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Abstract Item banks and Computerized Adaptive Test-

ing (CAT) have the potential to greatly improve the

assessment of health outcomes. This review describes the

unique features of item banks and CAT and discusses how

to develop item banks. In CAT, a computer selects the

items from an item bank that are most relevant for and

informative about the particular respondent; thus optimiz-

ing test relevance and precision. Item response theory

(IRT) provides the foundation for selecting the items that

are most informative for the particular respondent and for

scoring responses on a common metric. The development

of an item bank is a multi-stage process that requires a

clear definition of the construct to be measured, good

items, a careful psychometric analysis of the items, and a

clear specification of the final CAT. The psychometric

analysis needs to evaluate the assumptions of the IRT

model such as unidimensionality and local independence;

that the items function the same way in different subgroups

of the population; and that there is an adequate fit between

the data and the chosen item response models. Also,

interpretation guidelines need to be established to help the

clinical application of the assessment. Although medical

research can draw upon expertise from educational testing

in the development of item banks and CAT, the medical

field also encounters unique opportunities and challenges.

Keywords Computerized adaptive testing � Health Status

Indicators � Questionnaires � Algorithms � Mental health �
Factor analysis � Statistical

Introduction

Better health outcomes management demands high quality

assessment tools to evaluate the efficacy of specific phar-

maceuticals and medical devices, or to monitor the out-

come of a given treatment in terms of patients’ functioning

and well being. There is a need for practical and user-

friendly assessment systems that can capture health status

data in real time and attain high precision without undue

response burden for the patient. Item banks and Comput-

erized Adaptive Testing (CAT) [1] have the potential to

meet these needs.

In a CAT, the computer algorithm selects the items that

are most informative for a particular respondent and scores

the responses in a way that allows comparison with

respondents answering a different set of items [1]. The

psychometric theory that is utilized in solving these two

tasks is called Item Response Theory (IRT) [2, 3, 4].

CAT and IRT methods have been used in educational

assessment for decades, but the practical implementation in

medical research is fairly new [5]. While medical research

can use much of the methodology and approaches devel-

oped in educational testing, differences between the two
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fields necessitates some adaptation in the use of CAT and

IRT within the framework of medical research. In this

paper we will:

1. Discuss the IRT models that seem most relevant for

patient reported outcomes (PRO) and their strengths

and weaknesses for PRO research.

2. Discuss item banks, desirable attributes of a quality

PRO item bank, and the steps to build an item bank.

We illustrate these steps using a small item bank for

mental health as an example.

3. Briefly illustrate the principles of CAT assessment.

4. Discuss differences between applications of CAT and

IRT within educational testing and PRO assessment.

We will illustrate the steps in item bank development

through a reanalysis of data on a well researched tool,

the 34-item Mental Health Inventory (MHI) [6]. A more

detailed empirical description of the psychometric analy-

ses involved in item bank development can be found in a

paper by Cook et al (this issue). IRT is further discussed

by Orlando (this issue). A companion paper by Thissen

et al. (this issue) discusses more general topics relating to

the application of IRT and CAT methodology in PRO

research.

IRT models

IRT models [2, 4] are statistical models of the relationship

between a person’s score on the construct being measured

and their probability of choosing each response on each

item measuring that construct. IRT models can be used to

evaluate how informative an item is for a specific range of

scores and to estimate a person’s IRT score. Thus, IRT

methods provide several advantages for computer-based

assessment:

1. Test relevance and precision can be optimized for a

given respondent burden.

2. Precision can be adapted to the needs of the specific

application. If we do not require high precision for a

given purpose the assessment can be stopped early to

reduce respondent burden; if high precision is required,

more items can be administered.

3. Scores are placed on the same metric regardless of

which items in the bank are used.

4. Item banks can be expanded gradually by seeding and

evaluating new items.

5. The response process can be monitored in real time

to ensure assessment quality and that inconsistent

response patterns are explored.

The mathematics of IRT models is discussed in detail in

the psychometric literature (e.g. [2, 4]) and will only be

reviewed briefly here. We will start our discussion with

models assuming that all items are measuring the same

latent construct (i.e., the unidimensional IRT models) and

focus on two families of models that are the most fre-

quently used in PRO research:

1. The Nominal Categories Model (NCM) [7] and special

cases of this model such as the Generalized Partial

Credit Model (GPCM) [8, 9], the Partial Credit Model

(PCM) [10, 11] and the Rating Scale Model (RSM)

[12],

2. The Graded Response Model (GRM) [13, 14].

For dichotomous items, these two families of models

converges to the same model: the two-parameter logistic

model (see Birnbaum in [15]). For a dichotomous (e.g.

Yes = 1, No = 0) item, the two-parameter model can be

written as a log odds (i.e. the logarithm to the ratio of two

probabilities) in the following way:

log
P Xij ¼ 1jhj

� �

P Xij ¼ 0jhj

� �

 !

