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Abstract
This paper explores changes in age-specific mortality risk across periods and cohorts dur-
ing the twentieth century in the developed world. We use and compare two approaches—
one graphical (Lexis plots) and one statistical (an adapted Hierarchical age-period-cohort 
model)—that control out overall trends in mortality, to focus on discrete changes associ-
ated with specific events. Our analyses point to a number of key global and local events in 
the Twentieth Century associated with period and/or cohort effects, including the World 
Wars and the influenza pandemic of 1918–19. We focus particularly on the UK but look 
at other countries where results are particularly noteworthy, either substantively or meth-
odologically. We also find a decline in mortality in many western countries, specifically in 
the 1948 birth cohort, which may be associated with the development of post-war social 
welfare policies, the economic investment in Europe by the United States, the accessibil-
ity of antibiotics such as penicillin, and, in the UK, the founding of the NHS. We finish by 
considering the advantages and disadvantages of using the two methods with different sorts 
of data and research questions.
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1 Introduction

Age, period, and cohort methods attempt to disentangle three ways that societies can 
change over time: as individuals age, as time passes, and as birth cohorts replace one 
another. This paper compares two such approaches, one statistical and one graphical, 
using a worked example of mortality in the Twentieth Century.

Age-standardised mortality risk decreased during the twentieth century for most 
groups of people, in most places in the world (The World Bank 2017). Separate from 
this overall downward trend there are annual deviations in mortality. Some of this 
deviation will occur naturally without any particular cause: everything varies. How-
ever, some of this deviation will be due to important influences or events whose effects 
are worthy of study.

In this paper we explore deviations in age-specific mortality risk during the twen-
tieth century in a number of developed countries, considering both global and coun-
try-specific patterns. Our interest is not in the long-run downward trend in mortality 
but in the discrete changes in mortality seen as a result of global and national events. 
The twentieth century was notable for remarkable social and technological progress, as 
well as catastrophic global conflict, and we explore how these affected mortality. Many 
of these events were global, whilst others were geographically specific.

Deviations over time in mortality can occur in two ways. First, period effects affect eve-
ryone at the time who is exposed to the event. Second, cohort effects occur when events 
affect specific generations of people born at a particular time in history. Throughout their 
lives individuals in affected birth cohorts benefit from or are hindered by these events that 
occurred in their formative years. Whilst age effects also exist (the risk of death increases 
broadly exponentially as age increases, an important consideration in ageing societies), 
there are fewer deviations caused by specific ages, with the notable exception of the ‘acci-
dent hump’ in males around age 20 (Heligman and Pollard 1980).

We use this example of mortality to compare two approaches to APC analysis, one 
visual and one statistically modelled. First, we use Lexis plots to show the patterns in 
annual changes in age-specific mortality in all developed countries with data available, 
to see fine-grained differences between different combinations of period and cohort 
effects. Second, we use a modified version of the hierarchical age-period-cohort model 
(HAPC) (Yang and Land 2006) in part to find the statistical significance of such pat-
terns, and we compare different approaches to setting up these models. In both cases 
we do not consider long-running linear age-period-cohort (APC) trends; instead we 
focus only on deviations from those trends, avoiding the issue of the APC identifica-
tion problem (Glenn 2005). Our focus is predominantly UK-based, but we consider 
other countries where the results are particularly interesting, either substantively or 
methodologically.

This paper thus makes both substantive and methodological contributions. Substan-
tively, we point to a number of key occasions in the twentieth century that had period 
and/or cohort effects, both global and geographically specific, including the effects of 
the World Wars, the flu pandemic of 1918, and the post-World War II social welfare 
policies, such as the establishment of the NHS in the UK. Methodologically, we pre-
sent novel graphical and statistical techniques for finding discrete APC effects whilst 
removing long-run effects. We compare the advantages and disadvantages of each 
approach, and consider how the approaches can potentially be combined into a broader 
methdological framework.



3221Methods for disentangling period and cohort changes in mortality…

1 3

2  Literature

2.1  Age, period, and cohort effects on mortality

Suzuki (2012, p. 452) outlines the following fictional dialogue to illustrate the difference 
between age, period, and cohort effects:

A: I can’t seem to shake off this tired feeling. Guess I’m just getting old. [Age effect]

B: Do you think it’s stress? Business is down this year, and you’ve let your fatigue 
build up. [Period effect]

A: Maybe. What about you?

B: Actually, I’m exhausted too! My body feels really heavy.

A: You’re kidding. You’re still young. I could work all day long when I was your age.

B: Oh, really?

A: Yeah, young people these days are quick to whine. We were not like that. [Cohort 
effect]

Age is the measurement of time passed since birth. Period is ‘historical time’ when the 
measurement was taken, so represents a snapshot of all people, of all ages, in the study at 
that instance (Goldstein 1979, p. 19; Suzuki 2012, p. 452). A cohort refers to:

...those individuals (human or otherwise) who experienced a particular event during 
a specified period of time. The kind of cohort most often studied by social scientists 
is the human birth cohort, that is, those persons born during a given year, decade, or 
other period of time (Glenn 2005, p. 2, original emphasis).

