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Abstract Multicollinearity is one of the most important issues in regression analysis, as it

produces unstable coefficients’ estimates and makes the standard errors severely inflated.

The regression theory is based on specific assumptions concerning the set of error random

variables. In particular, when errors are uncorrelated and have a constant variance, the

ordinary least squares estimator produces the best estimates among all linear estimators. If,

as often happens in reality, these assumptions are not met, other methods might give more

efficient estimates and their use is therefore recommendable. In this paper, after reviewing

and briefly describing the salient features of the methods, proposed in the literature, to

determine and address the multicollinearity problem, we introduce the Lpmin method, based

on Lp-norm estimation, an adaptive robust procedure that is used when the residual dis-

tribution has deviated from normality. The major advantage of this approach is that it

produces more efficient estimates of the model parameters, for different degrees of mul-

ticollinearity, than those generated by the ordinary least squares method. A simulation

study and a real-data application are also presented, in order to show the better results

provided by the Lpmin method in the presence of multicollinearity.

Keywords Multicollinearity � Exponential power function � Lp-norm estimators � Lpmin

method � Kurtosis indexes � Relative efficiency

1 Introduction

Generally, a regression model has two main purposes (Saville and Wood 1991):
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a. it could be used to determine to what extent the dependent variable can be predicted by

the independent variables;

b. it could be used to capture the strength of a theoretical relationship between the

dependent variable and the independent variables.

The first use of the term ‘‘multicollinearity’’ in the literature was by Frisch (1934). We

refer to multicollinearity when there is a strong linear dependence between two or more

regressors (Leahy 2000).

Multicollinearity is not just present or absent, but it is necessary to check for its degree,

or severity, ranging from no collinearity to perfect collinearity. Normally, some degree of

multicollinearity is always present in real data. Perfect multicollinearity is an extreme and

uncommon case, occurring when two or more independent variables in a regression model

exhibit a perfect linear relationship. In the latter case, the regression coefficients are

indeterminate and their standard errors are infinite.

Multicollinearity may lead to several issues, summarized in the following points

(Besley et al. 1980; Shieh 2011; Montgomery et al. 2012):

• Estimates issues: considering the ordinary least squares (OLS) method, the regression

coefficients’ estimates are given by:

b̂OLS ¼ ðX0XÞ�1
X0Y

In the presence of a high degree of multicollinearity, the X0X matrix is quasi-singular

(ill-conditioned); hence, there is a misalignment of the equation system that should

provide the parameters’ estimates, which are therefore inaccurate. In the case of perfect

multicollinearity, the matrix is non-invertible; this causes computational problems as

well, as any statistical software would give warnings such as ‘‘The matrix is singular’’

and will be unable to proceed with the estimation.

• Forecasting issues: from a practical point of view, it is useless to make any kind of

prediction for a value of the response variable y, due to the uncertainty of the values of

b̂.
• Interpreting issues: in the presence of multicollinearity, the coefficients’ estimates are

less efficient and their interpretation becomes tricky. Regressors don’t explain the

variance in the dependent variable as they should normally do.

When multicollinearity is detected, it becomes important to understand which explanatory

variables are causing the issue, and the easiest solution would be to exclude them from the

analysis. However, doing so is not always a good solution, as it depends on whether the

purpose of the analysis is explanation or prediction. When prediction is the goal, no

problem arises if, among dependent variables, two regressors have the same ‘meaning’: it

is possible to just drop one of them. When, instead, explanation is the goal, regressors are

selected according to a theoretical rule, so that it is not possible to eliminate any variable:

the model has to be explained exactly, including every variable that was selected. Liter-

ature has recently introduced other methods to deal with multicollinearity without the need

of dropping variables from the model, that are described in the following section.

A widely used estimator is the ordinary least squares (OLS) one, which is a valid

alternative to the Maximum Likelihood estimator, especially when no information is given

about the error distribution. According to the Gauss-Markov theorem, the OLS estimator is

BLUE (Best Linear Unbiased Estimator) when E(e) = 0 and var(e) = r2In. This means
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that, among all the linear estimators, it will be the one with the least variance, guaranteeing

furthermore that the estimates are unbiased.

When the set of error random variables doesn’t respect the Gauss-Markov assumptions,

the OLS estimator is not BLUE and might therefore provide less efficient estimates than

the ones provided by other methods, even though it continues to be unbiased. The variance

of the residuals will be biased, invalidating significance tests, confidence intervals and the

R2 coefficient.

In this paper, we are going to carry out some simulations in order to show the differ-

ences, in terms of efficiency, between the OLS estimator and two different Lp-norm

estimators—whose properties will be described in the following sections—in the presence

of multicollinearity.

This paper is organized as follows. In the next section, after a brief review on the origins

and some new tools to deal with the multicollinearity problem, we illustrate some new

methods, proposed in the literature, to solve this issue in the case of stochastic regression,

typical in the analysis of economic and social data. In the third section, we introduce the

exponential power function (E.P.F.), a useful family of symmetrical random error curves,

and its connection with the Lp-norm method. In the fourth section, we investigate the

relationship between the different values of p, the shape parameter of the E.P.F., and some

kurtosis indexes that refer to the error distributions; then we analyze and propose the Lpmin

algorithm in the fifth section. In the following one (6), we propose a simulation study, with

the aim of choosing the best rule to select the most appropriate value of p for any given

error distribution and to evaluate the influence of multicollinearity in the parameter esti-

mation procedures in terms of variance. Finally, in Sect. 7, we propose a real data

application, showing that our method gives better estimates than OLS. In the last Sect. (8),

some results from the empirical study and comparisons are discussed.

