
Vol.:(0123456789)

Quality & Quantity (2020) 54:1145–1169
https://doi.org/10.1007/s11135-020-00979-7

1 3

Quantifying and analyzing nonlinear relationships 
with a fresh look at a classical dataset of student scores

Lingzhi Chen1 · Ričardas Zitikis1

Published online: 6 March 2020 
© Springer Nature B.V. 2020

Abstract
Student past and present performances are analyzed, compared, and reflected upon by 
teachers, curriculum developers, and educational researchers. For the tasks, methods and 
techniques of traditional statistics are frequently employed. Recent advances in statistical 
theory and practice, although not yet covered by widely accessible statistics textbooks, 
shed additional light on the area and facilitate the improvement of old, and the develop-
ment of new, curricula that are better aligned with learning goals and outcomes. In the pre-
sent paper we discuss and illustrate the use of an index of increase that has been designed 
to quantify, and thus compare, relationships between dependent random variables (e.g., stu-
dent scores in different study subjects) that rarely follow linear relationships; hence, the use 
and interpretations of the celebrated Pearson correlation coefficient become problematic. 
The aforementioned index of increase is the proportion of upward movements among all 
the movements in the scatterplot arising from paired observations. To appreciate the index 
from both graphical and mathematical points of view, we have illustrated its performance 
using a classical and easily accessible educational dataset. We have provided examples of 
how the index values can aid teachers and educational researchers in determining relation-
ships between student performances in different study subjects, and thus in turn help them 
in, for example, developing curricula.
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1  Introduction

Assessing and comparing student performance have been important and fascinating areas 
of educational research. Literature is abundant and covers diverse topics such as measuring 
differences in student performance due to differences in teacher performance (e.g., Ross 
1992; Hill et al. 2005), study subjects (e.g., Gamoran and Hannigan 2000; Chen and Zitikis 
2017), examination formats (e.g., Agarwal et al. 2008; Heijne-Penninga et al. 2008, 2010), 
and gender (e.g., Leedy et al. 2003; Nguyen et al. 2005; Putwain 2008; Wade et al. 2017).

Various methods for collecting relevant data have been employed, including observa-
tional studies and experiments, open- and closed-book examinations. Furthermore, vari-
ous statistical techniques have been used, including linear and nonlinear regression, with 
the Pearson correlation coefficient naturally arising as a measure of relationship between 
variables (e.g., Krasne et al. 2006; Agarwal et al. 2008; Heijne-Penninga et al. 2008, 2010; 
Thorndike and Thorndike-Christ 2010).

In addition to research by professional educators, a considerable body of specialized sta-
tistical literature has utilized educational data to illustrate various methods and techniques, 
including distance-based and classical multivariate analyses (e.g., Groenen and Meulman 
2004), Bayesian analysis (e.g., Efron 2012), orthogonal simple component anlaysis (e.g., 
Anaya-Izquierdo et al. 2011), and robust structural equation modelling with missing data 
and auxiliary variables (e.g., Yuan and Zhang 2012). Furthermore, Qoyyimi and Zitikis 
(2014), Qoyyimi and Zitikis (2015) have employed Gini-based arguments to assess the lack 
of relationship in multivariate educational data. Chen and Zitikis (2017) use an index of 
increase to quantify the amount of monotonicity in nonlinear relationships. Duzhin and 
Gustafsson (2018) suggest an automated procedure for analyzing educational data based on 
machine learning, with features such as decision making that accounts for students’ prior 
knowledge.

As is usually the case with methods that condense raw data into a few parameters, some 
information inevitably gets lost in the process. The loss is sometimes acceptable, but some-
times is not. An example of the latter case would be the use of the Pearson correlation coef-
ficient, as it gives the same value irrespective of which of the two variables under consider-
ation is explanatory or response. Later in this paper, we shall illuminate these issues using 
educational data, and will in turn put forward arguments in favour of an index of increase 
(Davydov and Zitikis 2017) as a measure for quantifying the presence of monotonicity in 
inherently non-monotonic scatterplots. The index has recently been employed by Chen and 
Zitikis (2017) to revisit a dataset of Thorndike and Thorndike-Christ (2010), with further 
theoretical insights worked out by Chen et al. (2018).

Our current research builds upon the work of Chen and Zitikis (2017), but unlike that 
work, we explore the rich data reported by Mardia et al. (1979, pp. 3–4). Due to the popu-
larity of this textbook, the data have been frequently used by statisticians and others to 
illustrate various notions and techniques of Multivariate Analysis. Consequently, and natu-
rally, the data are available in several computing packages, such as MVT (Osorio and Galea 
2015). In the current paper we revisit the data with the aid of additional insights on the 
topic that have been acquired since the publication of Chen and Zitikis (2017).

We have organized the rest of this paper as follows. In Sect. 2, we describe the dataset 
of Mardia et al. (1979, pp. 3–4) and give its preliminary analysis. In Sect. 3, we fit cer-
tain functions to the data and give reasons why this exercise is of interest, and sometimes 
even necessary. In Sect.  4, we explain basic concepts and intuition behind the index of 
increase, which can take on several forms depending on the nature of available data (e.g., 
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scatterplots, fitted functions, etc.). In Sect.  5, we use the index to illuminate directional 
relationships between several subjects. Section  6 finishes the paper with a summary of 
main contributions and concluding notes.

1.1 � Notation

Throughout the paper we use the notation I when discussing the index of increase in 
generic terms. When the index is applied on scatterplots, we tend to use the notation I(�, �) 
[definition (4)], where � and � are n-dimensional vectors of explanatory and response vari-
ables, respectively. When the explanatory data � = (x1,… , xn) do not have ties (i.e., xi ≠ xj , 
1 ≤ i, j ≤ n ), we emphasize this fact by using the notation I0(�, �) [definition  (3)]. When 
the index is calculated from fitted to data functions, denoted by h, we use the notation I(h) 
for the corresponding index [definition (1)]. A numerical approximation for I(h) is denoted 
by Ik(h) [definition (2)], with the latter approaching I(h) when k gets larger. In the process 
of analysis, we sometimes find it useful to restrict explanatory variables to certain regions, 
say intervals [L, U], and then calculate the corresponding index values. In such instances, 
we denote the index by I(�, � ∣ L,U) for scatterplots [definition (7)] and I(h ∣ L,U) for fitted 
functions h.