Ryder argues that “[e]ach cohort has a distinctive composition and character reflecting the 
circumstances of its unique origination and history” (Ryder 1965, p. 845).

Each of age, period, and cohort can have effects on individuals. Considering mortal-
ity as the outcome of interest, an age effect might mean that the risk of death increases or 
decreases as a person gets older. A period effect could be caused by an event that affected 
people at a particular snapshot in time, for example a war, disease, or economic recession 
causing increased likelihood of death across individuals of all ages at that point. A cohort 
effect might manifest as subsequent cohorts having incrementally lower mortality risk than 
earlier cohorts, perhaps because of improvements in living standards in their formative 
years. However, it could also occur as a result of events which have an impact on people in 
their formative years—an effect that stays with those people throughout their lives. For this 
paper we are primarily interested in period and cohort effects, since the (increasing) effect 
of age on mortality is relatively well established, and there are fewer reasons to expect dis-
crete effects that apply to most specific age groups (as opposed to long-run gradual changes 
over the life course).

We anticipate being able to detect period effects for significant events such as war, fam-
ine, or epidemic because more deaths are observed at the time of the event. Literature on 
developmental plasticity (Gluckman et al. 2010) suggests cohort effects on mortality over 
the life course are also plausible. Developmental plasticity as a theory is primarily adopted 
and advanced through the Developmental Origin of Health and Disease (DOHaD) hypoth-
esis and life course epidemiology (Hanson and Gluckman 2016). These hypothesise that 
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an individuals’ developmental environment affects the structure, physiology, and function 
of organs and systems throughout the individual’s life (Fall et  al. 1995; Wadsworth and 
Kuh 1997; Ben-Shlomo and Kuh 2002; Ben-Shlomo et al. 2016; Hardy and Tilling 2016; 
Newman 2016). ‘Better’ in utero and early-life environment leads to longer, healthier lives, 
while lower quality early-life environments lead to shorter, less healthy lives (Hertzman 
1999, p. 85). For instance, links between prenatal malnutrition and low birth weight, neo-
natal mortality, cardio-vascular disease, coronary heart disease, ischaemic heart disease, 
and hypertension have been demonstrated (Hales and Barker 1992).

Under this paradigm a stimulus—such as economic circumstances, sudden improve-
ment in healthcare, and so on—can have biological and physiological effects on the indi-
vidual that last throughout their life course, which has been shown to affect their morbidity 
and mortality. If the same stimulus affects a large number of individuals from the same or 
similar cohorts in the same way, patterns of mortality will be seen throughout the lives of 
the cohort members as they age.

There may also be cohort effects which do not become apparent at birth, but later in life. 
This could be because formative years occur long after birth; for instance, with smoking 
uptake the age of exposure is much older than birth (Schöley and Willekens 2017, p. 633). 
It could also be because cohort effects are delayed and only appear long after exposure. As 
such there may be a higher risk of psychological and physiological trauma among older 
cohorts which may manifest as differences in mortality later in their life course, with earlier 
life events being the cause.

2.2  Events that affected mortality in the twentieth century

A number of significant events occurred in the twentieth century, both globally and nation-
ally, that are likely to have affected population mortality in the developed world, both as 
period effects and as cohort effects. Here we briefly discuss four that we see as particularly 
important: World War I; the 1918–19 influenza pandemic; World War II; and the enormous 
social welfare progression that occurred in many countries following the end of the second 
world war, including the formation of the National Health Service (NHS) in 1948 in the 
UK.

We would expect a period effect increase in mortality associated with the First World 
War of 1914–1918. For the most part we would expect this to be limited to military person-
nel in countries participating in the war, but we might expect to see a period effect in the 
civilian population in countries with high civilian casualties, such as those in continen-
tal Europe. In other countries such as the UK, civilians were not directly affected by the 
conflict but effects of deteriorating environmental conditions may be detectable. A cohort 
effect among those born during the conflict is also plausible, for example because of poor 
maternal nutrition, exposure to disease, maternal stress, or otherwise inadequate early-life 
health care as a result of the conflict.

It is also possible that the reverse could be true. There is evidence that war, or rather 
the threat of war, led to improvements in public health in the early twentieth century, espe-
cially for expectant mothers and young children, as the state sought to ensure sufficient 
numbers of healthy combatants should war break out (Dwork 1987). Similarly, Winter and 
Prost argue that the Great War resulted in lower mortality among British males aged over 
40 (Winter and Prost 2005, p. 160). In sum, World War I likely had multifaceted effects on 
mortality, both instantaneous (period) and long-run for those in their formative years at the 
time (cohort).
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The 1918–19 influenza pandemic is likely to result in detectable period effects as recent 
estimates have put the number of deaths from this disease at 50 million worldwide, or 
approximately five per cent of the global population (Patterson and Pyle 1991; Johnson and 
Mueller 2002). Approximately 250,000 died in the UK. Cohort effects for those born dur-
ing the outbreak (1918 to early 1919) are also well established in the literature. Increased 
incidence of cardiovascular disease (Mazumder et al. 2010), decreases in life expectancy at 
birth (Noymer and Garenne 2000), and increases in socio-economic deprivation (Almond 
2006) have been demonstrated in cohorts in the United States born with prenatal exposure 
to the disease. Of course, it is difficult to tell apart cohort effects of the war and the influ-
enza pandemic given their temporal proximity. In the case of period effects the different 
age and gender of those theorised to be affected by each give a clue as to what caused each 
(with young men most likely to be affected by the war, whilst the effects of the influenza 
pandemic affected both men and women, and a broader age range).