2 Solving the multicollinearity problem: a review

Literature has devoted a lot of attention to the multicollinearity problem and the different

ways to solve it.

When multicollinearity is detected in a regression model, the easiest solution is to

eliminate the problematic variables from the model, so that it doesn’t include variables that

are correlated (Bowerman and O’Connell 1993; Bring 1996).

But, sometimes, it is hard to choose which variables to exclude. Another classical

remedy to the multicollinearity problem is the Principal Component Analysis (Maddala

1977; Gower and Blasius 2005), that converts the original variables into a new set of

linearly uncorrelated variables.

Since eliminating a variable leads to a problem of bad-specification of the model, a

viable remedy is the use of a different estimator than the least squares one. This is because

the ‘classical’ OLS method provides estimates that could be statistically not significant in

the presence of multicollinearity. Some common alternatives are the partial least squares

(Cassel et al. 1999) and the Ridge Regression (Pagel and Lunneberg 1985; Dijkstra 2014;

Masson et al. 2014). The latter, in particular, was introduced by Hoerl and Kennard (1970),

and has the advantage of reducing the variance term of the slope parameters (Muniz and

Kibria 2009; Akdeniz et al. 2015). In the most recent literature, though, some robust

estimators are preferred. There are many types of robust regression models and, tradi-

tionally, the least squares criterion has always been the most used one. The Least Absolute
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Value (LAV) is a regression coefficient that minimizes the sum of the absolute values of

the residuals:

b̂LAV ¼ argmin
b

X
yi � x0ib
�� ��

However, when multicollinearity is present, other methods should be preferred, such as the

Ridge Least Absolute Value (RLAV), handling the problem of multicollinearity and

outliers simultaneously. A new approach to solve the multicollinearity problem considers

the use of a ridge regression based on Bisquare Ridge LTS estimators (BRLTS). Through

this method, it is possible to obtain good estimates, removing multicollinearity when it is

‘‘moderate or high’’ (Pati et al. 2016).

In a regression model, we expect a high variance explained (R2). The higher the

variance explained, the better the model is. Though, in the presence of multicollinearity,

the variance, standard errors and parameter estimates may be all inflated.

Other authors suggest the so called ‘‘Nested estimate procedure’’ (Lin 2008), that is a

relatively new method, based on OLS, consisting in an iterative estimation procedure of

independent variable parameters. Garcia et al. (2011) presented the ‘‘raise method’’ as an

alternative to the Nested estimation, that keeps all information, which could be highly

recommended in some cases, and compares the results with other procedures.

There are no specific tests to detect multicollinearity, but some characteristics of the

estimated model can reveal it:

• a high R2 with non-significant regression coefficients (t-scores);

• a high correlation between the single variables;

• a high VIF (Variance Inflation Factor).

The Variance Inflation Factor (VIF) is calculated for each variable in the model, based on

the expression:

VIFj ¼
1

1� R2
j

� �

where R2
j is the multiple R2 for the regression of the j-th element of the vector of estimates

on the other covariates.

A high VIF reveals linear dependence between the j-th column and the remaining

columns of the X matrix and, thus, the presence of multicollinearity (Lazaridis 2007).

However, as Curto and Pinto (2011) point out, the real impact on the variance can be

overestimated by the VIF and, for this reason, CVIF can be used in place of VIF. In

formulas:

CVIFj ¼
ðð1� R2ÞTSS=ðn� kÞð1� R2

j ÞTSSjÞ
ðð1� R2

0ÞTSS=ððn� kÞTSSjÞ

or:

CVIFj ¼ VIFj �
1� R2

1� R2
0

where R2
0 ¼ R2

yx2
þ R2

yx3
þ � � � þ R2

yxk
.

In particular, R2
yxk

is the square of the correlation coefficient between the dependent

variable and the independent variables, keeping TSS and TSSj constant. In general, R2
0 can

1834 M. Giacalone et al.

123



be lower or higher than R2, but when the independent variables are orthogonal we have

R2
0 ¼ R2.

When R2
0 [R2, CVIF ranges from 1 to ?? and CVIFj[VIFj; when R2

0\R2, CVIF

ranges from 0 to 1 and CVIFj\VIFj. About interpreting issues, as suggested by Curto and

Pinto (2011), we can use the rule-of-thumb CVIFj[ 10 to indicate the presence of severe

multicollinearity.

Another common issue in economics is the spurious relationship between variables

(Armor et al. 2017). As Chatelain and Ralf (2014) show, by increasing the number of

observations it is possible to bring a spurious inference of highly correlated classical

suppressors. In particular, they propose a tool to solve these issues: the Parameter Inflation

Factor (PIF), obtained by analyzing a trivariate regression model as follows:

x1 ¼ b12x2 þ b13x3 þ e1;23

PIF is defined as:

PIF12 ¼ 1� r13

r12
r23

� �
VIF12

where r12, r13 and r23 are the correlation coefficients of the regressors and VIF is the

Variance Inflation Factor.

While the Variance Inflation Factor only depends on the correlation between the

independent variables, the Parameter Inflation Factor also considers the correlation

between the regressors and the dependent variable. In the presence of a high PIF value,

there may be highly correlated classical suppressors.

When regressors and error are correlated, the OLS estimator becomes less efficient

because its variance increases (Vargha et al. 2013; Griffiths and Hajargasht 2016), even

though it remains consistent (Krone et al. 2017).