¼ ai hj � bi

� �
;

where Xij is the response of person j to item i, hj is the

level of mental health (or whatever concept to be mea-

sured) for person j, and ai and bi are item parameters,

describing characteristics of the particular item. bi is called

the item difficulty or threshold parameter and is the value

on the IRT scale where PðXij ¼ 0Þ ¼ PðXij ¼ 1Þ ¼ :5 . ai

is called the discrimination or slope parameter since it

determines the amount of change in the log odds for one

unit of change in the IRT score. The polytomous IRT

models are described and compared in the most simple

way through such log odds formulations (Table 1, also see

[16, 17]). The models differ in the definition of the

probabilities being compared and in the number of item

parameters.

In the NCM, each response category is compared to the

baseline category (see Table 1). The model has a dis-

crimination parameter aic and an intercept parameter gic for

each response category (labeled c) except the first one (to

identify the model, ai0 and gi0 can be set to zero). This

model does not assume a rank order of the response cate-

gories and is therefore the most general of the described

IRT models. However, the model still assumes a specific

function for the log odds and thus may not fit all items (e.g.

in case of multidimensionality or if a particular response

option is favored a two very different level of health, but

unlikely to be chosen in between, see [18]).
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In the GPCM, each response category (c) is compared to

the response category below and a common slope param-

eter is assumed for all response categories within one item.

The model has a number of item category threshold

parameters, bic, (one less that the number of response

categories). The GPCM is in fact a constrained version of

the NCM (where aic (in the NCM) = ai*c (in the GPCM)

and gic (in the NCM) = ai*c*bic (in the GPCM)). This

restriction reflects the assumption of rank ordered response

categories made in the GPCM. If the model is further

constrained by assuming a common slope parameter across

all items, we achieve the PCM, which is part of the Rasch

model family [2]. The slope parameter can either be con-

strained to 1 or have a common value different from 1 (see

discussion later in this paper). If they fit the data, the Rasch

models have unique advantages in terms of simplicity of

interpretation and robust estimation techniques (see [2] for

detailed discussion). However, many items will not fulfill

the assumption of common discrimination.

The item category threshold parameter, bic, of the PCM

can be split into two terms ðbic ¼ li � dicÞ , where li is

termed a location parameter and dic is called the item

category parameter. If the item category parameters are

constrained to be equal across items dic = dc, another

Rasch family model, the RSM, is obtained. In statistical

terms, the RSM is nested within the PCM, which is nested

within the GPCM, which is nested within the NCM.

An alternative model is the GRM. As shown in Table 1

the GRM compares the probability of being in a certain

response category or higher with the probability of being

below that category. Except for this difference in the

definition of the comparison of probabilities, the model is

similar to the generalized partial model. Thus, the models

have the same number of item parameters and both assume

rank ordered response categories. An item that fits one of

these models will usually also fit the other model well

enough for practical use [19]. Finally, the GRM is very

similar to the modern factor analytic models for analysis of

categorical data [20, 21].

Figure 1 illustrates the GPCM [9] for three items con-

cerning mental health (the three upper plots—full lines). In

the upper plots, each full curved line (called item category

response functions or option characteristic curves) represents

the model’s prediction of the probability of choosing each of

the item response categories for various levels of mental

health (PðXij ¼ cjhjÞ). The horizontal (x-) axis is the mental

health IRT score, ‘‘normed’’ so that the average adult in the

USA has a score of 50 and a positive score indicates better

mental health. At a score of 50, the most likely response on

SF8MH (... how much have you been bothered by emotional

problems...) is slightly (probability = .61), the most likely

response on MHP01 (... how much of the time have you been

a happy person) is most of the time (probability = .69) and

the most likely response on MHC01 (... felt so down in the

dumps that nothing could cheer you up) is none of the time

(probability = .83). For the first item (SF8MH) we also

estimated the GRM and plotted the item category response

function for this model (broken lines). While not identical,

the lines for the GRM are close to the lines for the GPCM.

In the GPCM, the item category threshold parameters

can be directly identified from these graphs as the point of

intersection of adjacent category response functions. While
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Table 1 The most frequently used IRT models for polytomous items
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the slope parameter cannot be directly identified from the

graph, Fig. 1 conveys the sense that item 3 has higher slope

than item 2, which has higher slope than item 1.

In contrast to classical psychometrics that typically

assumes a constant measurement precision throughout the

measurement range, IRT acknowledges that measurement

precision depends on the score level. IRT allows for a

calculation of a level-specific standard error of measure-

ment for any combination of items. The contribution of

each item to the overall measurement precision can be

evaluated through item information functions. The item

information functions shown in the lower part of Fig. 2 can

be calculated from the IRT model [22]. Figure 1 shows that

MHC01 is most informative for people with poor mental

health and that MHP01 is the most informative items for

people with good mental health. To evaluate the total

information achieved from a combination of items, the

item information functions are simply summed to achieve

the test information function. The standard error of mea-

surement is approximately equal to the inverse square root

of the test information function.