Remark 1  The notation is revealing: our dataset is in the form of scatterplots, which we 
sometimes analyze as they are, but sometimes truncate to certain sub-scatterplots (e.g., 
with explanatory variables restricted to some intervals [L, U]), or to which we sometimes 
fit continuous functions and then analyze the functions. There are several reasons for such 
transformation, one of them being outliers, whose ability to distort statistical analyses and 
thus decision making should not be underestimated. We shall illustrate this point with an 
example (kindly provided by one of the reviewers of this paper) in Sect. 4.2, where we give 
a computational formula for the index of increase.

2 � Data and an idea of measuring increase

The dataset of Mardia et al. (1979, pp. 3–4) consists of n = 88 examination scores in five 
subjects: Algebra, Analysis, Mechanics, Vectors, and Statistics. The scores are out of 100 
possible in each of the five subjects, with the scores in Mechanics and Vectors coming 
from closed-book examinations, and the scores in Algebra, Analysis, and Statistics coming 
from open-book examinations. In Fig. 1 we give a snapshot of the data based on commonly 
used scatterplots and least-squares regression lines. The response variables are noted in the 
rows and the explanatory ones in the columns. The corresponding values of the Pearson 
correlation coefficient r are inside of each of the twenty off-diagonal panels. For example, 
the panel with r = 0.553 in the top row is the scatterplot of Vectors vs Mechanics, whereas 
the panel with the same r = 0.553 one row below is the scatterplot of Mechanics vs Vec-
tors. The slopes of the fitted lines are different because the variances of the explanatory and 
response variables are different. Each of the five diagonal panels has, obviously, r = 1.

Note that the reported r values are symmetric with respect to the two variables under 
consideration, although the study subjects clearly lack symmetry with respect to each 
other. Hence, the use of r in the current context is hardly suitable. The slope b = rsy∕sx 
of the linear regression line is a better choice, where sx and sy denote the standard devia-
tions of the explanatory and response variables, respectively. However, the scatterplots can 
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hardly suggest linear patterns. Hence, neither r nor b seems to be particularly informative 
in the current context. Given our goal to understand and even predict how changes in the 
scores of one study subject are reflected in the scores of another subject, we therefore find 
it desirable to search for alternative ways for quantifying nonlinear relationships.

Note that although b is not perfect, it is nevertheless better than r, and this is in part 
due to asymmetry of b with respect to the explanatory and response variables. This fea-
ture is natural when quantifying dependence, as elucidated by Reimherr and Nicolae 
(2013, p. 119). If, however, symmetry is desirable for any reason, then it can be imposed 
by symmetrization, which can be achieved in many ways (see, e.g., Reimherr and Nicolae 
2013, p. 120). We shall briefly come back to this topic at the end of Sect. 3, noting now 
that the measure that we are to employ for quantifying relationships between study subjects 
is asymmetric, which we find natural and appropriate.

Namely, to assess how much a pattern (scatterplot, function, etc.) is increasing, we 
measure its distance from the set of decreasing patterns. Hence, if the pattern is decreasing, 
the distance is 0. By normalizing the distance, we do not allow it to exceed 1. Not going 
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Fig. 1   Least-squares regression lines fitted to the data of Mardia et al. (1979, pp. 3–4) with the correspond-
ing values of the Pearson correlation coefficient r = r(�, �)
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into any more mathematical details at the moment (Davydov and Zitikis 2017), we obtain 
an index of increase, denoted by I , with the following features:

•	 it takes values only in the interval [0, 1],
•	 vanishes when there are no segments of increase,
•	 takes the maximal value 1 when there are no segments of decrease,
•	 exceeds 0.5 when the pattern is more upward than downward,
•	 is smaller than 0.5 when the pattern is more downward than upward.

To illustrate the features, in Fig.  2 we have depicted the dataset of Mardia et  al. 
(1979, pp. 3–4) by connecting the consecutive data points using straight lines, which have 
enabled us to calculate the index of increase for each panel using a computational formula 
that we shall give and discuss later in this paper. Note, for example, that Algebra versus 
Vectors, Algebra versus Analysis, Algebra versus Statistics have the largest three values, 
thus implying that the corresponding patterns are most increasing among the twenty off-
diagonal panels. We can interpret this by saying that students with higher scores in Algebra 
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Fig. 2   Piece-wise linear fits to the data of Mardia et al. (1979, pp. 3–4) with the corresponding values of the 
index of increase I = I(�, �)
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tend to have higher scores in Vectors ( I = 0.576 ), Analysis ( I = 0.575 ), and Statistics 
( I = 0.578 ) than in any other study subject. This, we think, is due to Algebra being a funda-
mental subject for Vectors, Analysis, and Statistics. For strong arguments and evidence in 
favour of Algebra, we refer to Gamoran and Hannigan (2000).

Vectors versus Algebra ( I = 0.527 ) and Statistics versus Algebra ( I = 0.546 ) have lower 
indices than the three ones mentioned in the previous paragraph, and so we are less confi-
dent that better performance in Vectors and Statistics would lead to higher scores in Alge-
bra. Furthermore, Analysis versus Algebra (0.566) has just a slightly lower index than the 
three top ones. This, we think, is due to Analysis and Algebra being fundamental subjects, 
and thus students possibly viewing them as equally important, or equally challenging, and 
thus demanding similar study efforts.

Among the twenty panels, Statistics versus Mechanics has the lowest index ( I = 0.514 ), 
which is not far away from the boundary value 0.500 separating more increasing patterns 
from more decreasing ones.

Remark 2  In the above discussion, to illustrate the mathematical concept of the index of 
increase, we treated the dataset of Mardia et al. (1979, pp. 3–4) as a “population,” and not 
as a sample with variability. We shall do so quite often throughout the paper, but we shall 
also let the reader know our thoughts on the statistical side of the subject matter (see, e.g., 
Remark 5, and also the second half of concluding Sect. 6).