Another estimator that can be used in the presence of multicollinearity is the Classical

Linear Regression Model (CLRM) (Ayinde 2007):

yt ¼ b0 þ b1x1t þ b2x2t þ b3x3t þ et

where t = 1, 2,…,n and et * (0,r2) and assuming that x1 is correlated with error e and x2
is correlated with x1.

In addition, we can consider a generalized least squares (GLS) model:

yt ¼ b0 þ b1x1t þ b2x2t þ b3x3t þ ut

where t = 1, 2,…,n; ut ¼ qut�1 þ et and q is the correlation.

Starting from this point, Ayinde (2007) shows that CLRM and GLS models are

equivalent in the case of zero correlation. In addition, comparing CLRM, GLS and

Maximum Likelihood (ML) estimators, using the MSE (Mean Square Error) criteria in a

Monte Carlo simulation plan, the author shows that ML and GLS are better than an OLS

estimator with low replication, but when there is a high number of replications the OLS

method is to be favored.

Another study by Tran and Tsionas (2013) proposes the Generalized Method of

Moments (GMM) estimator, showing that if there is no correlation between the variables, it

performs as the standard Maximum Likelihood estimator. However, in the case of strong

correlation, the MLE becomes biased while the GMM estimator remains unbiased.

Finally, as Giacalone and Richiusa (2006) point out, Lp-norm estimators allow to

manage the residuals more efficiently, particularly when there is some degree of
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multicollinearity and regressors are correlated with residuals. This is because the Lp-norm

methods are adaptive procedures with respect to the error component of the model and not

to the deterministic one.

As a result, using Lp-norm estimators in the presence of stochastic regressors, it is

possible to obtain a better efficiency in the estimates than using OLS.

3 The exponential power function and the Lp-norm estimators

The exponential power function (E.P.F.) is a family of probability functions proposed by

Subbotin (1923) and studied, among others, by Vianelli (1963), Lunetta (1966), Mineo

(1989), Gonin and Money (1989), Chiodi (1995) and Bottazzi and Secchi (2011).

The E.P.F. constitutes a valid generalization of the Gaussianity hypothesis, that is

usually assumed even though, depending on the data we have at disposal, it is not always

fully supportable. In the literature, it is also known as ‘‘Normal distribution of order p’’ or

‘‘Generalized Error Distribution’’, and it constitutes a parametric alternative to the robust

methods (Mineo 2003).

The density function of the E.P.F. is:

fpðzÞ ¼
1

2p1=prpCð1þ 1=pÞ exp � 1

p

z�Mp

rp

����

����
p� �

ð1Þ

where Mp = E(z) is the location parameter, rp = (E[|z - Mp|])
1/p is the scale parameter

and p[ 0 is the shape parameter.

Considering the Pearson kurtosis index b2, we distinguish:

• 0\ p\ 1: double exponential distribution, b2[ 6;

• 1\ p\ 2: leptokurtic distribution, 3\b2\ 6;

• p[ 2: platikurtic distribution, 1.8\b2\ 3.

For particular values of p, we have:

• the Laplace distribution (p = 1, b2 = 6);

• the Gaussian distribution (p = 2, b2 = 3);

• the Uniform distribution (p ? ?, b2 ? 1.8).

Considering a sample of n observed data (xi, yi), a general linear regression model is:
yi ¼ g xi; hð Þ þ ei ð2Þ

with g(.) linear function.

Lp-norm estimators are useful generalizations of ordinary least squares estimators,

obtained by replacing the exponent 2 with a general exponent p (Ekblom and Henriksson

1969; Forsythe 1972). Therefore, they minimize the sum of the p-th power of the absolute

deviations of the observed points from the regression function:

SpðhÞ ¼
Xn

i¼1

yi � g xi; hð Þj jp with 1� p\1 ð3Þ

Under the regular assumptions, the log-likelihood associated with the sample, where

z ¼ yi; Mp ¼ gðxi;hÞ is given by:

1836 M. Giacalone et al.

123



lðh; rp; pÞ ¼ �n log 2p1=prpCð1þ 1=pÞ
h i

� prpp

� ��1Xn

i¼1

yi � g xi; hð Þj jp ð4Þ

ol

ohj
¼

Xn

i¼1

yi � gðxi; hÞj jp�1
signðyi � gðxi; hÞÞ

og

ohj
¼ 0

Pn

i¼1

yi � g xi; hð Þj jp ¼ min with p� 1

ð5Þ

When the order p is specified, all the terms in the (4), except for the last part containing the

vector h, are constant. Therefore, Maximum Likelihood estimators are equivalent to Lp-

norm estimators (5).

If p is unknown, there are two related problems to consider:

1. the estimation of the exponent p on the sample data;

2. the choice of the minimization algorithm to obtain the regression parameters’

estimates.

About the procedures to estimate p, it is possible to find out the following proposals in the

literature:

• Harter (1977), noting that p depends on b̂2 (the sample residual kurtosis), proposed to

select p using the following rules:

if b̂2 [ 3:8 use p = 1 (the least absolute deviations regression);

if 2:2\b̂2\3:8 use p = 2 (the least squares regression);

if b̂2\2:2 use p ¼ 1 (the minimax or Chebychev regression).

• Money et al. (1982) and Sposito (1982) proposed two different criteria respectively:

p̂ ¼ 9=b̂22 þ 1 for 1� p\1 ð6Þ

p̂ ¼ 6=b̂22 for 1\p\2 ð7Þ

• Mineo (1989) proposed the Generalized Kurtosis bK, as described in Sect. 4.