Use of IRT models in CAT item selection and score

estimation

A typical CAT (Fig. 2, also see [1]) may begin with an

initial global question that is asked of all respondents (Step

1). This question should be informative for a person with

average health and have appropriate content for a first item.

Alternatively, the first question could be selected based on

MHP01. During the past month, how much of the time 
have you been a happy person?
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Fig. 1 Item category response functions and item information

functions for three items on mental health. Full lines describe the

GPCM, broken lines the GRM
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Fig. 2 Logic of computerized adaptive testing
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previous information about the respondent such as their

score on previous CAT-administrations or clinical data

like disease stage. The response to the first item is used in

Step 2 to estimate the person’s score and a respondent-

specific confidence interval (CI). At Step 3, the computer

algorithm determines whether any stopping rules have

been fulfilled. If the stopping rule is not satisfied, Step 2 is

repeated for the next most informative item. Often, the

stopping rule is test-precision, in which case the computer

evaluates whether the CI is within specified limits. Once

the criterion is met, the algorithm ends the assessment of

this construct. The required precision may vary according

to score range or a maximum number of items may be

specified. Thus, the CAT would stop if either a certain

level of precision is achieved or if the maximum number

of items has been used. Such safeguards may be useful to

limit respondent burden. Other stopping rules may also be

used, such as the probability of being below a certain cut

point on the scale.

Figure 3 illustrates two possible sequences of score

estimation and item selection in a CAT that uses SF8MH

as the first global item. The scoring method used here,
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Expected a Posteriori (EAP) estimation [23], starts with a

prior assumption about the distribution of mental health in

the population (the normal distribution function in the first

row). The mean (expected) IRT score is 50, but a wide

range of values are possible (95% confidence interval

30–70). If the answer to SF8MH is extremely (second row,

left column) the function for this response (bold black line)

is multiplied with the prior distribution, which produces the

‘‘Posterior distribution 1’’ (row three). The IRT score

estimate is the mean of this posterior distribution;

ĥj ¼

R

�1

þ1 Q

i¼1

N

PðXij ¼ cjhÞ u hð Þ h dh

R

�1

þ1 Q

i¼1

N

PðXij ¼ cjhÞu hð Þ dh

where N is the number of items and u (h) is the population

distribution of h. In practice, the equation is solved through

numerical integration in a number of quadrature points (see

e.g. [24]). The EAP estimate calculated from ‘‘Posterior

distribution 1’’ is 30. The standard error of the EAP

estimate is calculated as [24]:

SE ĥj

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

�1

þ1 Q

i¼1

N

PðXij ¼ cjhÞ u hð Þ ĥj�h
� �2

dh

R

�1

þ1 Q

i¼1

N

PðXij ¼ cjhÞu hð Þ dh

vuuuuuut

The confidence interval can be calculated as

�1:96 � SEðĥjÞ . For the IRT score estimate of 30, the

confidence interval is 17–42 and thus considerably

narrower than for the prior distribution.

At an IRT score of 30, MHC01 provides much more

information than MHP01 (Fig. 1) and would thus be the

logical choice for the next item. If the respondent answers

a good bit of the time to this item (Fig. 3, row four) the

function for this response is multiplied with posterior

distribution 1 to produce posterior distribution 2 (row five).

The IRT score estimate is now 29 with a 95% confidence

interval of 21–36. If we had access to a large item bank and

wanted more precision, we could continue to ask questions

to continue to narrow the confidence interval.

If another respondent answers not at all to the first item,

SF8MH, the CAT will take a different route (row two,

right column). This response leads to an IRT score esti-

mate of 58 with a 95% confidence interval of 44–74 (row

three). In this score range, the MHP01 item provides more

information and would be the logical choice. If the

respondent answers most of the time to this item, the IRT

score estimate after two items will be 57 with a 95%

confidence interval of 46–70. Again, we can ask more

questions to get more precision. However, the item

MHC01 would be of little value or relevance here, since

the respondent would be highly likely to select the

response none of the time and the item would add very

little information for this range of IRT scores (see Fig. 1).

Although the two respondents answer different questions,

their scores are on the same scale and can be compared no

matter which or how many items from the item bank are

answered.

While the sequence described above illustrates the

principles of a CAT, further refinements to item selection

techniques and stopping rules are possible (see e.g. [25]).

For example, the item selection criteria of maximum

information may be supplemented with selection criteria to

ensure content balancing of the test (please see below).

Also, other IRT scoring approaches than the EAP

method may be used, e.g. weighted maximum likelihood

estimation [26].