3 � Functions, fitted curves, and interchangeability

The index of increase can be calculated not only from (discrete) scatterplots, such as those 
in Fig.  2, but also from continuous functions. The latter ones naturally, and sometimes 
inevitably, arise due to several reasons:

•	 The phenomena under consideration might be modelled using continuous functions, 
which could, for example, arise as solutions to differential equations, as is frequently 
the case in mathematical biology, as well as in other areas dealing with dynamical 
modelling.

•	 Continuous functions may arise due to fitting curves to scatterplots (e.g., Hastie et al. 
2009; Murphy 2012, and references therein). Such fitting might also be done by the 
researcher already possessing raw data but wishing to smooth out noise from the data, 
mitigate the influence of potential outliers, or due to some other statistical considera-
tions.

•	 Fitted curves may be the only objects available to the researcher for analysis and deci-
sion making, due to reasons such as ethics and confidentiality. For example, research 
that involves the use of personal data, irrespective of whether the data are identifiable or 
de-identified, requires a research ethics board review at most institutions. Scatterplots 
would be among such datasets, but the fitted curves would hardly be such.

Irrespective of the origins of continuous functions, calculating their indices of increase 
is discussed in Sect. 4.1. In the next subsection, for comparative and illustrative purposes, 
we shall fit curves to the scatterplots of Fig. 2 and also provide the values of their indices 
of increase calculated using a method to be described later in this paper.
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3.1 � Fitted curves

To illustrate, we employ one of the most commonly used regression methods for fitting 
nonlinear relationships, which is locally estimated scatterplot smoothing, or LOESS for 
short. It is a non-parametric method that combines multiple regression models and k-near-
est-neighbor-based meta-models. Jacoby (2000) describes the LOESS methodology in 
detail, including how to fit LOESS functions and perform goodness-of-fit tests, with par-
ticular attention on those cases when subject-matter knowledge suggests nonlinear relation-
ships but little, if anything, is known about the actual underlying functional forms. This is 
precisely the situation we deal with in the current paper.

There have been many uses of LOESS in educational research, and from those studies 
we gain valuable insights relevant to the topic of the present paper. For example, Abramo 
et  al. (2012) use LOESS regression to explore the influence of research group’s size on 
research productivity, with emphasis on the Italian higher-education system. Avendano 
et al. (2009) employ LOESS to explore the impact of educational level on changes in health 
outcomes among Europeans, with analyses performed separately for regions with different 
welfare state regimes.

Coming back to the dataset of Mardia et al. (1979, pp. 3–4) and using the R package 
����� (R Core Team 2017), we have implemented the ����� function with its default 
parameter ���� = 0.75 . The resulting curves are depicted in Fig. 3. We note in this regard 
that the parameter ���� controls smoothness: the larger the value, the smoother (i.e., less 
wiggly) is the fitted function. Some of the reported values of I in the panels of Fig.  3 
are equal to 1, thus implying that the fitted functions are increasing everywhere on their 
domains of definition. Interestingly, some index values are equal to 1 even when the hori-
zontal and vertical axes are interchanged, as is, for example, for Algebra versus Analysis 
and Analysis versus Algebra. We should not, however, hastily infer from these values that 
Algebra and Analysis are interchangeable subjects: first, the rates at which the two fitted 
functions increase are different, and second, the values of the two indices are influenced 
by the degree of smoothing, governed by the parameter ���� . We shall illustrate the lat-
ter feature later in the paper, when we set ���� = 0.35 , in addition to the default value 
���� = 0.75.

We conclude this subsection with Table 1, which summarizes our findings so far. Spe-
cifically, in the table we report the values of the Pearson correlation coefficient r = r(�, �) 
(Fig. 1), and also those of I = I(�, �) for the raw data (Fig. 2) and I = I(h) for the LOESS 
fits under the default parameter ���� = 0.75 (Fig. 3).

3.2 � Interchangeability of study subjects

In Table  1 we have also reported the values of the relative index RI% ∶= RI × 100% of 
interchangeability of � and � , where

and also the values of the absolute index of interchangeability AI% ∶= AI × 100% of � and 
� , where

RI ∶= RI(�, �) =
I(�, �)

I(�, �)
− 1,

AI ∶= AI(�, �) = ||I(�, �) − I(�, �)||.
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We note that the indices RI and AI , which are also mentioned in the concluding section of 
Chen and Zitikis (2017), are not specific to the index I . Indeed, RI and AI can be calculated 
for any index of interest, including the Pearson correlation coefficient r = r(�, �) , but in the 
latter case, the values of RI and AI are always 0 due to the symmetry of r with respect to 
� and � . The latter note highlights the unsuitability of r in the context of current research.

4 � Index of increase

In the previous sections, we introduced the index of increase via its properties, and illus-
trated its performance with numerical results. The latter task required actionable formulas, 
adapted for the two scenarios of particular interest: scatterplots and functions. We next 
provide and discuss such formulas, starting with functions.
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Fig. 3   LOESS fitted functions h = h0.75 to the data of Mardia et al. (1979, pp. 3–4) with the corresponding 
values of the index of increase I = I(h0.75)
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4.1 � The index for functions

Let h ∶ [L,U] → ℝ be a real-valued function defined on an interval [L, U]. For exam-
ple, h could be a LOESS function fitted to a scatterplot {(xi, yi), i = 1,… , n} , with 
L = mini{xi} and U = maxi{xi} being the smallest and largest x-values, respectively.