• Mineo (1994) considered a new method to estimate p, based on an empirical index

called VI. This estimation method is based on a two-steps algorithm in which,

iteratively, the estimates of p and the other parameters are evaluated: the structure

parameter is estimated by numerically solving an equation in which the theoretical

value of the I index is equaled to the empirical one; the other parameters are estimated

from the corresponding maximum likelihood estimators as a function of the current

value of p̂.

• Agrò (1995) proposed a maximum likelihood estimation either for the E.P.F.

parameters or for the p shape parameter. It is a two-steps process which, however, is

essentially suitable for medium to large samples (n[ 50).

• Giacalone (1997) proposed an algorithm based on a two-steps alternating procedure

that firstly estimates the h parameter vector by means of the classical conjugated

gradient algorithm (Fletcher and Reeves 1964) and secondly estimates p using a joint

inverse function of I and b2, obtained comparing empirical and theoretical moments,
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matching (10) with (12) and (9) with (11). The minimization algorithm stops when the

variation of p is not significant (Everitt and Hand 1987).

• Agrò (1999) proposed an adjustment of the likelihood estimation, based on Cox and

Reid (1987), which consists in a reparametrization that leads to asymptotically

uncorrelated estimators and, consequently, to better results (at least, for n[ 30).

• Finally, Mineo and Ruggieri (2005) developed an R package for dealing with the

exponential power function, with functions to compute the density function, the

distribution function and the quantiles from an E.P.F., available on the Comprehensive

R Archive Network (CRAN).

4 The exponential power function kurtosis indexes

For the density (1), the theoretical moment of order k is a function of the shape parameter p

as follows:

E z�Mp

�� ��k¼ prpp

� ��k=pCððk þ 1Þ=pÞ
Cð1=pÞ ¼ lk ð8Þ

The ratios of the moments of order 2k and the squared moment of order k only depend on

the shape parameter p. This theoretic relation is also known as ‘‘Generalized Kurtosis’’

(Mineo 1989):

bk ¼
l2k
l2k

¼ Cð1=pÞCðð2k þ 1Þ=pÞÞ
½Cððk þ 1Þ=pÞÞ�2

If k = 2, we get the Pearson’s kurtosis index:

b2 ¼
l4
l22

¼ Cð1=pÞCð5=pÞ
½Cð3=pÞ�2

ð9Þ

If k = 1, considering the square root of the reciprocal, we get the Geary’s length of tails

index (Geary 1936):

I ¼ l1ffiffiffi
l

p
2

¼ Cð2=pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1=pÞCð3=pÞ

p ð10Þ

The indexes I and b2 show a different behavior according to the variation of p (Giacalone

1996, 1997). Calculating the sample values of I and b2, it is possible to obtain, by inverse

interpolation, two different estimations of p.

Gonin and Money (1987), Kendall and Stuart (1966) and Lunetta (1966) considered the

unbiased estimates of the second and fourth order sample moments, with correction factors

depending on the sample size n:

l̂2 ¼
1

n� 1

X

i

ei � �eð Þ2

l̂4 ¼
n2 � 2nþ 3ð Þ

n� 1ð Þ n� 2ð Þ n� 3ð Þ
X

i

ei � �eð Þ2 � 3 n� 1ð Þð2n� 3Þ
n n� 2ð Þ n� 3ð Þ l̂2

where ei and �e are, respectively, the estimated residuals and their average.

The ratio of l̂4 and l̂2 gives the following estimator of b2:
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b̂2 ¼
l̂4
l̂22

ð11Þ

For the I empirical index we obtain:

Î ¼
P

i ei � �eP
i ei � �e2

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

n
ð12Þ

5 The Lpmin algorithm

The proposed algorithm is based on a two-steps alternating procedure:

1. minimization procedure to estimate the parameters;

2. joint inverse function of I and b2 to estimate p.

The algorithm stops when p does not vary significantly. To obtain this estimate, we

minimize the difference between empirical and theoretical indexes (13) to avoid some

convergence problems encountered when we investigate a different algorithm considering

this difference equal to zero (Counihan 1985; Giacalone 2002).

The function used to estimate p is therefore the following:

I � Î

 �

: 0:86054
� 
2þ b2 � b̂2

� �
: 25:2

h i2
¼ min ð13Þ

where I; Î; b2; b̂2 are given, respectively, by (10), (12), (9) and (11). For simplicity, we can

express (13) as follows:

f pð Þ½ �2þ g pð Þ½ �2¼ min:

As the indexes I and b2 have different orders of magnitude and different variance, it is

necessary to eliminate this difference in order to obtain a joint estimation of p, therefore

setting 0\ f(p)\ 1 and 0\ g(p)\ 1.

The maximum theoretical values of f(p) and g(p) are the chosen standardization factors.

Considering p ranging from 0.5 to 10, 25.2 is the value of b2 when p = 0.5, and 0.86054

is the value of I when p = 10. This way it is possible to obtain a joint estimator made up of

two squared functions. The two kurtosis indexes are used as it was observed that norm 1

kurtosis is a valid choice for the estimation of p in the presence of outliers, while norm 2

kurtosis performs better when the sample values gather around the center of the

distribution.

So, using the relation (9) we calculate max(b2) = 25.2, for p = 0.5, whilst using the

relation (10) we calculate max(I) = 0.86054, for p = 10.