Initial steps in the development of an item bank for

CAT

A good item bank should be content valid (cover all aspects

of the construct to be measured) and have enough items to

attain high measurement precision throughout the mea-

surement range. The items should satisfy standard

requirements for good items (e.g. simple, unequivocal,

using common language, non-offensive) and should func-

tion the same way in different population subgroups. What

constitutes sufficiently high measurement precision may

vary and depend on the purpose of the assessment. For

example, an assessment used in a clinical trial would likely

demand high measurement precision throughout the mea-

surement range to avoid floor and ceiling effects. However,

an assessment used in the clinical care of individual pa-

tients might demand high precision at low health levels

(where treatment and follow-up is necessary), but not for

good levels of health (where intervention and follow-up is

unnecessary).

For the analysis of the MHI, we used the baseline data

(n = 2,786) from the Medical Outcomes Study [27, 28] for

item bank development and US general population data

from a 1998 survey (n = 5,038) [29] for norming the bank.

The main steps in item bank development is outlined in

Fig. 4 and described below (also see [30]):

Construct definition and item development

Meaningful assessments require clearly defined constructs

and good items. Careful specification of the subdomains of

the constructs and the domains that are not part of the

constructs ensures that the item bank covers all relevant

aspects of the constructs. Often this involves specifying

100 Qual Life Res (2007) 16:95–108
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hypotheses to be tested in later stages of validity testing,

e.g. whether some domains can be seen as part of one

overall construct (dimension) or whether they should be

treated as separate constructs (dimensions). The MHI

questionnaire builds on a conceptual model [6] for mental

health that includes five subdomains: Anxiety, Depression,

Behavioral/Emotional Control, Positive Well-being and

Loneliness/Belonging. An important question for item

bank development was whether these subdomains could be

seen as part of one overall domain (see below).

Development of item banks often starts from established

questionnaires [5]. The advantage of this approach is that

content and construct validity and item quality have usually

been evaluated previously. Also, the inclusion of estab-

lished questionnaires in the bank enables the development

of links that allows researchers to compare the results using

the new scale with results from previous studies using the

established questionnaire’s scores. However, several issues

must be carefully considered, when building on established

questionnaires:

1. Do all items measure the same construct? Different

tools may use different names for the same construct or

the same name for different constructs.

2. Are the time frames (recall period) from different

questionnaires coherent and relevant for the current

application?

3. Are some questions from different questionnaires

practically identical, so only one of the set should be

administered in any particular CAT?

4. Do the items use the same response choices? From a

technical perspective, the IRT model can handle

different response choices. However, difference in

response choices may trigger different frames of ref-

erence. Further, while changes in response choices

may keep the respondent more alert to the actual item

content, multiple shifts in response choices may also

be cognitively challenging for patients, particularly the

elderly.

5. Are there issues of copyright and intellectual proper-

ties that need to be resolved?

If high measurement precision throughout the range of

IRT scores is required, steps have to be taken to identify

existing items or to develop new items that are relevant for

the extremes of the scale. Such items often have poor

performance on the indicators used in classical psycho-

metrics (such as item-total correlations) and therefore they

tend to be excluded from questionnaires developed using

classical methods. The item information functions shown

in Fig. 2 are fairly typical in the sense that the items

provide most information for people with poorer than

average health. It is often a challenge to develop items

with high precision for people with better than average

health.

Collecting data for item calibration and testing

The sample of respondents used for item bank development

needs to be large and diverse enough to enable stable item

parameter estimates and test of the various aspects of

model fit. In the initial calibration stage of item bank

development, representativity of the sample in terms of e.g.

providing similar sociodemografic structures as the tar-

geted population is less important for the analyses than

having enough responses from people across the whole

measurement range. To ensure good parameter estimates

for items aimed at either very good or very poor health,

respondents at these levels of heath may be oversampled to

achieve responses in all item response categories. Since the

ability to fit IRT models depends on the match between the

items and the population (skewed items require larger

sample sizes), no sample size guidelines will cover all

situations. However, for IRT models like the GPCM and

the GRM, sample sizes of 500–1,000 are probably suffi-

cient [31, 32]. For smaller sample sizes, models with fewer

Construct definition
Based on theory and previous empirical results

Item development
Existing questionnaires, new items, 

evaluated by cognitive tests

Data collection
Strategic sample to ensure power for item 

calibration and fit test

Item calibration and test of model fit
In general and informed by specific

theories on alternative models

Norming, benchmarks, interpretation guidelines
Representative sample for norming. Benchmark 

data: risk factors, diseases, other outcomes

CAT simulation studies
Input from users on trade-off between precision 

and response burden

Final item bank

Fig. 4 Steps in the construction of an item bank
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parameters (e.g. the PCM or the RSM) may still work. The

MOS sample used for item bank development in our

example was large (n = 2,786) by these criteria and con-

sisted of five disease groups (hypertension, diabetes, con-

gestive heart failure, acute myocardial infarction, and

depressive disorder). The inclusion of depressive disorder

provided a fairly substantial proportion of people in poor

mental health.

