deemed ‘‘relapsing,’’ ‘‘stable,’’ or

‘‘progressive’’ by the following algorithm on the basis of

defining parameters that are consistent with clinical defi-

nitions of these subgroups, and as discussed and agreed

upon with a senior neurologist involved in the project (TV).

We first identified each patient’s latest assessment and

went back in time in a retrospective review of symptoms

for up to 2 years. Patients were identified as part of the

‘‘actively relapsing’’ if they reported any relapse within

2 years (n = 1,582, 53% of the sample). Patients were

identified as ‘‘progressive’’ if they reported no relapse

within 2 years and reported worsening symptoms at least

once in the past 2 years (n = 639, 21% of the sample).

Patients were identified as ‘‘stable’’ if they reported no

worsening of symptoms and no relapse for all consecutive

assessments over the duration of up to 2 years (n = 787,

26% of the sample). The stable group would be used as a

comparison group in the analysis under the assumption that

they would not be prone to response shifts in perceived

QOL.

RPART model specifications

We used the recursive partitioning and regression trees

method [35, 36] in R software [37] to model the changes in

the SF-12 PCS and MCS scores. We fitted RPART trees for

the three cohorts separately, using PCS scores as the

dependent variable, and a set of 42 clinically relevant

covariates including use of 29 treatment or symptom relief

medications (e.g., baclofen, ditropan, etc.), 11 items from

the performance scales reflecting physical and psychoso-

cial function (e.g., mobility, fatigue, cognition, etc.), the

PDDS disability score, and time since diagnosis. These

selected covariates were included on the basis of clinical

logic and previous knowledge that justifies the inclusion of

this set of covariates. Because patients provided multiple

SF-12 assessments (median = 5), an analysis based on the

full dataset would violate the assumption of independent

assessments. We did not use the longitudinal RPART

approach (‘‘long RPART’’ software program [38]) that is

designed to classify cases by growth curves (e.g., by each
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person’s growth curve intercept and slope fitted to all

available assessments over the 5-year period). Preliminary

graphing of the longitudinal PCS scores revealed that the

individual growth curves over time were highly variable.

We were not able identify visibly linear nor quadratic

growth patterns over time, suggesting that the ‘‘long

RPART’’ approach was unlikely to yield insightful classi-

fications. Thus, to avoid double counting the patients, we

randomly sampled two consecutive assessments per patient

and calculated each patient’s change scores on the PCS

scores as well as changes in functional indicators.

The RPART [35] model fitted the changes in PCS

component scores as a function of the abovementioned 42

predictors, representing the changes in physical and psy-

chosocial functional indicators between randomly selected

consecutive assessments. We included each patient’s initial

PCS scores to control for ceiling and floor effects and to

simplify the interpretation of the magnitude of changes.

The full sample of 3,839 patients in the 2005–2009 reg-

istry was first analyzed by a preliminary model with all

default parameters of the RPART statistical procedure

(found in the RPART software documentations as part of the

RPART download). This served to identify cases that

deemed by RPART as containing no usable information,

cases in which the outcome variable is missing and/or all

predictors in the preliminary RPART model are missing.

Therefore, these are cases that contain insufficient informa-

tion for RPART to make a classification. A sample of 831

patients was excluded thusly, leaving an analytic sample of

3,008 patients.

Separate RPART trees were fitted for each patient cohort.

We followed the general approach in RPART analysis: (1)

stopping rule for a terminal node (20 observations) (2) tenfold

cross-validation automatically carried out, (3) true-pruning by

the result of the tenfold cross-classification and the one-stan-

dard-deviation rule [39] in the cost-complexity criterion, (4)

specification of priors (proportional to data counts), and (5)

missing data are handled by surrogate splits. The following

algorithm provides an intuitive explanation on surrogate

splits. For example, a person has a missing value in a model

that partitions an outcome variable Y by predictor variables A,

B, and C. Assume also that this person’s missing value is

found in predictor A so that his or her branching by A cannot

be determined. The model has to rely instead on this person’s

non-missing values in B and C as surrogate splits. An agree-

ment is calculated between the classifications based on the

primary split of A and the surrogate splits B and C (on cases

with non-missing A). Whichever surrogate split with the

highest agreement wins and the case is classified accordingly.