Even populations that diverged following the influenza pandemic, such as those of East 
and West Germany, show remarkably similar mortality ‘scars’ (Minton et  al. 2013) in 
cohorts born in 1918–1919:

...those born in early 1919 who were exposed prenatally to the most virulent phase in 
the Fall of 1918, had lifetime defecits in economic productivity and in education, as 
well as excess work disability, which suggests developmental impairments or lifetime 
health issues (Mazumder et al. 2010, p. 26).

Following the First World War, both female and male children born in the group of cohorts 
between approximately 1926 and 1945 have been found to experience a rapid improvement 
in mortality, which slowed for subsequent generations born after 1945 (Willets 2004). The 
cause of this ‘golden’ cohort effect is not known, but it is hypothesised that a combination 
of factors led to their improved mortality compared to preceeding and subsequent genera-
tions. Most in this birth cohort were not old enough to have been involved in World War 
II, and post-war rationing led to an improved diet for this cohort. They also likely benefited 
from the development of the welfare state, declining smoking prevalence, and being born 
during a period of relatively low fertility (Willets 2004).

We anticipate a detectable period-related increase in mortality during World War II for 
both military and civilian populations. Civilian populations are likely to be more affected 
than in World War I, due to the changing nature of warfare, specifically the increase in 
bombings of civilians made possible by advances in technology. However, as with World 
War I, we would expect the larger effect to be found among young men.

As well as the period effects there could also be cohort effects among individuals born 
during World War II in some contexts. Specific events such as the Siege of Leningrad and 
the Dutch Hongerwinter, where significant numbers of individuals perished, have been 
shown to be associated with period and cohort mortality increases in the affected popula-
tions. Survivors of the Siege of Leningrad had a significantly higher risk of dying from 
breast cancer (Koupil 2009), ischaemic heart disease, or stroke (Sparén et al. 2004) com-
pared to those born during the same period who were not exposed to the seige. Similarly 
survivors of the Dutch Hongerwinter who were part of the Dutch Famine Birth Cohort 
Study were more likely to have blunted cardiovascular and cortisol stress responses, which 
are in turn associated with a range of adverse health outcomes (Carroll et al. 2017). Other 
studies have shown a lack of effect on other morbidities, however: participants in the Len-
ingrad Siege study did not appear to be at greater risk of diabetes (Stanner et al. 1997), 
whilst the risk of coronary heart disease may be mediated by obesity in adulthood (Stanner 
et al. 1997, para. 17).
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Following the Second World War, many Western nations implemented a number of pro-
gressive policies aimed at improving population health and wellbeing. In the UK, these 
covered a range of social issues, such as National Insurance, housing, education, and child 
welfare, as well as the nationalisation of a number of key industries. Perhaps the most 
prominent example was the formation of the NHS in 1948 (Rivett 1998). This involved 
a comprehensive reorganisation and rationalisation of medical provision, and treatment 
became free at the point of access for all. This included previously marginalised groups, 
such as working-class women, for whom treatment had previously been limited due to the 
prohibitive cost (Webster 2002). A detectable period effect of reduced mortality is plausi-
ble at this time; although no new treatments were immediately developed with the found-
ing of the NHS, existing treatments were suddenly accessible to everyone regardless of 
ability to pay.

A cohort effect is also plausible for cohorts born around this time in the UK in particu-
lar. Limited availability of antenatal and perinatal care—critical periods for the child—
prior to the introduction of the NHS is likely to have adversely affected the developmental 
trajectory of many children. With the NHS, pregnant women could now access antena-
tal care, for the first time often provided by general practitioners, and give birth in hos-
pital. Increasing the opportunities for intervention at critical periods in utero could result 
in improved health and reduced mortality over the whole life course for the infant. Simi-
lar effects could be found in other countries, associated with other social welfare policies 
introduced at a similar time.

Moreover, exposing pregnant mothers to the health care system through antenatal care 
and a hospital birth may have the cultural effect of ‘normalising’ the use of medical care. 
If this contributed to earlier detection of disease or illness this cultural effect could have 
benefits to the mortality of children born under the NHS throughout their lives, for whom 
seeing a doctor became part of their early socialisation. The NHS, along with other public 
health improvements in the UK and elsewhere, are likely to have resulted in lower mortal-
ity for people born in those post-war years onwards.

3  Methods

Mortality data for 40 countries1 with data available for the twentieth century were obtained 
from The Human Mortality Database (University of California, Berkeley (USA) and Max 
Planck Institute for Demographic Research (Germany) 2017). This provides full demo-
graphic data on mortality rates, deaths, and populations, for all ages and for all years since 
at least 1900 for many developed countries (although the data goes further back it is less 
reliable, so we have not used this older data). Our aim is to use this data to analyse discrete, 
non-continuous changes in mortality rates, net of any long-run improvements in mortality.