The index of increase of h is, by definition, the normalized distance between the 
function h and the set of all decreasing (precisely speaking, non-increasing) functions 
(Davydov and Zitikis 2017). Hence, the index is equal to 0 when the function h is 
decreasing, and is equal to 1 when it is increasing (precisely speaking, non-decreasing). 
When h is differentiable, the formula for this distance-based index is (Davydov and 
Zitikis 2017)

Table 1   Summary statistics for all subjects

Student scores Pearson Data LOESS0.75

� � r RI% I RI% I RI%

Mechanics Vectors 0.553 0.000 0.541 − 5.749 1.000 0.908
Vectors Mechanics 0.553 0.000 0.574 6.099 0.991 − 0.900
AI% 0.000 3.300 0.900
Vectors Algebra 0.610 0.000 0.527 − 8.507 0.800 − 20.000
Algebra Vectors 0.610 0.000 0.576 9.298 1.000 25.000
AI% 0.000 4.900 20.000
Algebra Analysis 0.711 0.000 0.575 1.590 1.000 0.000
Analysis Algebra 0.711 0.000 0.566 − 1.565 1.000 0.000
AI% 0.000 0.900 0.000
Analysis Statistics 0.607 0.000 0.543 − 0.549 1.000 0.000
Statistics Analysis 0.607 0.000 0.546 0.552 1.000 0.000
AI% 0.000 0.300 0.000
Mechanics Algebra 0.547 0.000 0.558 0.722 1.000 0.000
Algebra Mechanics 0.547 0.000 0.554 − 0.717 1.000 0.000
AI% 0.000 0.400 0.000
Vectors Analysis 0.485 0.000 0.522 − 3.512 0.802 − 18.990
Analysis Vectors 0.485 0.000 0.541 3.640 0.990 23.441
AI% 0.000 1.900 18.800
Algebra Statistics 0.665 0.000 0.578 5.861 0.991 − 0.502
Statistics Algebra 0.665 0.000 0.546 − 5.536 0.996 0.505
AI% 0.000 3.200 0.500
Mechanics Analysis 0.409 0.000 0.555 1.093 0.936 − 4.781
Analysis Mechanics 0.409 0.000 0.549 − 1.081 0.983 5.021
AI% 0.000 0.600 4.700
Vectors Statistics 0.436 0.000 0.538 1.701 0.840 − 14.023
Statistics Vectors 0.436 0.000 0.529 − 1.673 0.977 16.310
AI% 0.000 0.900 13.700
Mechanics Statistics 0.389 0.000 0.558 8.560 0.940 − 4.762
Statistics Mechanics 0.389 0.000 0.514 − 7.885 0.987 5.000
AI% 0.000 4.400 4.700
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where z+ denotes the positive part of any real number z, that is, z+ = z when z > 0 and 
z+ = 0 otherwise.

A practical way to calculate the index I(h) is via discretization. Namely, we first 
divide the interval [L,  U] into many small subintervals [di−1, di] , 2 ≤ i ≤ k , where 
di = L +

i−1

k−1
(U − L) , 1 ≤ i ≤ k . Then we calculate

It has been shown (Davydov and Zitikis 2017; Chen and Zitikis 2017) that when k grows 
indefinitely, Ik(h) converges to I(h) . Based on this fact, we can calculate I(h) at any desired 
precision by calculating Ik(h) for a sufficiently large k.

Remark 3  The parameter k, which is not to be confused with the scatterplot size n, is 
chosen by the researcher, and can be as large as computing time and power permit. For 
example, Chen and Zitikis (2017) show that for their chosen illustrative functions, setting 
k = 20,000 is sufficient to reach the true value of I(h) at the precision of six decimal digits.

4.2 � The index for scatterplots

By their very nature, scatterplots are discrete, but even when we connect their points with 
straight lines, the resulting functions, though continuous, are not differentiable and thus 
formula (1) cannot be engaged. For this reason, Chen and Zitikis (2017) propose a modifi-
cation, which resembles formula (2) of the numerical approximation Ik(h) . To describe it, 
let {(xi, yi), i = 1,… , n} be the scatterplot under consideration. For the sake of simplicity, 
let all the xi ’s be different, the assumption that we shall remove in Sect. 4.3. Hence, we 
can, and thus do, uniquely order the xi ’s from the smallest to the largest, thus obtaining 
x1∶n < x2∶n < ⋯ < xn∶n that are called order statistics (e.g., David and Nagaraja 2003).

For every xi∶n , we find the corresponding point (xj, yj) in the scatterplot, with j deter-
mined by the equation xj = xi∶n . We denote the second coordinate of the point (xj, yj) by 
y[i∶n] , which is usually called the ith concomitant (e.g., David and Nagaraja 2003). The 
index of increase is defined by the formula (Chen and Zitikis 2017)

with the superscript “0” reminding us that there are no ties among the x’s.
To easily interpret the index I0(�, �) , we first note that the numerator in its defini-

tion  (3) sums up all the upward movements y[i∶n] − y[i−1∶n] > 0 , while the denomina-
tor sums up the absolute values of all the movements y[i∶n] − y[i−1∶n] ∈ ℝ , upward and 
downward. Hence, the index of increase is the proportion of upward movements among 
all the movements. In particular, when I0(�, �) < 0.5 , the proportion of downward 
movements is larger than that of upward movements, and so the pattern looks more 
decreasing than increasing. Analogously, when I0(�, �) > 0.5 , the proportion of upward 

(1)I(h) =
∫ U

L
(h�(x))+ dx

∫ U

L
|h�(x)| dx

,

(2)Ik(h) =

∑k

i=2
(h(di) − h(di−1))+∑k

i=2
�h(di) − h(di−1)�

.

(3)I0(�, �) =

∑n

i=2
(y[i∶n] − y[i−1∶n])+∑n

i=2
�y[i∶n] − y[i−1∶n]�

,
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movements is larger than that of downward movements, and so the pattern looks more 
increasing than decreasing. When I0(�, �) is near 0.5, the proportions of upward and 
downward movements are similar, thus suggesting that the values of the first and the 
last concomitants (i.e., of y[1∶n] and y[n∶n] ) must be similar. The following property estab-
lishes this observation rigorously.

Property 1  We have I0(�, �) = 0.5 if and only if y[1∶n] = y[n∶n].

This property follows from the equations z = z+ − z− and |z| = z+ + z− , which imply 
the equivalence of I0(�, �) = 0.5 and 

∑n

i=2
(y[i∶n] − y[i−1∶n]) = 0 , the latter being equivalent 

to y[1∶n] = y[n∶n].