RPART performs a tenfold cross-classification by

default to help evaluate the reliability of the tree model.

The full sample is randomly divided into 10 sub-samples.

Internally, the full RPART tree is carried out with 90% of

the full sample, and the remaining 10% of the sample is

used as a validation dataset to calculate a cross-classifica-

tion error rate. This procedure is repeated 10 times, each

time with 9 subsets as the modeling dataset and the

remaining 1 subset as the validation dataset. We used the

results of this tenfold cross-validation to prune the full tree

back down to a more parsimonious model by the 1-SD rule.

Additional technical details can be found in [35]. These

considerations were similar to our prior work [5].

Interpretation of RPART findings

We report the full RPART trees, rather than the pruned

trees by the 1-standard error rule in cross-validation error

[35, 36]; because pruning is likely to omit small groups of

patients with subtle QOL changes. We wanted to better

examine the sizes of these potentially small clusters to

inform the relative scale of response shift within each

patient cohort. The interpretation of changes in physical

and mental functioning was generally based on the scales

of population norms for these summary scores, with a mean

of 50 and a standard deviation of 10 [40]. To the best of our

knowledge, there is no consensus yet on the minimally

important difference in the SF-12 component scores for MS

patients. Thus, in evaluating the RPART findings, we

generally considered a 5-point change or greater a medium

change (i.e., one-half standard deviation), and a change of

10 points or greater a large change (i.e., one-standard

deviation). These reference points provide useful guidance

for clinically meaningful change to identify clusters of

patients who report considerable changes in physical

functioning despite their mental health scores remaining

unchanged. We primarily focus on these salient patterns of

PCS and MCS scores and the corresponding sizes of these

patient clusters. Response shift was inferred by qualitative

differences in thresholds, content, and order of disability

domains that were retained by the RPART analysis. We

operationalize response shift quantitatively as unexpected

patterns of contrasting MCS and PCS scores (e.g., PCS

deteriorates but MCS is stable or improves). We typically

offer no remarks on patient clusters with change scores less

than this minimally important difference (MID) of 5 points.

Results

Sample characteristics

Table 1 shows the demographic characteristics of the study

sample. The sample consisted of 3,008 patients with a

mean age of 42.4, of whom 83% were female. Time since

diagnosis was less than 1 year in 42 percent of the sample,

and greater than 1 year in 58 percent of the sample.
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Generally, we interpret the RPART trees by first iden-

tifying salient terminal nodes that show the greatest chan-

ges in PCS and MCS component scores. The size of the

identified terminal nodes is noted. We then focus on tracing

the binary splits in the RPART tree for changes in disease

management and functional status that contribute to such

extreme changes in quality of life assessments.

PCS trees

Figures 1–3 shows the full RPART tree modeling the PCS

changes over time among ‘‘relapsing’’ patients. All splits

including the initial split are data driven. None of the

treatment and symptom-management covariates were

deemed predictive of PCS change. The greatest PCS

change was observed in the leftmost terminal node of 7

‘‘relapsing’’ patients, who reported an average reduction of

19 points between the two assessments. These patients’

baseline PCS scores were already extremely low (less than

23.84, after the first two consecutive splits to the left) and

their self-reported bladder/bowl functioning deteriorated

considerably (an increased disability of greater than 1.5;

e.g., from 2 = ‘‘mild bladder/bowl disability’’ to

4 = ‘‘severe bladder/bowl disability’’). A group size of 7 is

small relative to the full sample. However, a PCS score

near zero means that these patients reported severe limi-

tations in all aspects of the PCS domain. Also plotted in

bold font at the bottom are the average MCS change scores

Table 1 Sample demographics

Progressive, N = 639 (201%) Relapsing, N = 1,582 (53%) Stable, N = 787 (26%)