Here we present two methods: one visual and one statistical. First, we use Lexis plots 
of mortality change (the change in the mortality rate for a given age from one year to the 
next). We use mortality change for a given age, rather than mortality, in order to remove 
long-run changes in mortality over time. Lexis surface diagrams have long been used 
in demography to depict cohort information as well as period and the event of interest 

1 Countries included were those with consistent mortality data available for the whole of the twentieth cen-
tury. The full list of countries is available in the online appendix.
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(Derrick 1927; Kermack et al. 1934; Carstensen 2006; Healy 2018). Lexis diagrams were 
produced using the Lattice package for R, version 0.20–45 (Sarkar 2008). These plots 
were made for all countries in the Human Mortality Database; although only some are 
shown in this paper, the rest can be found in the online appendix.

Interpreting Lexis diagrams, especially using them to disentangle age, period, and 
cohort effects, in the presence of a ‘linear drift’ is problematic and therefore controver-
sial as the linear drift tends to account for the majority of variation in mortality (Murphy 
2010, p. 371). However, this is not a problem here, as we focus on non-continuous, discrete 
effects, and long-run changes in mortality are removed by modelling change in mortality 
rates, rather than the mortality rate itself.

An additional advantage of this approach is that it allows us to see period and cohort 
effects that only affect specific age groups. However, as a descriptive approach it cannot 
quantify the level of uncertainty around those effects given the data that we have, and often 
patterns are difficult to see when there is a lot of random variation. What it does do, is 
allow researchers to identify possible patterns and then choose a modelling approach that 
suits the quantification of those patterns.

One approach that could be taken is to adapt a Lee–Carter style model to allow it to 
model similar APC trends. In general, Lee–Carter models have been used for the purpose 
of forecasting evolving mortality rates, and so are often used by actuaries and demogra-
phers where that is the focus of interest. Where these models have been extended to allow 
the modelling of, for instance, cohort-type features (see Renshaw and Haberman 2006) 
this has generally been for the purpose of evaluating and validating forecasting models, 
rather than those features being the primary purpose of fitting those models. An effective 
strategy for comparing out-of-sample fit between models is demonstrated by Hyndman and 
Koehler (2006) and Pascariu et al. (2019), and we consider such approaches important for 
comparing demographic forecasting approaches. However, in practice a model with an a 
priori specification of structure and variables which correspond directly to readily inter-
pretable sociological or epidemiological quantities of interest can be immensely valuable 
for researchers whose aims are to understand the processes which gave rise to the observa-
tions, even if the in- or out-of-sample fit of the model is poorer than for models with less 
directly interpretable parameters2. As such we do not take this approach, aiming instead for 
a model which explicitly parameterizes and identifies APC features. These approaches are 
complementary but distinct, most notably in that our aims and framing are more sociologi-
cal and epidemiological than actuarial.

Instead we use modified hierarchical age-period-cohort (HAPC) models constructed for 
countries or sub-regions of interest that control for the linear trends in APC, allowing us to 
focus on discrete, non-continuous change.

The original version of the HAPC model (Yang and Land 2006) treats the age effect 
as a fixed effect polynomial, with the period and cohort effects as cross-classified random 
effects. The model can be specified as (for a continuous outcome variable):

2 As an example of this a difference-in-differences (DiD) model for time series data comparing interven-
tion and control populations is often more valuable for users than a model based on smoothed splines or 
polynomial terms, even if the latter leads to improved fit, because for a DiD model the intervention effect 
is explicitly modelled and interpretable to the user. Similarly we argue that our model specification, which 
explicitly includes age, period, and cohort terms to estimate, may be especially valuable for understanding 
the substantive processes which may have given rise to the data observed, even if a Lee–Carter based model 
has superior fit.
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where yi(j1,j2) is the dependent variable (in our case age-cohort specific mortality from the 
previous year) for individual (or in our case age-period measurement) i in cohort group j1 
and year of measurement j2 . u1j1 represents the cohort random effects and u2j2 the period 
random effects, both of which are assumed to be normally distributed, as is the level one 
residual term ( �i(j1,j2)).

When considering age, period, and cohort there is a problem that by knowing two 
variables we can perfectly predict the other: age equals period minus cohort, so the 
three variables have only two degrees of freedom. This is referred to as the ‘identifi-
cation problem’ (Glenn 2005; Bell and Jones 2013). The HAPC model (Reither et  al. 
2009), as well as the ‘intrinsic estimator’ (Yang and Land 2006; Yang et al. 2008), are 
attempts to statistically separate the three compondents. Unfortunately both of these 
models have been shown to apportion linear trends in ways that often do not fit with the 
true data generating processes (DGPs) (Luo 2013; Bell and Jones 2014a, b, 2018; Luo 
and Hodges 2015).