Remark 4  Based on definition  (3) and Property  1, we can now complete Remark  1 by 
providing an example (suggested by one of the reviewers of this paper) in order to show 
how much outliers can skew our analysis, as they usually do with any statistical analy-
sis. Namely, suppose that the scatterplot consists of n points, with the left- and right-hand 
points having the same y-coordinates (i.e., y[1∶n] = y[n∶n] ). However, all the points except 
the right-most point have strictly increasing y-coordinates. Hence, we can say that the scat-
terplot exhibits a strictly increasing pattern, with the right-most point being an outlier. By 
Property 1, we have I0(�, �) = 0.5 , but if we remove the outlier (i.e., the right-most point) 
and calculate the index of increase for the just obtained sub-scatterplot, we get I0(�, �) = 1 , 
because the sub-scatterplot exhibits an increasing pattern and thus the numerator and the 
denominator on the right-hand side of definition (3) coincide. Of course, from the strictly 
mathematical point of view, given the original scatterplot with no points removed, the 
index I0(�, �) does not lie by giving us the value 0.5, as the trend that arises from the scat-
terplot ends at the same height on the right-hand side as it started on the left-hand side, 
thus technically making the trend neither increasing nor decreasing. Yet, the statistician 
would likely remove the right-hand point, calculate the index value 1, and would disagree 
with the mathematician’s conclusion. Both would be right in their own ways.

Another notable property of I0(�, �) is translation and scale invariance, utilized by Chen 
and Zitikis (2017) in order to unify the scales of measurement of different scatterplots.

Property 2  For all real �, � ∈ ℝ and all positive 𝛾 , 𝛿 > 0 , we have

This property is particularly useful when dealing with student performance on differ-
ent subjects, when they are assessed using different score scales. Indeed, the property 
says that shifting and stretching (or shrinking) data do not affect the value of the index.

Remark 5  The parameter n, though arbitrary, is nevertheless fixed throughout this paper. 
The statistical tradition of letting n grow indefinitely is not appropriate in the context of the 
present research, since uncontrollably expanding class sizes do not facilitate insights that 
we aim to gain in the paper; more on this topic will be in concluding Sect. 6. Nevertheless, 
one may naturally wish to assess the estimator’s variability for a given fixed n, due to rea-
sons such as testing one- or two-sample hypotheses. In such cases, we would suggest using 
the (exact) permutation test (e.g., Wasserman 2006, pp. 161–164).

I0(�, �) = I(�(� − �), �(� − �)).
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4.3 � Adjustments due to data ties

The index of increase I0(�, �) is defined under the assumption that all x’s are differ-
ent, but quite often this assumption is violated. Hence, we suggest the following modi-
fication (cf. Chen and Zitikis 2017). Given any scatterplot {(xi, yi), i = 1,… , n} , let 
x∗
1
, x∗

2
,… , x∗

m
 denote all the m(≤ n) distinct values among x1, x2,… , xn . For each x∗

i
 , let 

Yi  be the set all those y’s whose corresponding x’s are equal to x∗
i
 . Each set Yi  has at 

least one element, and let y∗
i
 denote the median of the elements in Yi  . This gives rise to 

the modified scatterplot {(x∗
i
, y∗

i
), i = 1,… ,m} with distinct x’s, and thus with uniquely 

defined order statistics x∗
1∶m

< x∗
2∶m

< ⋯ < x∗
m∶m

 and their corresponding concomitants 
y∗
[1∶m]

, y∗
[2∶m]

,… , y∗
[m∶m]

 . Applying definition (3) on the just constructed modified scatter-
plot, we obtain the index of increase

The values of I that we earlier reported in Fig. 2 are actually those of the just defined index 
I(�, �) , because the data of Mardia et al. (1979, pp. 3–4) contain ties among x-coordinates.

Remark 6  Given (x∗
i
,Yi) , instead of calculating the median of the values inside Yi , we may 

calculate their mean or some other summary statistic. The various possibilities available to 
the researcher depend on the data under consideration and/or the researcher’s point of view.

4.4 � Scatterplots over a specific range

In our explorations so far, we have utilized all the scatterplot points. Hence, piecewise 
linear and LOESS fitted functions have been defined on the scatterplot-specific interval 
[x1∶n, xn∶n] , where x1∶n = mini{xi} and xn∶n = maxi{xi} . There are, however, situations (as 
the one we shall encounter in the next section) when we wish to assess monotonicity 
only on a certain subinterval [L, U] of [x1∶n, xn∶n] . This can be desirable due to a number 
of reasons, such as:

•	 A few left- and right-hand points of the scatterplot might be outliers, and we shall 
encounter such a situation in the next section; see Remark 7 therein. Hence, remov-
ing the points might be warranted. This idea of truncation in order to improve the 
robustness of statistical analysis has long been employed by statisticians, and in 
various situations. For example, to robustify the classical sample mean as an estima-
tor of the population mean, one typically uses trimmed or winsorized means (e.g., 
Serfling 1980; Jurečková et al. 2019).

•	 One may wish to explore the scores of only a certain portion of the entire class, such 
as the middle 80% of students, with 10% of under- and 10% of over-performing stu-
dents treated in special ways in order to make their learning experience more fulfill-
ing.

•	 When comparing several scatterplots, which we frequently do throughout this paper, 
it is advisable to make their ranges comparable, since comparing monotonicity of, for 
example, two scatterplots with one covering the entire interval [0,  100] and another 
only [60, 100] may not lead to meaningful conclusions.

(4)I(�, �) =

∑m

i=2
(y∗

[i∶m]
− y∗

[i−1∶m]
)+∑m

i=2
�y∗

[i∶m]
− y∗

[i−1∶m]
� .
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Hence, since L and U may not be the minimal and maximal x’s of the scatterplot, we 
therefore need a modification of our previous considerations. This can be done by arti-
ficially, though quite naturally, augmenting the scatterplot with points (L, y∗

L
) and (U, y∗

U
) 

with specially constructed y-coordinates y∗
L
 and y∗

U
 , as described next. Namely, let 

{(xi, yi), i = 1,… , n} be the scatterplot under consideration, and let [L, U] be a subinterval 
of [x1∶n, xn∶n] of particular interest to the researcher. We convert this scatterplot into the 
modified one {(x∗

i
, y∗

i
), i = 1,… ,m} with m(≤ n) distinct x-coordinates. Among the points 

of the modified scatterplot, we find (x∗
l∶m

, y∗
[l∶m]

) and (x∗
(l+1)∶m

, y∗
[(l+1)∶m]

) such that x∗
l∶m

 is the 
closest x-coordinate to the left of (or equal to) L, and x∗

(l+1)∶m
 is the closest x-coordinate to 

the right of (or equal to) L. To L we attach

and arrive at the point (L, y∗
L
) , which we add to the modified scatterplot. Analogously we 

arrive at the point (U, y∗
U
) with

where (x∗
(u−1)∶m

, y∗
[(u−1)∶m]

) and (x∗
u∶m

, y∗
[u∶m]

) are the two points in the modified scatterplot 
such that x∗

(u−1)∶m
 is the closest x-coordinate to the left of (or equal to) U, and x∗

u∶m
 is the 

closest x-coordinate to the right of U. With

we define the (conditional on [L, U]) index of increase

Our following explorations of the dataset of Mardia et al. (1979, pp. 3–4) rely on this index.