While a keyboard or a touch screen are the most

common modes of administering a CAT, other modes

are possible, e.g. automated phone interviews, computer

assisted phone interview, or computer assisted personal

interviews. For item bank development, paper-and-pencil

administration is also a possible data collection mode.

The item response distribution and thus the item

parameters may depend on administration mode (see e.g.

[33]). Within the PRO field, an interviewer effect has

been well documented for phone interviews compared to

paper-and-pencil self reports, causing more positive

responses to items on mental health [34, 35]. Studies

have found few mode differences between computerized

assessment and paper-and-pencil administration [36, 37,

38], but no large studies have yet been performed within

the PRO field for comparing these modes of data col-

lection. In this demonstration, we used data collected by

paper-and-pencil administration to develop an item bank,

but ideally, the mode of administration for the item

calibration sample should be the same as the mode in the

final CAT.

Psychometric analyses: fitting an IRT model and testing

model assumptions

Testing dimensionality and local independence

Standard unidimensional CAT requires that items provide

information on the dimension of interest and that this

dimension explains all co-variation between items (the

assumption of local independence). Although a perfectly

unidimensional item bank is probably not achievable for

most theoretically interesting constructs, the bank needs

to be sufficiently unidimensional to make a single score

meaningful and to ensure that item parameter estimates

(and in turn person IRT scores) are not unduly influ-

enced by problems of multidimensionality or local

dependence between items. Exploratory and confirmatory

factor analytic methods for categorical data [39] repre-

sent strong and flexible approaches to testing dimen-

sionality and local dependence [30], but many other

methods exist (e.g. [40, 41, 42, 43]). If problems are

identified, possible solutions include item exclusion,

splitting the item pool into two or more unidimensional

sub-pools, using a more general IRT model (e.g. a

multidimensional model), or, in milder cases of multi-

dimensionality, using special item selection rules to

ensure content balance [25].

For the mental health item pool, dimensionality was

evaluated using factor analysis for categorical data, com-

paring a unidimensional model with a five dimensional

model (the five original subdomains) and with a second-

order model where the five subdomains were seen as

indicators of an overall mental health factor. Table 2 shows

the factor correlations in a five-factor model run in the data

set that combined the five disease groups in the MOS

sample (similar results were found on separate analyses

within each disease group). The factor correlations were

high, except for the Loneliness/Belonging domain and for

the correlation between Anxiety and Positive Well-being

(Table 2). In the second-order model, loadings on the

mental health factor are high for all subdomains and

extremely high for depression and behavioral/emotional

control (Table 2). In a simple one-factor model, loading of

all items exceeded .7—except for one item from the

Loneliness/Belonging domain (which had a loading of .65).

Based on these and other results, a unidimensional IRT

model for the items was seen as justified. Three items from

the Loneliness/Belonging domain were excluded since they

did not load strongly on the overall factor and had large

residual correlations.

Table 2 Factor correlations and loadings on second-order factor for subdomains of Mental Health. N = 2,717

Anxiety Depression Behavioral Positive Loneliness

Anxiety 1

Depression .89 1

Behavioral/Emotional control .88 .96 1

Positive Well-being .81 .90 .91 1

Loneliness/Belonging .71 .82 .85 .86 1

Loadings on 2-order factor .89 .98 .99 .93 .86

Data from the Medical Outcomes Study [28]. Analysis of polychoric correlations, weighted least squares estimation with mean and variance

correction [39]

102 Qual Life Res (2007) 16:95–108

123



Further, item selection rules were defined for CAT

administration to ensure content balancing among the three

main domains in the pool (Anxiety, Depression/Control,

and Positive Well-being). This avoids the possibility of a

respondent receiving only items concerning one of the

attributes of mental health. While any selection of items

from the bank should allow estimation of a mental health

IRT score, we find that content balancing enhances the face

and content validity of the CAT and provides for a more

robust IRT-score estimate.

Initial analyses of item category response functions

by non-parametric methods

Before fitting a parametric model, it is useful to examine

non-parametric IRT models that allow visual inspection of

the empirical item category response functions (option

characteristic curves) [44]. This allows further identifica-

tion of poor items and response choices. Items can be ex-

cluded, a more general IRT model can be used, or response

choices that do not discriminate can be collapsed in the

IRT analyses. The top graph in Fig. 5 illustrates a response

option (1) that is not used by many respondents, but has the

right rank order. This can be seen from the linear increase

in the item category discrimination parameters, which were

used to generate the functions (here, the NCM parameter-

ization is used for illustration). On the other hand, for the

item in the lower part of Fig. 5, response choice 1 and 2

does not have a clear rank order, as can also be seen from

their item category discrimination parameters. These two

response choices should be collapsed or an NCM model

should be used for estimation.