In our case, however, we are interested only in non-linear period and cohort stochas-
tic fluctuations, once the age, period and cohort long-run trends are controlled. As such 
we can control for these trends in the fixed part of the HAPC model, leaving only dis-
crete deviations in the random part of the model (see Chauvel et al. 2016). Whilst we 
cannot control for all three of APC in the fixed part of the model because of the iden-
tification problem, controlling for two of APC will control out the linear component of 
the third by default. Our first version of this model can therefore be specified as follows:

Here MortalityChangei(j1j2) is the change in mortality rate for a specific age group, in com-
parison to the previous year, for age-year cell i in year j1 and birth year j2 . This is the same 
as Equations (1) to (3), but with the addition of a Period term in the fixed part of the model, 
which means all APC linear trends will be absorbed from the period and cohort residuals 
into the fixed part of the model. However, because we are using a measure of mortality 
change (as opposed to the number of deaths) we would not expect to see much in the way 
of linear trends in any case.

A downside of this approach is that because we are using age-period cells as our 
units of analysis, we cannot account for the differences in size of the different groups, 
and so our measures of uncertainty will be somewhat inaccurate (a cell of 10 people 
is treated the same as a cell of 10,000 people). An alternative approach would be to 
model the number of deaths, controlling for the size of the population. To do this we 
use a Poisson model for the number of deaths in a given age-year cell. We additionally 
use an offset of the expected number of deaths given the population size of that cell, if 
deaths were distributed evenly across the population. The inclusion of the offset means 

(1)yi(j1,j2) = �0j1,j2 + �1Agei(j1,j2) + �2Age
2

i(j1,j2)
+ �i(j1,j2)

(2)�0j1,j2 = �0 + u1j1 + u2j2

(3)�i(j1,j2) ∼ N(0, �2

e
), u1j1 ∼ N(0, �2

u1
), u2j2 ∼ N(0, �2

u2
)

(4)MortalityChangei(j1,j2) =�0j1,j2 + �1Agei(j1,j2) + �2Age
2

i(j1,j2)
+ �i(j1,j2)

(5)�0j1,j2 =�0 + Periodj1 + u1j1 + u2j2
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that we are effectively modelling the mortality rate by taking account of the population 
size in our estimation of uncertainty (Jones et al. 2015). Thus, our model is specified as 
follows:

There are a number of key differences between this model and that specified in Eqs. (1–3). 
First, as stated above, we use a Poisson model with log link function, meaning we assume 
that the level 1 variance is equal to the estimated mean deaths ( �i(j1,j2) ), and we model 
deaths with an offset, Expected Deaths Ei(j1,j2)

 so we are effectively modelling death rates 
(see Jones et al. 2015). We also include Periodj2 in the fixed part of the model, as in Eq. 
(5). Between this and the Agei(j1j2) variable, we are controlling for all linear effects of age, 
period, and cohort because of the exact dependency between the three terms3.

In both of the models above we cannot trust the estimates of �1 or �3 (because they will 
incorporate any cohort linear effects if they exist in the DGP), but we are not particularly 
interested in their estimates. We can say that u1j1 and u2j2 will be accurate estimates of devi-
ations from the long-run trends in periods and cohorts (whatever they are), and we can be 
confident (linear) APC trends will not be included in those estimates. However, there may 
be some long-run, but not linear, trends remaining in these residual estimates which should 
not be interpreted as their meaning will depend on the trends controlled out in the fixed 
part of the model.

We removed data for individuals aged 91 years and over from our analysis, and removed 
data for birth years before 1900. In both cases there were significant problems with the data 
prior to this date and at older ages, as well as artefacts from imputation. See Section 5.4 
of the HMD methods protocol for methods used consistently in the database for older 
populations aged 90+ (Wilmoth et al. 2021). The models were fitted in MLwiN (Charlton 
et al. 2017) using R and the R2MLwiN package (Zhang et al. 2016) using MCMC (Browne 
2017), with a 500,000 burn-in and 1,000,000 iterations.

Full HAPC results tables (https:// doi. org/ 10. 5281/ zenodo. 69926 83) and figures (https:// 
doi. org/ 10. 5281/ zenodo. 58233 47) are provided. It should be noted, however, that the APC 
fixed terms should not be interpreted because of the APC identification problem. Full repli-
cation code is also provided (https:// doi. org/ 10. 5281/ zenodo. 68664 01).

(6)Deathsi(j1,j2) ∼ Poisson(�i(j1,j2))

(7)Loge(�i(j1,j2)) = Loge(Ei(j1,j2)
) + �0j1,j2 + �1Agei(j1,j2) + �2Age

2

i(j1,j2)

(8)�0j1,j2 = �0 + �3Periodj2 + uj1 + uj2

(9)uj1 ∼ N(0, �2

u1
);uj2 ∼ N(0, �2

u2
)

(10)Var(Deathsi(j1,j2)|�i(j1,j2)) = �i(j1,j2)

3 These models assume the Poisson (level 1) residuals are not overdispersed - we would encourage 
researchers to check this when using the Poisson link function

https://doi.org/10.5281/zenodo.6992683
https://doi.org/10.5281/zenodo.5823347
https://doi.org/10.5281/zenodo.5823347
https://doi.org/10.5281/zenodo.6866401
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4  Results

In this section we present findings predominantly from England and Wales, with com-
parisons with other countries where useful, as a case study. Figures for all countries are 
available in the online appendix. The performance of the models for other countries is 
comparable to those for England and Wales. We have also written a short comparison of 
three countries, which can be found in the paper’s online appendix.