Mean SD Mean SD Mean SD

Current ageb 44.9 9.3 40.9 9.5 40.9 9.5

Age @ diagnosis 43.57 9.29 40.25 9.06 39.90 9.47

Age @ symptom onset 35.65 9.72 32.70 9.81 33.87 9.91

Na % N % N %

Gender: female 477 77 1,273 84 623 86

Gender: male 141 23 250 16 103 14

Race: white 572 93 1,385 91 672 93

Race: nonwhite 43 7 129 9 51 7

Education: B HS 211 35 558 37 214 30

Education: [ HS 403 65 958 63 500 70

SF-12 physical component score (PCS)

Baseline mean (SD) 41.77 10.15 41.28 10.74 50.43 8.24

Change score mean (SD) -0.44 6.88 0.07 7.47 0.12 5.05

SF-12 mental component score (MCS)

Baseline mean (SD) 48.08 7.81 46.14 7.90 50.07 6.52

Change score mean (SD) -0.05 6.97 0.10 7.65 -0.47 6.0

Patient-determined disease steps (PDDS)

Baseline mean (SD) 2.83 2.11 2.59 2.00 1.06 1.59

Change score mean (SD) -0.10 0.87 -0.12 0.95 0.01 0.71

Performance scales (PS)

Baseline mean (SD)

Mobility 2.15 1.78 1.96 1.64 0.79 1.23

Hand function 1.29 1.17 1.44 1.19 0.69 0.94

Fatigue 2.59 1.26 2.82 1.32 1.59 1.20

Cognition 1.56 1.17 1.85 1.24 0.99 0.96

Bladder/Bowel 1.40 1.13 1.48 1.22 0.79 0.95

Sensory 1.67 1.20 1.97 1.27 1.10 0.90

Spasticity 1.61 1.30 1.77 1.31 0.75 0.97

Vision 0.96 1.07 1.35 1.15 0.75 0.89

Pain 1.72 1.39 2.08 1.44 0.91 1.10

a Numbers may not add up to total N because of missing information, which is omitted in the denominators of the percentages
b Registry data only contained year of birth. Thus, current age was calculated by the difference in year of birth and year of the date of survey
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Figs. 1–3 Figures 1 through 3 present the pruned RPART trees for

changes in SF-12 PCS scores over time for relapsing, progressive and

stable patients, respectively. The initial cut-point represents the most

important interaction term for distinguishing homogenous patient

groups within the disease-trajectory grouping and the branches that

follow indicate the interaction terms that create increasingly homog-

enous patient groupings. Note that if a statement is true (e.g., PCS at

time 1 \ 30.85 in Fig. 1, top branch), the group for whom that

statement is true falls on the left side of the tree; if false, on the right

side of the tree. The final groupings reflect patient groups who share

cut-points, content and number of domains, and order of domains in

predicting their change in PCS change scores. MCS change scores are

also added for reference in bold. These tree branches thus reflect

latent appraisal processes, and thus contingent true scores on PCS
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for the patients in the corresponding terminal nodes. The 7

patients in the leftmost node reported a small improvement

of 4.6 points in MCS. The neighboring end cluster, the 101

patients who reported a reduction of 7.05 points in PCS

from a score of less than 23.8 at time 1, also reported a

small 3.4 points improvement in MCS.

Another great change was an increase in PCS of 17.04

points among 13 patients on the other initial node whose

initial PCS was above 30.85, and who had maintained

mobility (no more than a 2.5-point reduction, e.g., from

0 = ‘‘Normal’’ to 2 = ‘‘Mild gait disability’’ but no more

than 3 = ‘‘Occasional use of cane or unilateral support’’).

These patients’ MCS scores improved by 1.4 points—

smaller than the 4.6 MCS improvement among the 7 patients

described above. Another noteworthy group is the second

terminal node from the right of 14 patients whose average

PCS scores increased by 13.79 points and average MCS

scores decreased by 1.02 points. Although these patients did

not maintain mobility, their PCS scores were noticeably

similar to the change of 17.04. However, the increase of

13.79 points in PCS among these 14 patients arose from a

different configuration of contributing factors: lesser degrees

of pain, a baseline PCS greater than 36.88, and lesser hand

disability. Something similar occurs for the subgroups

n = 196/PCS change = 4.092 and n = 134/PCS change =

3.316. They also result from different pathways but seem to

have similar PCS and MCS change scores. These examples

illustrated by the tree indicate that patients may reach similar

physical and mental QOL changes by way of disparate

pathways of physical symptoms and limitations.