Fit an item-response model and test model fit

The choice of IRT model is sometimes hotly debated. One

fundamental debate involves the choice between Rasch

type model (such as the PCM and RSM models) and non-

Rasch model (e.g. the NCM, GPCM, and GRM, see e.g.

[45] for introduction to some of the issues). The Rasch type

models, originating in the work of Georg Rasch [46, 47]

were derived from theoretical requirements for valid

measurements—partly relating to the use of the item sum

score as the proxy measure for the latent trait (for an

introduction see [48]). The second tradition, originating in

the work of Thurstone, Lord, and Birnbaum (see [15, 24])

places greater emphasis on fitting a model for the data at

hand (for an introduction see [3]). Since the Rasch type

models generally incorporate fewer item parameters that

the other models, robust parameter estimates may be

achievable with smaller sample sizes. Also, special item

parameter estimation methods (called conditional maxi-

mum likelihood estimation) are available for the Rasch

type models only (see e.g. [49, 50]). Thus, few psycho-

metricians would disagree that Rasch type models (being

the most parsimonious models) should be used if they fit

the data. However, often the Rasch models will not fit the

data well, while other models do. In this situation, some

psychometricians would achieve fit to Rasch type models

by dropping items from the bank. This may be a good

solution if it can be justified by other methods that the

items do not conceptually belong to the scale. However, we

would advocate against extensive deletion of items that

satisfy requirements of unidimensionality, local indepen-

dence, and lack of differential item functioning (see below)

if such items can be fitted with a more general IRT model

(such as the GPCM, GRM, and NCM).

If more general IRT models are pursued, a choice be-

tween the GRM and GPCM models has to be made. These

models have the same number of item parameters and, as

shown in the top plot of Fig. 1, the models often produce

very similar item category response functions (see [19]).

One advantage of the GPCM is that it is part of a series of

nested models (see previous discussion). Working within a

framework of nested models has some attraction because

the significance of additional parameters can be evaluated

through likelihood ratio tests and the interpretation of item

category threshold parameters does not change when going

from e.g. a PCM model to a GPCM model. One advantage

of the GRM model is its similarity with modern factor

Clear rank order for all categories

Choice                    0            1         2          3            4
Discrimination         0       1.58    3.16      4.73       6.31
Intercept                 0       0.80    2.40      2.15      -0.51

0

1

2

3
4

Choice                    0            1         2          3            4
Discrimination         0       1.58    1.58      4.73       6.31
Intercept                 0       1.00    2.20      2.15      -0.51

Category 1 and 2 has no clear rank order

0

1

2

3

4

Fig. 5 Simulated data to illustrate item that do and do not fulfill the

rank order requirements for models like the GPCM and GRM
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analytic models for categorical items [21]. Also, imple-

mentation of IRT models for longitudinal data is currently

easier for the GRM than for the GPCM (see [51], note that

longitudinal models have also been implemented for the

PCM and RSM [52]). In conclusion, no model can be

recommended as generally superior to all other models for

PRO data. The model choice can be informed by the

considerations noted above and by information of model-

data fit. All the described models can be used to calculate

item information functions and estimate IRT scores.

Technically, there is no problem in having different IRT

models for different items in a CAT, as long as all items are

calibrated to the same scale.

Several well researched fit tests are available for the

Rasch type models (see [53, 54]). Fewer tests have been

available for polytomous IRT models in general. A item-

based G2-test is available in the software program Parscale

[9, 55]. In this test, the respondents are categorized in 10

groups based on their estimated IRT score. For each item,

the predicted and observed item score distribution is

compared for each of the 10 IRT score levels and sum-

marized in a G2-statistic [9]. A problem of this test is that

the estimated IRT score is treated as if it was the true value.

This can inflate the Type I error rates, flagging too many

items as misfitting, particularly for short scales or small

item banks [56]. Procedures that take this problem into

account have been suggested by Stone [57, 58], Glas [59],

and Orlando and Thissen [60]. For the current analyses, we

used an extension of the Orlando and Thissen X2-test

appropriate for polytomous items. For both the GPCM and

the GRM, we achieved satisfactory fit by statistical criteria

for 23 items (22 of which were common for the two

models). We chose the GPCM as the final model for this

item bank. After inspecting plots of observed version pre-

dicted item score distribution for different levels of mental

health, we decided that eight additional items could be used

for this demonstration purpose since the deviations from

the predicted values were minor and not systematic, the

significance probably mostly being due to the fairly large

sample size (2,786 respondents).

Test of differential item functioning (DIF)

One of the basic assumptions in outcomes measurement is

that items function the same way in different disease and

demographic groups. For a given scale or IRT score level,

item responses should be independent of group member-

ship. Although DIF is a general measurement problem, it is

best conceptualized and detected using IRT or similar

methods (for more discussion of DIF see Cook et al. (this

issue) and Thissen et al. (this issue)). For the mental health

item pool, DIF for gender was found for an item worded

‘‘How often have you felt like crying...’’. For a given level

of mental health, men were less likely to indicate feeling

like crying. Such DIF can be corrected by using separate

item parameters for males and females for this item, or by

removing the item from the bank.