Figure  1 shows a Lexis surface for mortality change in England and Wales, with 
blue and green representing a decline in mortality, and red and orange representing 
an increase in mortality on the previous year for a given age of person. Cohort effects 
appear as diagonal ‘scars’ (Minton et  al. 2013), emanating through age-time upwards 
and rightwards from the affected birth cohorts, whilst period effects appear as vertical 
scars.

A red line followed by a blue line might represent temporary excess mortality caused by 
an event such as the influenza pandemic. A blue line followed by a red line would represent 
a temporary decrease in mortality, that later returned to its previous level. A mild winter 
might exhibit such an effect if excess winter deaths are lower than neighbouring years. Fig-
ure 1 shows evidence of both period and cohort effects in England and Wales. Whilst there 
are some notable differences between this figure and the equivalents for other countries, 
this presents a good starting point given the fullness of data and some key features that are 
present in other countries as well.

In addition to these effects, it is possible to see longer-lasting changes in age-specific 
mortality change, where a decrease in mortality change is not followed by an increase, and 
vice-versa. A lone red line represents a long-term increase in mortality rate, for example 
caused by an enduring economic crash and recession. A blue line without a corresponding 
red line would represent a long-term decrease in mortality rate, for example due to a medi-
cal advancement.

There are some cohort effects visible on the Lexis surface plot (Figure 1) for females 
and males born approximately every ten years between approximately 1840 and 1900 
(upper left quadrant). We believe these are spurious and a result of data imputation from 

Fig. 1  England and Wales total population Lexis surface plot for annual change in age-specific mortality. 
Red signifies worsening mortality compared to previous year; blue signifies improved mortality
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the decennial census, partly because they are not detected in the HAPC models, which 
we discuss below.

The equivalent HAPC model for England and Wales produces year (period) and 
cohort residuals. These are shown in Figs. 2 and 3 respectively for continuous-Y models 
with change in mortality as the outcome variable. Figures 4 and 5 respectively show the 
residuals of the Poisson model with deaths as the outcome variable, both for the change 
in mortality rate models and the death count Poisson models. The period residuals can 
be interpreted as the deviation in a given year from the overall linear period trend, which 
is controlled out in the fixed part of the model. The cohort residuals can be interpreted 
as the deviation for a given birth cohort, again from the overall linear cohort trend.

It should be noted that, for the Poisson models, there are continuous trends visible 
in both Figs. 4 and 5 which have not been completely controlled-out in the fixed part of 
the model, including a rather dramatic increase in mortality seen in the later cohorts in 
Fig. 5. These are continuous effects that are non-linear and so were not controlled (for 
example, quadratic and cubic effects). Given these are not interpretable without know-
ing what the linear portions of these effects are, these should not be interpreted, and 
only discrete, sudden changes around these continuous curves should be analysed. Their 
presence is perhaps a disadvantage of the approach when the outcome includes non-lin-
ear continuous trends, unless an appropriate functional form can be used to absorb those 
trends. Because the outcome has been detrended by modelling year-by-year change in 
the other models, this is not a problem. However, in both models, a number of features 
can be identified which we discuss now.

Fig. 2  Plot of year (period) residuals in England and Wales for males, from the adapted continuous-Y 
HAPC model of change in mortality rate. The residuals can be interpreted as the deviation from the overall 
(and unknown) linear period trend
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In Figs. 1, 3, and 5 there is a noticeable cohort effect with increased mortality in the 
cohort born in 1918. Whilst this could be in part due to World War I, given the lack of 
effect for those born earlier in the war, and the similar effects found for both males and 
females, it seems likely that this is primarily the result of the 1918–19 influenza pan-
demic. This effect is noticeable in that it appears almost universal across all countries 
with sufficient data quality to identify such an effect, including countries that were less 
affected by the influenza outbreak, for example Australia where the pandemic affected 
the country later and to a lesser extent than European countries (Curson and McCracken 
2006).

A period effect is also clearly visible around the year 1918 in females and males under 
the age of about 55, in all countries with data going back that far. A sharp increase in 
mortality is followed by a commensurately sharp decrease, indicating a sudden increase 
in deaths caused by the pandemic which then returned to the previous level. For males 
there is an additional effect on mortality in the preceding years for those between ages 
15 and 35 in Great Britain and Italy. This high increase in mortality is concentrated in 
young men during the entirety of the First World War, reflecting the increasing deadli-
ness of this conflict for military personnel. A number of other countries that we might 
expect similar effects for (for example France or Germany) have missing data at around 
the time of World War I.

Literature on the cohorts born around 1931 (1926–1945) suggests it may have been 
possible to find a positive effect of being born around these times (Willets 2004). How-
ever, we do not see clear evidence of such a cohort effect.

Fig. 3  Plot of birth year (cohort) residuals in England and Wales for males, from the adapted continuous-Y 
HAPC model of change in mortality rate. The residuals can be interpreted as the deviation from the overall 
(and unknown) linear trend in cohorts
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Another period effect appears around the Second World War. In Great Britain the 
population from birth to old age exhibits higher period mortality in the year around 
1940, contemporaneous with The Blitz. This suggests either civilians suffered greater 
exposure to the conflict or environmental conditions worsened during this time, or 
both. Although that specific pattern does not appear in other countries, some countries 
involved in World War II do show increases in mortality for young men. This seems 
more extensive than the equivalent effect of World War I, affecting in particular Finland, 
Great Britain, Italy, and the Netherlands (again there was limited data for France and 
Germany).