The proposed algorithm is then specified in the following steps (Giacalone 1997):

1. set i = 0 and p0 = 2;

2. fit the model (2) to the data using the previous step value pi;

3. compute the estimated residuals ei = yi - g(xi, h), their average �e and insert these

quantities in the (13) that is equal to the sum of the two squared functions to be

minimized;

4. minimize the function (13) to obtain pi?1, new estimate of p;
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5. compare the estimated pi?1 with the previous pi, and if |pi?1 - pi|[ 0.01 then set

i = i ? 1 and repeat the steps 2–5;

6. otherwise: stop the algorithm assuming ĥi ¼ hij as Lp-norm estimator for the parameter

hi and the value p = pi as joint estimation of p.

In step 2, a nonlinear Lp-norm estimation is examined. The problem could be solved using

the optimality conditions encountered in unconstrained optimization (McCormick 1983).

The minimization algorithm (Fletcher and Reeves 1964) is used to take the special

structure of the problem directly into account.

In step 3, we calculate both empirical and theoretical I and b2 kurtosis indexes to obtain

the values to estimate p from (13).

In step 4, a parabolic interpolation method (Everitt and Hand 1987) to find the minimum

sum of squared functions (13) is used. The convergence of the proposed algorithm was

empirically verified by simulating 5000 samples of different sizes (n = 30, 50, 100, 200,

500, 1000) for six fixed theoretical values of p.

6 A simulation study for efficiency comparison

After looking at the more recent literature (e.g. Alabi et al. 2008, 2014), we chose to

consider 5000 samples of size n = 30, 50, 100, 200, 500 and 1000, generated from an

E.P.F., and 6 values of p (1.1, 1.5, 2.0, 2.5, 3.0, 3.5) for three different degrees of mul-

ticollinearity (low R2 = 0.33, medium R2 = 0.66, high R2 = 0.99).

The algorithm to generate the ei (for p C 1) from an E.P.F. is suggested by Chiodi

(1986). The values of yi are given by the following multiple regression model:

yi ¼ b0 þ b1xi1 þ b2xi2 þ b3xi3 þ ei ð14Þ

with X1, X2 identically distributed independent variables from a Gaussian standardized

distribution, and X3 linear combination of X1 and X2:

X3 ¼ X1 þ X2 þ Z with Z�N(0,rzÞ ð15Þ

Therefore, we can write the associated variance and covariance matrix:

S ¼

X1 X2 X3

X1 1 0 1

X2 0 1 1

X3 1 1 2þ r2z

��������

��������

It is easy to notice that EðX2
3Þ ¼ EðX2

1Þ þ EðX2
2Þ þ r2z ¼ 2þ r2z , and the correspondent

correlation matrix is equal to:

A ¼

X1 X2 X3

X1 1 0 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðr2z Þ

p

X2 0 1 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðr2z Þ

p

X3 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðr2z Þ

p
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðr2z Þ

p
1

��������

��������

where A13 ¼ covðX1;X3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðX1ÞvarðX3Þ

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2þ r2zð Þ

p ¼ A23, R
2
3:12 ¼ 1� detA

detA33
¼ 2

2þ r2zð Þ, and detA33 is

the cofactor of the element occupying the same position in the correlation matrix (Leti

1983).
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In this particular regression model, the degree of multicollinearity is inversely pro-

portional to rz
2.

Specifically, in our simulation we have put as parameter values: b0 = 1, b1 = 2,

b2 = 3, b3 = 4, and a comparative analysis was performed applying the following three

estimation methods on the same samples:

1. Least squares estimators (L2);

2. Lp-norm estimators with theoretical p of the E.P.F. (Lp);

3. Lp-norm estimators with p as in our proposal (Lpmin).

The results of the simulation plan are reported in Tables 10, 11, 12, 13, 14 and 15 in

‘‘Appendix 1’’, where the OLS simulation results are marked in bold; furthermore, in

Tables 13, 14 and 15, the number of samples with a difficult convergence (‘‘Conv.’’) is also

presented. In the tables, we report mean (M) and variance (V) of the regression model

parameters. We can see that, for any value of p and for any method, the estimates of b0, b1,
b2 and b3 are less efficient for small samples (e.g. for n = 30 and n = 50) but their

variances decrease as n increases.

We calculated the relative efficiency for every value of p and n, and the results are

shown in Tables 1A, 1B, 2A, 2B, 3A and 3B. From the tables, we notice that Lp-norm

estimators (Lp and Lpmin) give better estimates for every parameter, compared to the least

squares method, especially when the value of p is not close to 2: there is a gain in efficiency

in all the cases considered, except for the case p = 2, in which the error follows a Gaussian

distribution.

However, the p parameter of any real dataset is rarely equal to 2. When the value of p is

different than 2, the OLS method always brings less efficient estimates than both the Lp and

Lpmin methods.

Indeed, in most cases, the Lpmin method produces more efficient estimates than OLS,

but less efficient than the Lp method, that uses the true value of p. Therefore, Lpmin could

be considered halfway between the L2 and Lp methods, because the p parameter is esti-

mated on the data sample.

The relative efficiency indexes (Tables 1A, 1B, 2A, 2B, 3A, 3B) show that, for medium

and high degrees of multicollinearity (R2 = 0.66; R2 = 0.99), Lp-norm estimators are

more efficient than OLS. However, in the presence of a low degree of multicollinearity

(R2 = 0.33), the OLS estimator’s efficiency is sometimes higher than Lp-norm.

Since we know the distribution of residuals, both OLS and Lp-norm estimators are also

Maximum Likelihood estimators in our case. As the sample size increases to infinity, a

Maximum Likelihood estimator is always efficient, since it achieves the Cramér-Rao lower

bound. That said, given that all of these estimators benefit from asymptotic efficiency

property, the efficiency gain is larger for small samples.