Overall, PCS change among ‘‘relapsing’’ patients was

strongly affected by baseline PCS, bladder/bowl disability,

mobility, pain, and hand disability, as well as PDDS scores

(PCS plus 5 domains). The terminal node groups in the

middle of the tree showed change scores below the MID

and thus no change in this sampling of time points. These

groups included the largest numbers of ‘‘relapsing’’

patients (D = -0.099, n = 710 and D = 3.316, n = 134).

Using a PCS change of 5 points as a crude guide, we found

unexpected patterns of contrasting MCS and PCS scores in

135 patients, in two patient clusters of decreased PCS

scores accompanied by increased MCS scores (n = 7 and

101), and in two patient clusters of increased PCS scores

accompanied largely unchanged MCS scores (n = 13 and

14). Thus, whereas the abovementioned patients showed

discrepancies in their PCS and MCS change scores (i.e.,

response shifts), the remaining 1250 patients in the

‘‘relapsing’’ patient cohort (90%) show no remarkable

patterns of response shift.

Figures 1–3 shows the full RPART tree modeling the

PCS changes over time among ‘‘progressive’’ patients.

None of the treatment and symptom-management covari-

ates or PDDS was predictive of PCS change. Further, the

greatest PCS change was observed in the leftmost terminal

Figs. 1–3 continued
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node of 8 ‘‘progressive’’ patients, who reported an average

reduction of 16.9 points between the two assessments.

These patients’ baseline PCS scores were already extre-

mely low (less than 29.4, after the first splits to the left) and

their self-reported pain deteriorated a small amount (an

increased pain of greater than 0.5; e.g., from 2 = ‘‘mild

pain’’ to less than 3 = ‘‘moderate pain’’) and slight

increase in cognitive limitations (e.g., from 1 = ‘‘minimal

cognitive disabilities’’ to 2 = ‘‘mild cognitive disabili-

ties’’). Although this is also a small group relative to the

full sample, their PCS score nearing zero reflects severe

limitations in all aspects of the PCS domain. Despite their

severe physical limitations, these patients reported a 3.5-

point improvement in MCS scores, reflecting a 20.42 point

discrepancy in PCS and MCS scores. To the right of this

group were 12 patients who reported an 8.8 point PCS

reduction and stable cognitive symptoms, yet they reported

a 4.7 points improvement in MCS. The greatest positive

change was an increase in PCS of 3.5 points among 103

patients whose initial PCS was above 33.9, and who had

maintained low pain disability (no more than a 0.5-point

reduction, e.g., from 3 = ‘‘Moderate pain disability’’ to

2 = ‘‘Mild pain disability’’). Their MCS change score was

near zero.

Overall, PCS change was strongly affected by baseline

PCS, pain, and cognitive symptoms. Several terminal node

groups totaling over 500 patients showed unremarkable

PCS change scores, with the most prominent being the 291

patients with a mean PCS change score of -0.46 points.

Again, using a PCS change of 5 points as a crude guide, we

found unexpected patterns of MCS and PCS scores in 45

patients: in three patient clusters of decreased PCS scores

accompanied by increased MCS scores (n = 8 and 12), and

in one patient cluster of decreased PCS scores accompa-

nied by unchanged MCS scores (MCS D = -0.79, repre-

senting a difference of 5.4 from PCS D of -6.2; n = 25).

The remaining 539 patients in this cohort (92%) showed no

remarkable patterns of response shift.

Figures 1–3 shows the full RPART tree modeling the

PCS changes over time among ‘‘stable’’ patients. Unlike

the other patients, one symptom-management covariate

was deemed predictive of PCS change: patients who

reported not using Neurontin and whose baseline PCS

score was higher than 46.4 (i.e., normal relative to the

general population) had the highest observed PCS change

indicating improved function (D = 6.099, n = 9). How-

ever, their average MCS score reduced by 4.83 points.