5 � A revisit of Mardia et al. (1979, pp. 3–4)

Based on the dataset of Mardia et al. (1979, pp. 3–4) and using the just introduced con-
ditional index of increase, we next explore relationships between the scores from closed-
book examinations (Sect. 5.1), open-book examinations (Sect. 5.2), and also general per-
formance based on the combined scores arising from closed- and open-book examinations 
(Sect. 5.3). When comparing any pair of scatterplots, we do so based on only those points 
whose x-coordinates are in the largest common interval [L, U].

Namely, let the two scatterplots be {(xi, yi), i = 1,… , n1} and {(vi,wi), i = 1,… , n2} 
with some n1 and n2 ; for every scatterplot of Mardia et  al. (1979,  pp.  3–4), we have 
n1 = n2 = n = 88 . Using the median adjustment described in Sect. 4.3, the two scatterplots 

(5)y∗
L
= y∗

[l∶m]
+

y∗
[(l+1)∶m]

− y∗
[l∶m]

x∗
(l+1)∶m

− x∗
l∶m

(L − x∗
l∶m

)

(6)y∗
U
= y∗

[(u−1)∶m]
+

y∗
[u∶m]

− y∗
[(u−1)∶m]

x∗
u∶m

− x∗
(u−1)∶m

(U − x∗
(u−1)∶m

),

z∗
[i∶m]

=

⎧
⎪⎨⎪⎩

y∗
L

when i = l,

y∗
[i∶m]

when i = l + 1,… , u − 1,

y∗
U

when i = u,

(7)I(�, � ∣ L,U) =

∑u

i=l+1
(z∗

[i∶m]
− z∗

[i−1∶m]
)+∑u

i=l+1
�z∗

[i∶m]
− z∗

[i−1∶m]
� .



1158	 L. Chen, R. Zitikis 

1 3

reduce to the modified scatterplots {(x∗
i
, y∗

i
), i = 1,… ,m1} and {(v∗

i
,w∗

i
), i = 1,… ,m2} , 

respectively. The endpoints of their common interval [L, U] are calculated by the formulas

5.1 � Closed‑book examinations

Vectors and Mechanics are the only two subjects in the dataset of Mardia et  al. 
(1979,  pp.  3–4) that were assessed using closed-book examinations. To illuminate rela-
tionships between the scores in these subjects, in Fig. 4 we have depicted Mechanics ver-
sus Vectors as well as Vectors versus Mechanics over their common range [L,U] = [9, 77] , 
which we obtained using formula  (8). For the LOESS fits, we have used the default 
���� = 0.75 and also ���� = 0.35 . The former smoothes out more fluctuations and thus 
reveals general patterns, which are fairly increasing, whereas ���� = 0.35 maintains more 
minute details. Table 2 summarizes the results.

The reported values of the index I suggest that Vectors versus Mechanics exhibits a 
more increasing pattern than Mechanics versus Vectors. This is also seen from the val-
ues of the relative index of interchangeability, RI%, which is positive for Vectors versus 
Mechanics (and thus negative for Mechanics versus Vectors) irrespective of the degree of 
smoothing. Hence, we conclude that students with higher scores in Vectors are more likely 
to get higher scores in Mechanics than the other way around, that is, when Mechanics pre-
cedes Vectors. This, we think, is due to the fact that Vectors is a fundamental subject for 

(8)L = max{x∗
1∶m1

, v∗
1∶m2

} and U = min{x∗
m1∶m1

, v∗
m2∶m2

}.
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Fig. 4   Piece-wise linear fits (a, b), and the LOESS fits (c, d) when the span is 0.75 (thicker) and 0.35 
(thinner) with the index I = I(h0.35) in parentheses
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learning Mechanics; think of, e.g., the notion of force. To support this observation, we 
refer to the introductory sections of the classical textbook by Synge and Griffith (1949), 
who first recall basics of Vectors and only then teach Mechanics.

In view of the above, it becomes revealing why curriculum developers tend to include 
Mechanics modules into Mathematics classes. To illustrate the point, Kitchen et al. (1997) 
argue that in order to strengthen the appreciation of Mathematics, students should study 
Kinematics, Statics, and Dynamics, which make up parts of Mechanics and require knowl-
edge of Vectors. Moreover, the authors argue that the use of illustrations based on Mechan-
ics make Mathematics more relevant and thus more appreciated. Consequently, changes 
in Mathematics curricula have the potential of affecting Mechanics modules, which can in 
turn become particulary worrisome among those who teach first-year engineering students 
at universities (e.g., Lee et al. 2006, and references therein). The results reported in Table 2 
are in good agreement with the aforementioned observations, and may therefore lend sup-
port to those in favour of encouraging students not to avoid “harder” study subjects.

We now take a look at the issue of interchangeability of Mechanics and Vectors with 
the aid of the absolute index of interchangeability, AI%. For the raw scatterplot, AI% is 
2%, which is a relatively small number, likely due to the noise, but not to the pattern itself. 
We can smooth out the noise using a LOESS fit with a large ���� value. For example, the 
default value ���� = 0.75 smoothes out a lot of variability and makes the two fits virtually 
increasing: the index I values are 0.972 and 0.979, quite close to the maximum 1. By set-
ting ���� to 0.35, the absolute index of interchangeability surges to 12.6% , which is large, 
and we would therefore hesitate to state that Mechanics and Vectors are interchangeable. 
Reiterating our earlier discussion based on RI%, and also recalling our note concerning 
Synge and Griffith (1949), and further arguments by Kitchen et al. (1997), we would tend 
to believe that viewing Vectors as an explanatory variable for Mechanics is more appropri-
ate than the other way around.