7 A real data application

To better show the difference between OLS and Lp-norm estimates, we have built a dataset

made up of four variables, as in Mouza and Targoudtzidis (2012): GDP per capita,

unemployment rate and working hours are examined together in order to show a con-

nection with labor accidents in the UK. Working hours are considered along with unem-

ployment rate, as the latter measures any occupation of the individuals throughout a period

of time, without giving any information about the nature of this occupation (e.g. part-time

and occasional workers are considered employed even if they spend a small amount of time
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Table 1 Relative efficiency of Lp-norm estimators compared to OLS (parameters b0, b1 b2, b3) on 5000
samples of size n = 30, n = 50, n = 100, n = 200, n = 500, n = 1000 (rz = 2, R2 = 0.33)

p 1.1 1.5 2.0

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

A For p = 1.1, 1.5 and 2

n = 30

Lp 1.22 1.13 1.28 1.27 0.93 0.77 0.82 0.84 1.00 1.00 1.00 1.00

Lpmin 1.12 1.04 1.21 1.29 0.85 0.75 0.74 0.81 0.74 0.81 0.73 0.88

n = 50

Lp 1.35 1.17 1.22 1.34 0.84 0.82 0.72 0.84 1.00 1.00 1.00 1.00

Lpmin 1.24 1.13 1.14 1.26 0.71 0.65 0.63 0.73 0.82 0.87 0.81 0.89

n = 100

Lp 1.23 1.15 1.12 1.22 1.03 0.93 0.88 0.97 1.00 1.00 1.00 1.00

Lpmin 1.16 1.08 1.05 1.11 0.94 0.85 0.84 0.93 0.87 0.95 0.82 0.78

n = 200

Lp 1.26 1.23 1.09 1.14 1.15 1.12 1.18 1.16 1.00 1.00 1.00 1.00

Lpmin 1.19 1.17 1.05 1.02 0.97 0.96 0.94 0.98 0.96 0.87 0.83 0.95

n = 500

Lp 1.23 1.18 1.14 1.07 1.16 1.23 1.16 0.97 1.00 1.00 1.00 1.00

Lpmin 1.17 1.12 1.05 1.02 1.11 1.15 1.07 0.88 0.95 0.92 0.97 0.94

n = 1000

Lp 1.14 1.06 1.13 1.04 1.03 1.12 1.13 1.08 1.00 1.00 1.00 1.00

Lpmin 1.07 0.97 1.05 0.95 0.96 1.08 1.07 1.03 0.96 0.93 0.95 0.93

p 2.5 3.0 3.5

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

B For p = 2.5, 3 and 3.5

n = 30

Lp 0.94 0.88 0.98 0.88 1.06 1.12 1.33 1.24 1.23 1.16 1.33 1.26

Lpmin 0.87 0.84 0.93 0.84 1.03 1.02 1.25 1.17 1.15 1.13 1.28 1.19

n = 50

Lp 0.88 0.95 0.88 0.95 0.98 1.08 1.13 0.93 1.06 0.96 0.98 1.14

Lpmin 0.86 0.91 0.84 0.92 0.87 0.99 0.95 0.89 1.04 0.88 0.93 1.07

n = 100

Lp 1.06 0.96 0.94 0.96 1.08 1.16 1.34 1.25 1.16 1.14 1.05 1.13

Lpmin 1.03 0.94 0.91 0.90 1.05 0.98 1.22 1.09 1.08 0.89 0.97 1.05

n = 200

Lp 1.14 1.06 0.98 0.92 1.08 1.14 1.37 1.26 1.14 1.18 1.07 1.16

Lpmin 1.07 0.98 0.93 0.84 1.03 1.05 1.28 1.19 1.06 1.09 1.02 1.13

n = 500

Lp 1.14 1.02 1.14 1.08 1.06 1.15 1.24 1.18 1.13 1.04 0.96 1.04

Lpmin 1.11 0.96 1.06 1.03 1.01 1.07 1.17 1.09 1.07 0.95 0.93 1.01

n = 1000

Lp 1.08 1.09 1.06 1.14 1.05 1.16 1.14 1.07 1.03 1.12 1.07 1.03

Lpmin 1.04 1.05 1.02 1.10 1.02 1.08 1.07 1.02 1.01 1.04 1.05 1.01
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Table 2 Relative efficiency of Lp-norm estimators compared to OLS (parameters b0, b1 b2, b3) on 5000
samples of size n = 30, n = 50, n = 100, n = 200, n = 500, n = 1000 (rz = 1, R2 = 0.66)