Setting the metric

After the item bank has been developed, the researcher

has to decide how the metric (IRT score) should be

defined. In Rasch type models, the metric is typically

defined by the items, by setting the discriminating

parameter to one and scaling the item category threshold

parameters to sum to zero. This parameterization allows

for easy comparison of item parameters estimated from

different samples (in theory, these parameter estimates are

sample invariant). For other IRT models, the metric is

typically defined by the population in which the items

were calibrated, by setting the mean to zero and the

standard deviation to one. Item parameter estimates from

two different samples can therefore not be directly com-

pared, unless some kind of linking have been utilized (e.g.

through common ‘anchor’ items). However, it is perfectly

feasible to define the metric also for Rasch type models

through the population mean and variance, or defining the

metric of more general IRT models through restrictions on

the item parameters (e.g. set the product of the item dis-

crimination parameters to one and the sum of item cate-

gory threshold parameters to zero. For generic health

status measures it may be convenient to standardize the

metric to a general population (e.g. the US population),

setting the mean to 50 and the standard deviation to 10.

For disease-specific domains, the metric could be based on

a well-defined patient population. The population that

defines the metric need not answer all the questions in the

item bank—only enough questions to set the metric pre-

cisely. For the mental health item pool, a five-item subset

of the mental health inventory (the MHI-5) was used to

define the metric. These five items were administered to a

representative sample of the US general adult population.

The metric was then set so this population achieved a

mean score of 50 and a standard deviation of 10. To

evaluate whether the five items provided a sufficiently

robust anchor for norming the item bank, we conducted

five additional analyses using only four of the MHI-5

items. In these analyses, the variation in population mean

was 49.8–50.0 and the variation in population standard

deviation was 9.7–10.1. We concluded that the five

polytomous items provide a robust anchor.

An alternative to norm based scoring is to anchor the

assessment based on the items. For example, a score of 0

could be the lowest possible score (worst response on all

items in the bank) and 100 could be the highest possible

score. However, using such anchors would hinder the
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future expansion of the item bank as adding new items

would change the anchoring of the scale.

Even when the metric is well defined, more work is still

needed in order to make the score easy to interpret for the

respondent, the clinician, and the fellow researcher. Tools

to do this are ‘‘benchmarks’’ and cross calibration tables.

Examples of benchmarks on a mental health scale would be

the distribution of scores for people with major depression

or the typical score where the patient is likely to have

thoughts of committing suicide. Often a researcher also

needs to compare his/her results with previous studies,

which may have used other questionnaires—often scores

by traditional sum score methods. Cross-calibration tables

enable such comparisons by showing roughly equivalent

values on the IRT score and the score on the traditional

questionnaires (see [61]).

There may be times in health outcomes research when

access to a computer is not possible. In these cases, a fixed

short form can be created from the item bank and scored in

the same metric (see e.g. [62]). The selection of such a

short form should be based on both item information and

content considerations. This emphasizes the need for item

banks in PRO research to provide crucial flexibility in data

collection methods.

Finalizing CAT specifications

To use the item bank in a CAT, item selection rules and

stopping rules must be defined. Simulated CAT runs are

effective in evaluating the impact of various rules on test

length, precision, and validity. One approach is to run

simulations of a CAT on the data already collected for the

item bank development (so-called ‘‘real-data’’ or ‘‘post-

hoc’’ simulations) [63]. These simulations can implement

the steps shown in Fig. 2. The total set of responses used to

develop the item bank is used as input, but during the

simulation the computer only uses the responses that

correspond to the questions that would have been asked

during a real CAT. Another possibility is to simulate item

responses based on the IRT model, and use these simulated

responses as input to the CAT (‘‘Monte Carlo’’ simula-

tion); this is particularly useful when the item bank has

been developed by linking items across several studies, so

that no respondent has actually answered all items. Note

that neither of these techniques are tests of the measure-

ment model, they are simply ways of evaluating the pre-

cision and item use that are achieved by different stopping

rules in a CAT based on the current item bank.

A ‘‘real-data’’ simulation of the Mental Health CAT

based on the initial item bank using a item selection criteria

based on maximum information (for the particular

respondent) and a fixed stopping rule of five items resulted

in excellent agreement between the CAT estimated score

and the estimated score based on all 31 items (r = .985).

For the final Mental Health CAT (which were scaled to a

mean of 50 and standard of 10 in the US general popula-

tion), higher precision was deemed necessary for people

with poor mental health (e.g. those at high risk for having

depression [64]). Therefore, the standard stopping rules

were defined to be based on precision, but with require-

ments for precision (standard error of measurement; SEM),

varying over the range: <42 (SEM < 3), 42–60 (SEM < 4),

>60 (SEM < 6.6).