‘‘stable’’ patients who reported the greatest PCS decrease

(n = 21) were in the leftmost terminal node, and an

average reduction of 7.98 points between the two assess-

ments. These patients’ baseline PCS scores were substan-

tially below the general population norms (less than 31.5

points) and reported a small amount of deterioration on

pain and bladder/bowel disability (less than 0.5 change in

both subscales). Another noteworthy group is the second

terminal node from the right of 12 patients whose average

PCS scores increased 5.43 points, but who used Neurontin

and who maintained low pain disability (more than a 1.5-

point reduction, e.g., from 3 = ‘‘Moderate pain disability’’

to 1 = ‘‘Minimal pain disability’’). These 12 patients

reported a slight reduction of 1.39 in MCS scores.

Overall, PCS change was strongly affected by baseline

PCS, pain, mobility, and PDDS score (PCS plus 3

domains). Several terminal node groups totaling 469

patients showed unremarkable change scores, with the

most prominent being the 308 patients with a mean PCS

change score of 0.27 points. Patterns of response shift

among ‘‘stable’’ patients are subtle. Again, using unex-

pected patterns of contrasting MCS and PCS scores as the

primary method to detect response shift, we found only one

cluster of 9 patients (endpoint to the furthest right) whose

physical functioning had improved by 6.099 points while

their mental health scores had decreased by nearly 5 points.

The remaining 609 patients (98%) showed no remarkable

patterns of response shift.

Possible evidence of response shift

Table 2 summarizes the operationalizations of the three

aspects of response shift as well as the findings that may

support response shift hypotheses. There appeared to be

differences in RPART trees across disease-trajectory

groups with regard to patterns of PCS and MCS suggestive

of recalibration, reprioritization, and reconceptualization.

Recalibration response shift was inferred by different

group-specific thresholds for cut-points in the RPART

trees. For example, the first branching for ‘‘stable’’ patients

occurs at a baseline PCS score of 46.4, a value near the

general population norm, while the first branching for

‘‘relapsing’’ patients occurs at a much lower baseline PCS

score of 30.85. What constitutes a reliable split by baseline

PCS in one patient group’s configuration of QOL changes

may be considerably lower or higher than another group’s

QOL changes, above and beyond what may be expected

due solely to measurement error.

Reconceptualization response shift was inferred by

changes in the content and/or number of domains by group

in the tree over time. For PCS, the statistically relevant

disability domains differed by disease-trajectory group,

with ‘‘relapsing’’ patients’ trees showing the greatest

number of relevant domains (4 domains, PDDS), followed

by ‘‘stable’’ patients (2 domains, PDDS, symptomatic

therapy), and then ‘‘progressive’’ patients (2 domains).

Reprioritization response shift was inferred by changes

in the order of domains in tree pathways over time. For

PCS, the disability domains that were relevant across
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groups entered the RPART tree branches at different levels,

supporting a reprioritization response shift. For example,

changes in pain disability affected strongly the PCS change

scores for ‘‘stable’’ as well as ‘‘relapsing’’ patients, sug-

gesting that pain was high on the priority of change in

physical disability. However, the effects of pain were only

relevant to ‘‘relapsing’’ patients’ whose mobility was not

severely impaired over time.

Discussion

This investigation applied the RPART data mining tech-

nique to identify plausible patterns of response shifts in

physical health change scores in MS patients distinguished

by disease trajectory. Based on the extensive quantitative

data analysis, response shift was inferred by qualitative

differences in thresholds, content, and order of disability

domains that were retained by the RPART analysis. We

conclude that there are observable patterns of emergent

response shift in unanticipated PCS and MCS scores

attributable to different appraisal processes among all three

patient cohorts. This work demonstrates that the magnitude

of detected effects is obfuscated by adaptive processes or

response shifts. The tree analysis shows intriguing evi-

dence that changes in pain disability contribute importantly

to the physical functioning of all three cohorts of patients.

Idiosyncratic patterns of physical functioning changes are

also observable. For example, both ‘‘relapsing’’ and ‘‘sta-

ble’’ patients’ changes in physical functioning are also

affected by bladder and bowel symptoms and the PDDS.