p 1.1 1.5 2.0

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

A For p = 1.1, 1.5 and 2

n = 30

Lp 2.07 1.78 2.14 1.86 1.46 1.58 1.38 1.57 1.00 1.00 1.00 1.00

Lpmin 1.84 1.65 1.83 1.77 1.34 1.54 1.27 1.54 0.87 0.94 0.73 0.76

n = 50

Lp 1.84 1.66 2.07 1.67 1.38 1.56 1.34 1.51 1.00 1.00 1.00 1.00

Lpmin 1.67 1.59 1.78 1.73 1.33 1.51 1.23 1.38 0.85 0.92 0.86 0.83

n = 100

Lp 1.43 1.36 1.64 1.56 1.24 1.53 1.38 1.42 1.00 1.00 1.00 1.00

Lpmin 1.24 1.31 1.52 1.52 1.21 1.47 1.17 1.28 0.94 0.97 0.85 0.88

n = 200

Lp 1.23 1.26 1.44 1.45 1.16 1.41 1.34 1.39 1.00 1.00 1.00 1.00

Lpmin 1.18 1.22 1.42 1.37 1.13 1.34 1.17 1.36 0.91 0.93 0.88 0.94

n = 500

Lp 1.22 1.17 1.28 1.37 1.16 1.26 1.24 1.21 1.00 1.00 1.00 1.00

Lpmin 1.14 1.15 1.24 1.25 1.07 1.25 1.17 1.08 0.96 0.97 0.93 0.90

n = 1000

Lp 1.19 1.17 1.05 1.14 1.04 1.05 1.02 1.11 1.00 1.00 1.00 1.00

Lpmin 1.15 1.14 1.02 1.07 1.02 1.03 1.01 1.08 0.99 0.98 0.96 0.94

p 2.5 3.0 3.5

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

B For p = 2.5, 3 and 3.5

n = 30

Lp 0.95 1.12 1.24 1.14 1.14 1.37 1.51 1.64 1.52 1.64 1.43 1.86

Lpmin 0.77 0.88 0.95 0.89 1.10 1.25 1.37 1.52 1.34 1.48 1.31 1.64

n = 50

Lp 1.12 1.13 1.34 1.24 1.14 1.23 1.47 1.43 1.42 1.53 1.38 1.61

Lpmin 0.95 0.96 1.13 1.07 1.11 1.15 1.36 1.38 1.37 1.34 1.34 1.45

n = 100

Lp 1.23 1.34 1.43 1.36 1.18 1.14 1.32 1.34 1.36 1.53 1.25 1.54

Lpmin 1.12 1.28 1.24 1.17 1.12 1.09 1.23 1.25 1.27 1.37 1.35 1.23

n = 200

Lp 1.14 1.24 1.33 1.25 1.08 1.13 1.25 1.23 1.24 1.41 1.16 1.33

Lpmin 1.11 1.18 1.24 1.16 1.05 1.06 1.14 1.15 1.18 1.27 1.14 1.27

n = 500

Lp 1.14 1.12 1.24 1.08 1.04 1.13 1.12 1.15 1.23 1.34 1.18 1.24

Lpmin 1.07 1.05 1.18 1.04 1.01 1.06 1.08 1.06 1.14 1.17 1.16 1.18

n = 1000

Lp 1.06 1.08 1.14 1.05 1.07 1.14 1.04 1.12 1.13 1.21 1.16 1.12

Lpmin 1.03 1.06 1.08 1.02 1.05 1.08 0.95 1.06 1.05 1.08 1.14 1.04
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Table 3 Relative efficiency of Lp-norm estimators compared to OLS (parameters b0, b1 b2, b3) on 5000
samples of size n = 30, n = 50, n = 100, n = 200, n = 500, n = 1000 (rz = 0.01, R2 = 0.99)

p 1.1 1.5 2.0

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

A For p = 1.1, 1.5 and 2

n = 30

Lp 1.43 1.34 1.38 1.47 1.24 1.29 1.52 1.64 1.00 1.00 1.00 1.00

Lpmin 1.37 1.27 1.24 1.44 1.22 1.27 1.31 1.48 0.94 0.85 0.88 0.75

n = 50

Lp 1.26 1.14 1.25 1.34 1.24 1.18 1.42 1.44 1.00 1.00 1.00 1.00

Lpmin 1.24 1.12 1.17 1.28 1.16 1.16 1.28 1.37 0.85 0.97 0.78 0.82

n = 100

Lp 1.16 1.18 1.24 1.23 1.15 1.16 1.34 1.24 1.00 1.00 1.00 1.00

Lpmin 1.14 1.16 1.17 1.16 1.14 1.07 1.26 1.15 0.95 0.98 0.78 0.89

n = 200

Lp 1.14 1.07 1.13 1.16 1.06 1.01 1.24 1.14 1.00 1.00 1.00 1.00

Lpmin 1.12 1.05 1.11 1.05 1.02 0.95 1.18 1.13 0.88 0.95 0.84 0.76

n = 500

Lp 1.07 1.04 1.15 1.06 1.09 1.07 1.23 1.07 1.00 1.00 1.00 1.00

Lpmin 1.04 1.03 1.12 1.02 1.03 1.05 1.17 1.05 0.95 0.99 0.29 0.97

n = 1000

Lp 1.06 0.98 1.07 1.04 1.05 1.04 1.05 0.96 1.00 1.00 1.00 1.00

Lpmin 1.03 0.96 1.03 1.02 1.02 1.02 1.02 0.95 0.97 0.95 0.94 0.98

p 2.5 3.0 3.5

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

B For p = 2.5, 3 and 3.5

n = 30

Lp 1.13 0.97 0.84 1.07 1.33 1.14 1.43 1.18 1.42 1.64 1.82 1.29

Lpmin 0.95 0.88 0.76 1.04 1.17 0.95 1.27 1.15 1.37 1.55 1.46 1.27

n = 50

Lp 0.95 1.04 0.98 0.95 1.24 1.34 1.37 1.43 1.74 1.93 1.64 1.24

Lpmin 0.87 0.95 0.94 0.87 1.16 1.25 1.18 1.18 1.53 1.44 1.45 1.12

n = 100

Lp 1.12 1.05 1.24 1.16 1.14 1.24 1.25 1.34 1.24 1.84 1.44 1.24

Lpmin 0.99 1.03 1.07 1.15 1.05 1.16 1.23 1.26 1.12 1.67 1.36 1.22

n = 200

Lp 1.23 1.32 1.42 1.22 1.24 1.16 1.08 1.24 1.14 1.43 1.34 1.18

Lpmin 0.95 1.16 1.14 1.15 1.16 1.13 1.05 1.14 1.06 1.36 1.25 1.15

n = 500

Lp 1.14 1.24 1.34 1.14 1.36 1.34 1.14 1.14 1.19 1.34 1.28 1.17

Lpmin 1.03 1.21 1.25 1.05 1.07 1.26 1.07 1.08 1.13 1.22 1.16 1.05

n = 1000

Lp 1.09 1.14 1.23 1.05 1.14 1.15 1.04 1.14 1.14 1.13 1.18 1.15

Lpmin 1.05 1.03 1.04 1.04 1.04 1.03 1.03 1.05 1.06 1.05 1.14 1.08
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at the working place). The data, presented in ‘‘Appendix 2’’ (Table 16), refers to the United