CAT in educational testing and in outcomes research

CAT was initially developed for the assessment of abilities

(see e.g. [63]) and its applications in outcomes research

builds heavily upon the methods developed in educational

testing [1]. However, applications of CAT in outcomes

research differ in four major areas: choice of IRT models,

generation of items, response burden, and problems of item

exposure.

IRT model

Educational tests most frequently use multiple-choice

items that are scored right/wrong and analyzed by dichot-

omous IRT models. Such items are only informative over a

narrow range of the scale and uninformative at other levels,

which can increase the number of items needed to achieve

a certain precision if the CAT is started at an inappropriate

ability level [65]. As discussed below, such increase in

respondent burden, may be unfortunate in outcomes

research. However, outcomes research mostly uses items

that are scored on an ordinal scale (e.g. 1–5) and analyzed

by IRT models such as the GPCM model shown in Figs. 1

and 3. Such ‘polytomous’ response items provide more

information over a broader range of scores. Therefore, the

same level of precision can be obtained with fewer items

and the choice of starting point is less crucial.

Item generation

To achieve precision over the full range of a scale, the item

bank needs a large number of items with sufficient diver-

sity. In an educational testing context, generation of new

items is done routinely and the pool of potential items can

be seen as unlimited for many topics. In contrast, the

number of ways questions can be asked about patient-

reported outcomes may be limited. Item banks based on

pooling items from existing questionnaires may provide

good measurement precision in some ranges, but insuffi-

cient precision at the extremes.
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Item exposure

In educational testing, the assessment needs to take place in

a controlled environment and item content needs to be kept

secret to avoid cheating. Countering these problems neces-

sitates special test sites, large item pools, and complex

procedures for item exposure control [1]. For patient

reported outcomes, items are not kept secret because item

exposure is probably much less of a problem. However, it is

not yet well researched whether very frequent exposure to

particular items (e.g. through PRO diaries) could change the

way they are interpreted. This could be evaluated through

test of item drift using IRT models for repeated assessment

[51] and anchoring on the items that are used less frequently.

The issue of faking better or worse health than actually

experienced may also surface as a problem for PRO

assessment, although probably not linked to item exposure

the same way as in educational testing. Many different tests

for response consistency have been developed within IRT

(see e.g. [66]), but it is not yet tested whether they can

detect attempts to faking PRO assessments.

Response burden

Health outcomes instruments are often used in research on

the very ill, young children or the elderly who cannot tol-

erate prolonged assessment. In contrast, high-stakes educa-

tional testing can allow longer test lengths to ensure precise

measurement. In our mental health example, a CAT score

with five items had very good agreement with the total item

bank score. Using such CAT specifications would produce

instruments with a length similar to popular short forms like

the SF-36 [67] (if a similar number of domains needs to be

assessed), but having far better precision and much less floor

and ceiling effects. Both shorter and longer CATs are also

possible, although very brief assessments may not benefit

much from CAT methodology. An important advantage of

CAT is that the trade-off between response burden and test

precision can be optimized for the particular purpose. Re-

lated to response burden is cost of assessment. In educa-

tional testing, assessment through CAT is more costly than

paper-and-pencil assessment [1]. However, in the health

field this may not be the case, if assessments are done

through the Internet. For example, during the launch of one

of the first CATs for a health outcome, the Headache Impact

Test [68], almost 20,000 assessments could be performed at

very low incremental costs once the test was developed [69].

Multidimensional CAT

For PROs, the researchers often want to measure several

distinct yet related constructs and might want to gain

measurement precision by utilizing information on the

association among the different dimensions. It might also

be more realistic to assume that some items measure more

than one dimension. These tasks can be accomplished by

multidimensional CAT, which builds on multidimensional

IRT (MIRT) models and allows simultaneous measurement

of multiple dimensions [70]. Some MIRT models can be

estimated by factor analytic methods for categorical data

(e.g. [39]) as has been done for a mental health instrument

[71]. Multidimensional CAT is an exciting area for future

development, but can also be very computer intensive and

the interpretation of scores is even more complex.

Conclusion

The basic requirements for a good item bank for use in a CAT

(such as a clearly defined construct, content validity, clear and

unambiguous items) are no different than the requirements

for developing any other PRO questionnaire. Item bank

development requires careful attention to construct definition,

to item selection and item development, to the selection of the

developmental and norming samples, and to the psychomet-

ric analyses. Using IRT modeling, the psychometric analyses

involves evaluation of unidimensionality and local indepen-

dence, choosing an item response model and checking item

fit, test of differential item functioning, and developing CAT

specifications. Simulation studies presented in this article

suggest that CAT assessment using as few as five polytomous

items per domain achieves high precision and agreement with

total score. Thus, CAT may considerably improve test pre-

cision and lower floor and ceiling effects as compared to those

short form health surveys being used today.
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