5.2 � Open‑book examinations

Algebra, Analysis, and Statistics are the three subjects in the dataset of Mardia et  al. 
(1979, pp. 3–4) that were assessed using open-book examinations. Hence, we have three 
pairs of scatterplots, whose summaries are in Table 3, with corresponding Figs. 5, 6 and 
7 relegated to “Appendix”. Note the different intervals [L, U] for each of the three pairs, 
and we shall therefore restrain from comparing, for example, Algebra versus Analysis and 
Algebra versus Statistics. However, we shall compare and discuss, for example, Algebra 
versus Analysis with Analysis versus Algebra.

Table 2   Closed-book examination summaries

Study subjects Data LOESS0.75 LOESS0.35

� � I RI% I RI% I RI%

Mechanics[9,77] Vectors 0.545 − 3.540 0.972 − 0.715 0.744 − 14.483
Vectors[9,77] Mechanics 0.565 3.670 0.979 0.720 0.870 16.935
AI% 2.000 0.700 12.600
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Algebra and Analysis provide fundamental concepts for other subjects, such as Sta-
tistics, with Algebra playing a particularly prominent role, as argued by, e.g., Gamoran 
and Hannigan (2000). Based on the data of Mardia et al. (1979, pp. 3–4), we reach this 
conclusion from the raw data ( RI% = 7.156 ) as well as from the moderate LOESS0.35 fit 
( RI% = 18.623 ). The default LOESS0.75 fit ( RI% = −0.800 ) gives a slight preference to 
Analysis over Algebra.

Remark 7  A possible reason for this change of preference is likely due to an outlier: one 
student’s Algebra score deviates considerably from the overall pattern of scores. Obvi-
ously, the LOESS fit under the default value ���� = 0.75 smoothes out the outlier, making 
I(Analysis, Algebra) equal to 1, whereas I(Algebra, Analysis) takes the value 0.992.

The observed slight uncertainty when deciding which of the two study subjects—Alge-
bra or Analysis—should be taught first does not seem to really matter in practice because, 
as far as we are aware of, Algebra and Analysis are considered fundamental subjects, focus-
sing on different aspects of mathematics, and are thus often taught at the same time. Hence, 
neither of them can be easily substituted by another one: better performance in these two 
subjects leads to better performance in other subjects, such as Statistics, as seen from the 
RI values in Table 3. Note in this regard that irrespective of the degree of smoothing, the 
RI values for Statistics versus Analysis and Statistics versus Algebra are negative, and thus 
the empirical evidence provided by Mardia et  al. (1979, pp. 3–4) suggests that Analysis 
and Algebra should be taught first and only then Statistics.

5.3 � Closed‑book versus open‑book examinations

In the previous two sections, we discussed subjects within closed-book examinations and 
also within open-book examinations. In the current section, we look at the six combina-
tions with one subject from closed-book examinations and another subject from open-book 
examinations. Table 4 summarizes our findings, with corresponding Figs. 8, 9, 10, 11, 12 
and 13 relegated to “Appendix”. Note from Table 4 that the values of the index of increase 
differ from those in Table  1. The piecewise linear and LOESS fits also differ from the 

Table 3   Open-book examination summaries

Study subjects Data LOESS0.75 LOESS0.35

� � I RI% I RI% I RI%

Algebra[15,70] Analysis 0.569 7.156 0.992 − 0.800 0.879 18.623
Analysis[15,70] Algebra 0.531 − 6.678 1.000 0.806 0.741 − 15.700
AI% 3.800 0.800 13.800
Analysis[9,70] Statistics 0.543 0.185 1.000 1.317 0.899 13.367
Statistics[9,70] Analysis 0.542 − 0.184 0.987 − 1.300 0.793 − 11.791
AI% 0.100 1.300 10.600
Algebra[15,80] Statistics 0.578 4.521 1.000 4.493 0.865 11.326
Statistics[15,80] Algebra 0.553 − 4.325 0.957 − 4.300 0.777 − 10.173
AI% 2.500 4.300 8.800
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corresponding ones in Figs. 2 and 3, because the latter two figures are not based on unified 
ranges, whose notion was only introduced in Sect. 4.4.

From the RI values in Table  4, we see that irrespective of the degree of smoothing, 
Analysis as a study subject should precede Mechanics, which in turn should precede Statis-
tics. Furthermore, Analysis should precede Vectors. If we do not take into account the RI 
values based on raw data and concentrate only on the two LOESS fits, then we conclude 
that both Mechanics and Vectors should precede Algebra. As to Vectors and Statistics, the 
two LOESS fits give somewhat conflicting suggestions, thus implying that the two subjects 
may not be good at determining each other’s scores. This we find natural: given our teach-
ing experience, these two subjects—on the introductory level—are hardly related to each 
other. We should add, however, that advanced statistics requires good knowledge of vec-
tors, matrices, and related concepts, which can in turn be used as illuminating examples 
when teaching vectors and matrices.

6 � Concluding notes

Measuring relationships and, consequently, monotonicity relationships between paired var-
iables is an important and highly challenging problem, especially when relationships

•	 are inherently non-linear,
•	 cannot be described using closed-form formulas.