The Netherlands also appears to show an increase in mortality associated with World 
War II for the whole population. Based on the plot for The Netherlands a decline in 
period mortality around World War II is detectable in the Dutch population (Fig.  6). 
The Lexis surface plot shows increased mortality for all ages and both sexes during the 
Second World War, but for a greater time period beginning in 1940, and in particular in 
1945. This suggests a greater exposure to the conflict for the Dutch civilian population 
than the UK population or other countries with mortality data. As The Netherlands was 
occupied from May 1940 until 1944–1945 this is to be expected.

Of particular interest is the mortality rate in the year 1945, where the increase in 
mortality spans a much greater age range. By the end of 1944 much of The Netherlands 
south of the Waal was liberated, but areas north of the Waal, included the densely popu-
lated coastal provinces, remained occupied until 1945. It is these areas that suffered the 
Hongerwinter (Warmbrunn 1963, pp. 14–17). Therefore, it is possible that much of the 

Fig. 4  Plot of year (period) residuals in England and Wales for males, from the adapted HAPC Poisson 
model of mortality rate. The residuals can be interpreted as the deviation from the overall (and unknown) 
linear period trend
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increase in mortality rate observed in 1945 could be because of the famine in occupied 
areas of The Netherlands, before the mortality rate recovered following the end of the 
Second World War.

Fig. 5  Plot of birth year (cohort) residuals in England and Wales for males, from the adapted HAPC 
Poisson model of mortality rate. The residuals can be interpreted as the deviation from the overall (and 
unknown) linear trend in cohorts. The strong rise in later cohorts is likely an artefact of the non-linear con-
tinuous effects; it should not be interpreted

Fig. 6  Lexis surface plot of mortality for The Netherlands
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Both males and females show improved mortality rates in the years immediately fol-
lowing the end of World War II. There does not appear to be evidence of a cohort effect 
for those born during World War II in any countries (either positive or negative).

Fig. 7  Canada Lexis surface plot

Fig. 8  USA Lexis surface plot
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A less obvious, but nonetheless present, change in cohort mortaltiy rate is observed 
among those born in the year 1948 in a number of countries. In England and Wales this 
is visible in Figs.  1 (a diagonal line originating from 1948), 3 and 5. Similar effects 
are visible in Canada (Fig. 7) and the USA (Fig. 8). In each case a small reduction in 
mortality is evident and this is not followed by a comparable increase in mortality in the 
following cohorts. The effect is small, but does suggest people born in those countries 
in 1948 and later experienced a lower mortality rate throughout their lifecourse than 
individuals born even just one year previously.

The obvious change that occurred in England and Wales, as with the rest of the 
UK, at this time was the formation of the NHS. If the NHS is indeed the cause of this 
improvement in cohort mortality, the implication is that being born under the NHS insti-
tution gave an advantage in terms of mortality. Whilst those born just prior to 1948 lived 
the majority of their lives under the NHS, they did not appear to receive this benefit.

This could be because pre-natal and early life care are particularly important in 
improving mortality for individuals throughout their lives. Alternatively (or addition-
ally) the NHS may have had a cultural effect on those born under it—and their par-
ents—making them more likely to seek treatment through it throughout their lives.

Whilst the localisation of this effect to 1948 implies the NHS is important it is not 
the only possible explanation. The winter of 1946–1947 in Europe was especially harsh 
with fuel and food shortages reported from late January 1947. If the severity of this 
winter affected the nutrition available to pregnant mothers it may have also affected the 
later morbidity and mortality of their children born up to early 1948. It is possible the 
lower mortality in 1948 is partially explained by the returning to background levels of 
mortality after an increase in late 1947. However, if this were the case, we would expect 
to see a paired banding of constrasting colours (red, then blue) as seen in the case of the 
1919 birth cohort, rather than the single blue line seen for the 1948 cohort.

The presence of the 1948 effect in countries other than England and Wales perhaps 
suggests a more global explanation. First, all of these countries implemented health 
and welfare policy after the war, and the finding could be a result of a more general 
improvement in health and welfare provision as a result of these. For instance, in the 
UK the formation of the NHS was situated within a context of high employment, the 
implementation of welfare policies such as the National Assistance Act (1948)—which 
was itself an addition to the National Insurance Act 1946 which introduced social pro-
tections, nationalisation of energy and rail transport, and substantial financial aid from 
the United States in 1946 and 1947 (Medlicott 1967; Hill 1970, p. 291). Similar social 
welfare improvements in other countries may have led to similar improvements in mor-
tality. However, this does not provide a clear reason why this would happen specifically 
in 1948, and not the years immediately before or after.