‘‘progressive’’ patients’ PCS change scores seem to be

affected strongly by limitations in spasticity and cognitive

limitations and less so by bladder/bowel symptoms and the

PDDS stage. Further, only stable patients evidence an

effect of a symptomatic treatment, whereas the trees for

both relapsing and progressive patients do not suggest such

an effect. This lack of treatment effect may imply that in

MS, treatment benefits are shown by lack of change (i.e.,

stability) rather than improvement, since the disease is

chronic and progressive.

These findings suggest that the change scores evidenced

by this sample on the PCS and MCS measures are being

obfuscated by response shifts and that the contingent true

scores for PCS change are not comparable across patient

groups. If we accept the use of unexpected PCS and MCS

score patterns as indicators of response shift, and the use of

terminal node sizes as practical measures of the magnitude

of response shift within a specific patient cohort, then we

can determine that overall 20% of patients demonstrated

response shift using an MID of at least 5 points on the SF-

12v2, with 10% in the ‘‘progressive’’ cohort, 8% in the

‘‘relapsing’’ cohort, and 2% in the ‘‘stable’’ cohort. This

pattern seems consistent with our intuitive notion of the

quality-of-life differences across these three groups. For

example, we would expect that ‘‘stable’’ patients show the

lowest level of response shift as compared to the other two

groups, mainly because they have to show no worsening of

symptoms and no relapse for all consecutive assessments

over the duration of up to 2 years. This method may be

more sensitive to response shift detection than the other

response shift detection methods used on this same patient

Table 2 Summary of qualitative indicators of response shifts in RPART analysis

Response shift

aspect

Operationalization PCS

Relapsing Progressive Stable

Recalibration Trees indicating relationships between predictors and

outcome scores utilize different group-specific thresholds or

cut-points for selected predictor-variable interaction terms

to identify homogenous groupings over time

Baseline cut-points differ and are [ MID

Mobility and pain cut-points differ between and within

groups

Relevant domains differ across disease-trajectory groups

so cut-points not applicable

Reprioritization Changes in the order of domains in tree pathways over time Baseline-bladder/

bowel-mobility-

pain-hand-PDDS

Baseline-

pain-

spasticity

Baseline-pain-

Neurontin-

mobility-PDDS

Reconceptualization Changes in the content and/or number of domains by group in

a pruned tree over time

5 Disability domains:

Mobility

Bladder/bowl

Pain

Hand function

PDDS

Baseline PCS

3 Disability

domains:

Spasticity

Pain

Baseline

PCS

4 Disability

domains:

Pain

Mobility

PDDS

Baseline PCS

1 symptomatic

therapy:

Neurontin
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sample [41, 42]. Future research should triangulate this

response-shift detection approach with direct measures of

(changes in) appraisal to confirm that this approach of

inferring changes in appraisal truly reflects measured

changes in appraisal when these data are available.

The application of RPART to response shift research is

relatively recent [5] but shows promise for identifying

patterns that underlie paradoxically small change scores

over time in PROs. At this stage in the application of this

method, and in the context of not having direct measures of

appraisal, we infer differences in appraisal as a function of

differences in thresholds, content, and order of domains

included in the trees. Such an analytic exercise is highly

exploratory and is prone to classification errors when no

direct measures of appraisal are available. It should be

noted that although the RPART method has numerous

cross-validation steps that would minimize chance find-

ings, the analytic method is exploratory in nature, and

findings would be best confirmed in independent samples.

Future research should evaluate whether this inference is

supported in data sets that include the QOL Appraisal

Profile [28] over time, to assess whether RPART analyses

that include or exclude appraisal generate similar conclu-

sions about the aspects of response shift reflected in the

data. Future research could also codify the types of

response shift as distinguished from other types of change,

similar to Oort’s seminal work codifying the application of

SEM to response shift detection [43]. Such codification is

critical for a firm scientific foundation for identifying

response shift by testing alternative explanations, as well as

for providing unbiased estimates of longitudinal changes in

PROs.
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