Table 4   Comparison for cross category

Study subjects Data LOESS0.75 LOESS0.35

� � I RI% I RI% I RI%

Mechanics[15,77] Algebra 0.545 − 1.089 1.000 0.000 0.756 0.265
Algebra[15,77] Mechanics 0.551 1.101 1.000 0.000 0.754 − 0.265
AI% 0.600 0.000 0.200
Mechanics[9,70] Analysis 0.516 − 6.011 0.876 − 12.400 0.640 − 23.900
Analysis[9,70] Mechanics 0.549 6.395 1.000 14.155 0.841 31.406
AI% 3.300 12.400 20.100
Mechanics[9,77] Statistics 0.541 7.129 0.966 15.137 0.700 24.113
Statistics[9,77] Mechanics 0.505 − 6.654 0.839 − 13.147 0.564 − 19.429
AI% 3.600 12.700 13.600
Vectors[15,80] Algebra 0.554 − 3.819 1.000 0.000 0.964 15.865
Algebra[15,80] Vectors 0.576 3.971 1.000 0.000 0.832 − 13.693
AI% 2.200 0.000 13.200
Vectors[9,70] Analysis 0.517 − 4.436 0.775 − 22.111 0.560 − 20.680
Analysis[9,70] Vectors 0.541 4.642 0.995 28.387 0.706 26.071
AI% 2.400 22.000 14.600
Vectors[9,81] Statistics 0.538 1.701 0.835 − 14.534 0.723 9.380
Statistics[9,81] Vectors 0.529 − 1.673 0.977 17.006 0.661 − 8.575
AI% 0.900 14.200 6.200
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To tackle such problems, we have employed the index of increase, which is a relatively 
new technique that has emerged from the works of Davydov and Zitikis (2017), Chen 
and Zitikis (2017) and Chen et al. (2018). Since the use of computers is essential, we 
have thoroughly described the packages and algorithms that we have used in our compu-
tations and explorations.

By revisiting the popular dataset of Mardia et al. (1979, pp. 3–4), which is frequently 
used by university teachers to illustrate various classical concepts of multivariate analy-
sis, we have enabled those familiar with the textbook and the dataset to see the need for, 
and benefits of, thinking outside the box. To facilitate the task, we have provided a com-
prehensive explanation of the index of increase, its calculation techniques under various 
scenarios, and interpretations. For example, we have found the following relationships 
between different study subjects with respect to the timing of exposure to students:

•	 Vectors ≺ Mechanics (Sect. 5.1)
•	 Algebra ≺ Statistics (Sect. 5.2)
•	 Analysis ≺ Statistics (Sect. 5.2)
•	 Algebra  Analysis (Sect. 5.2)
•	 Analysis ≺ Mechanics ≺ Statistics (Sect. 5.3)
•	 Analysis ≺ Vectors (Sect. 5.3)
•	 Mechanics ≺ Algebra (Sect. 5.3)
•	 Vectors ≺ Algebra (Sect. 5.3)
•	 Vectors  Statistics (Sect. 5.3)

where S1 ≺ S2 means that prior familiarity with subject S1 is beneficial for learning 
subject S2 , and S1 S2 when the two subjects do not clearly exhibit S1 ≺ S2 or S2 ≺ S1 , 
and can thus be taught in any order. (The sign  is frequently used in Statistics and 
Probability to indicate independence, which in the current context connotes “timing 
independence.”)

Next, we make a few cautionary notes that we think are particularly important when 
dealing with problems such as those we have tackled in the present paper.

First, our interpretations and suggested decision-making are based on the data of Mardia 
et  al. (1979, pp. 3–4), and should not be lightheartedly generalized or extended to other 
educational contexts. Nevertheless, as is the case with many statistical methods and tech-
niques, they are insightful when used with care and in conjunction with subject-matter 
knowledge.

Second, not only the subject-matter knowledge that determines whether or not we are 
likely to be right (or wrong) when making decisions but also the knowledge of instructor’s 
personality and performance are crucial. For more details and references on this topic, and 
for associated consequences when teaching, e.g., Calculus and Algebra, we refer to Wade 
et al. (2017). The “conversation” by Taylor (2019) provides further enlightening thoughts 
and additional references.

Third, the classically trained statistical researcher would spontaneously ask what would 
happen if the sample size n (i.e., the class size in the current context) would grow indefi-
nitely. Firstly, such situations cannot happen in the context of educational research, but if, 
for the sake of argument, this happens, then the answer would undoubtedly be “it would be 
a mess.” Interestingly, in contexts outside of educational research, such as insurance and 
finance (e.g., Gribkova and Zitikis 2018; Ren et al. 2019) and engineering (e.g., Gribkova 
and Zitikis 2019a, b), exploring the index of increase when the sample size n grows indefi-
nitely is meaningful and even pivotal.
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It is the latter studies from which we know that the above reply “it would be a mess” 
is indeed the correct answer, in the sense that if each observation is a non-deterministic 
outcome (as is the case with student marks), then when n grows to infinity, the index of 
increase inevitably converges to 0.5, meaning that the underlying scatterplot grows into a 
chaotic pattern, with no clear upward or downward trends. In a sense, this is natural and 
does manifest in large-size (say, more than 200 students) introductory statistics/calculus 
classes, whose main purpose, roughly speaking, is not to make subtle recommendations 
to students such as directing them to theoretical or computational statistics/calculus stud-
ies—this is usually done in upper-year and small class-size environments—but to simply 
make a general assessment of student suitability to achieve a comprehensive university-
level education.

Finally, a few notes concerning future work are in order. First, we reiterate that our 
choice of the classical dataset of Mardia et al. (1979, pp. 3–4) has been deliberate: we have 
aimed at contrasting classical and new techniques in a highly accessible way. But this, in 
turn, raises an interesting research question. Namely, with the currently rapidly developing 
societal need for more computer proficiency and familiarity with topics such as machine 
learning and artificial intelligence, are the above reached conclusions based on an old data-
set still relevant today? To have well-informed answers, and we think there is no single cor-
rect answer to this question, one would need to run observational and experimental studies, 
whose outcomes may depend on geographical regions, societal traditions, and so on. These 
are very interesting research problems, and much has already been done by educational 
researchers; the present paper offers them an additional tool of analysis.
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Appendix

In Figs. 5, 6, 7, 8, 9, 10, 11, 12 and 13, panels (a) and (b) contain piecewise linear fits, and 
panels (c) and (d) contain LOESS fits when the span is 0.75 (thicker) and 0.35 (thinner). 
Panels (c) and (d) contain two index values: the top one is I = I(h0.75) and, in parentheses, 
the bottom value is I = I(h0.35).
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Fig. 5   Piecewise linear and 
LOESS fits
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Fig. 6   Piecewise linear and 
LOESS fits
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Fig. 7   Piecewise linear and 
LOESS fits
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Fig. 8   Piecewise linear and 
LOESS fits
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Fig. 9   Piecewise linear and 
LOESS fits
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Fig. 10   Piecewise linear and 
LOESS fits
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Fig. 11   Piecewise linear and 
LOESS fits
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Fig. 12   Piecewise linear and 
LOESS fits
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