Second, penicillin was first produced in bulk during the early 1940s, but became 
more accessible to patients as costs were driven down during the mid- to late-1940s. It 
is possible that penicillin became more accessible in 1948 in the UK, as well as in the 
US and other countries, leading to reductions in cohort and period mortality. Penicil-
lin could have been used both to treat young children, and also to treat new mothers 
(particularly for postpartum infections), improving survival rates of mothers in labour 
and thus, plausibly, the life outcomes of their children. However, penicillin also became 
more accessible at the same time in countries such as Portugal (Bell et al. 2017) which 
showed an increase in cohort mortality in 1948 (see appendix) suggesting, if penicil-
lin availability were partly responsible for decline in cohort and period mortality, the 
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picture is complicated by other factors. This work is very much exploratory and more 
work would be needed to confirm these hypotheses.

5  Comparing the approaches: which works best?

For the most part the two methods produce results in agreement with each other: they both 
find specific period and cohort effects relating to events, such as the 1919 flu pandemic 
and the World Wars. It should also be noted that both approaches are intrinsically explora-
tory—so neither should be used to test specific hypotheses about the presence of particular 
cohort or period effects. Rather they provide opportunities to explore the temporal patterns 
in the data. In that sense both methods ‘work’. However, it is clear that there are advantages 
and disadvantages to both that are worthy of discussion.

The Lexis plots have the advantage of being unconstrained by the model parameters 
that are set. They allow for unanticipated interactions between APC, as seen for instance 
with the period effects of the World Wars which affected only a particular age group and 
gender. The Lexis plots also do not rely on some of the assumptions that the models are 
constrained by, for example normality of residuals or linearity of main effects. The main 
limitation of the Lexis plots in comparison to the modelled approach is the lack of infor-
mation about uncertainty in the results that are produced. Where we are using population-
level data, as here, this is less of a problem since there will likely be little uncertainty in the 
results found. With other data, for example survey data, this is likely to be more of a prob-
lem with results found that are actually caused by chance alone, and patterns missed in the 
‘long grass’ of natural variability. There is also scope to combine the effects found in dif-
ferent countries on to single Lexis ‘curvature’ plots, allowing for interesting cross-national 
comparison (Acosta and van Raalte 2019).

Conversely the modelled approach does produce measures of uncertainty: confidence 
intervals relating to the period and cohort residuals, although these are potentially less 
accurate when the assumptions of the model are problematic. This is particularly evident 
in the Poisson models where continuous trends remain even after the inclusion of the linear 
APC terms in the fixed part of the model. It would seem sensible, therefore, to only use 
these models where the dependent variable is lacking in such trends, or can be de-trended 
by calculating change as we have done in our Normal model. A further disadvantage is a 
lack of flexibility in comparison to the Lexis approach: any interactions for example would 
need to be explicitly modelled, whereas these can be explored more readily with a Lexis 
plot.

In general, certainly for this data, we find the Lexis plots are more effective than the 
HAPC model for the exploration of the data that we are using them for. However, with 
other data and outcomes which are, for instance, noisier—making it difficult to find trends 
in the Lexis plot—the HAPC model might be more appropriate if there are no trends in the 
residuals.

An approach that potentially combines the two approaches is outlined by Minton 
(2021). There a Lexis plot could be used to identify key features in the data which then 
could be explicitly modelled. The model residuals can then be plotted in a Lexis plot to 
see the extent to which the model ‘explains’ those features. Such a model could, in fact, 
incorporate features of Lee–Carter style models where the data deems them appropriate. 
Of course the model is then only as good as the researchers’ reading of the data, and 
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the features of the Lexis plot would still need to be understood substantively. However 
it provides a potentially useful way to formalise features in the data seen visually, in 
model form.

6  Conclusions

This paper has explored period and cohort effects on mortality in developed countries dur-
ing the twentieth century, using Lexis surface plots and hierarchical age-period-cohort 
models. The paper makes both a substantive and methodological contribution. Substan-
tively, we have shown where key events appear to have affected national mortality rates, 
both as period effects and cohort effects. In particular, World Wars I and II both appear to 
have had period effects on male mortality, whilst the influenza pandemic of 1918–1919 
appears to have had both a period and cohort effect on mortality across a number of coun-
tries. There also appears to be a cohort effect associated with 1947 in the Netherlands and 
a cohort effect, this time reducing mortality, associated with 1948 in a number of countries 
including Great Britain, although the cause of this remains uncertain.

Methodologically this paper has shown the value of APC analysis of non-linear sto-
chastic variation, both using statistical methods (such as the adapted HAPC model) and 
graphical techniques (such as the use of Lexis diagrams). These techniques can be used to 
assess a range of outcomes across the health and social sciences, wherever age, period, and 
cohort stochastic effects are of interest. There is the potential for further work to assess dif-
ferent ways our modelling approach could be adapted, reducing the misspecification seen 
where non-linear APC trends remain in the residuals. A comparison between these sorts of 
models, and Lee–Carter models, would also be worthwhile, revealing the ways in which 
they complement each other and could potentially be combined to produce more robust 
inference.

Of course, our results are only as accurate as the data we have used, and so some of our 
results could be driven by inaccuracies or inconsistencies in the data. Our results could be 
in part related to artefacts in the way some of the HMD data is imputed for some countries. 
Alternatively it could be a result of ‘phantoms’ in the data (Cairns et al. 2016) relating to 
different distributions of birth registrations throughout each year, which could in turn affect 
the accuracy of our mortality predictions for particular cohorts.
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