Kingdom, in the period 1971–2007 (yearly, 37 observations).

More in detail, the variables used in our application are the following:

1. GDP—Gross Domestic Product per capita (thousand US dollars, current prices and

purchasing power parity), source: OECD databank;

2. UR—unemployment rate (percentage), source: OECD databank;

3. AH—average hours worked (hours per year per worker), source: OECD databank;

4. FI—fatal injuries of employees (absolute numbers), source: UK national statistics

database, health and safety executive.

To study the relationship between the economic cycle and workplace accidents, we esti-

mated the following regression model:

FI ¼ b0 þ b1GDPþ b2URþ b3AH þ e

The R2 for this regression is 0.886, and the Adjusted R2 is 0.875. In this model, the

parameters to be estimated are 4 (including the intercept), just like in our simulation study.

In the following table (Table 4), we show the VIF values, for each explanatory variable

taken as dependent and the remaining as independent, in order to get the corresponding R2:

About VIF interpretation, considering the limitations highlighted by O’Brien (2007), we

opted for the ‘‘rule of 10’’ proposed by Menard (1995). Since none of the VIFs exceed 10,

we can conclude that there is no severe collinearity in this regression, but only a medium

degree of collinearity. In this case, looking at the results of the simulation study, our

method brings better estimates than OLS.

The results of the OLS estimation (p = 2) are (Table 5):

Thus, the OLS method returns the following model:

Ŷ ¼ �255:40� 13:97X1 � 15:14X2 þ 0:54X3 ð16Þ

Using the Lp-norm estimation method proposed in this paper (Lpmin), we estimated

p = 1.696 (leptokurtic distribution of residuals), and the results are (Table 6):

Thus, the Lp-norm method returns the following model:

Ŷ ¼ �25:01� 14:68X1 � 16:06X2 þ 0:42X3 ð17Þ

As data points out, the intercept (b0) value gets closer to zero when estimated through

the Lp-norm method. This is already proof of a better accuracy of the estimates: when the

value of the other variables (e.g. GDP and Average Working Hours) is zero, it is natural to

expect, for Fatal Injuries, a value that is as close as possible to zero.

In Table 7, by minimizing the objective function expressed by (3), we clearly show that

the Lp-norm method brings a large improvement in the estimates’ efficiency.

Table 4 R2, adjusted R2 and VIF for each explanatory variable in the model

Variable as dependent R2 Adj. R2 VIF

GDP 0.855 0.847 6.916

UR 0.583 0.558 2.398

AH 0.875 0.868 7.987
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The results from Table 7 indicate that our estimates are better than the ones obtained by

OLS, as they are characterized by a significantly lower variability in the residuals. The

objective function represents the stochastic component of the model; the deterministic

component is therefore better explained by the Lp-norm method, given the lower value of

the objective function. We can justify the relevant difference resulting from the mini-

mization with the important difference in the estimated values for the intercept.

Below, for each value of p, we present the scatter plot of residuals against fitted values

(Fig. 1). As the plots suggest, the variances of the error terms are not equal.

The following figure (Fig. 2) shows, for each value of p, the Normal distribution

Quantile–Quantile plot. As the succession of points doesn’t form a straight line, the plots

suggest that the data doesn’t come from a Normal distribution and, therefore, a different

distribution should be considered.

Dynamic graphic techniques could also be used, for a graphical comparison of the two

different estimation methods (Destefanis and Porzio 1999).

Moreover, we performed a regression analysis in terms of elasticity. The results, shown

in Tables 8 and 9, are kind of impressive, since they suggest, as also evidenced by Mouza

and Targoudtzidis (2012), that fatal injuries are somewhat related to, and explained by,

labor market indicators.

It is very interesting to note that the signs of the estimated coefficients are the same with

both our estimation method and OLS: this evidences the robustness of our analysis.

Table 5 OLS regression results
Residuals

Range 1Q Median 3Q

-95.55 to 142.42 -47.15 -10.35 32.99

Coefficients

b0 b1 b2 b3
-255.3976 -13.9667 -15.1445 0.5437

Table 7 Minimization of the
objective function

OLS Lp-norm

138,073.50 36,133.23

Table 6 L
p
-norm regression

results
Residuals

Range 1Q Median 3Q

-91.911 to 149.528 -42.493 -4.577 36.283

Coefficients

b0 b1 b2 b3
-25.0052 -14.6777 -16.0582 0.4217
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Fatal Injuries appear inelastic in relation to GDP per capita and Unemployment Rate

but, at the same time, Fatal Injuries are elastic in relation to Average Working Hours. In

particular, although FI is positively influenced by an increase in unemployment, this

appears inelastic. Overall, we might expect that rising unemployment rates would increase

employee marginal working hours, leading to an increase in workplace accidents. Indeed,

the AH variable is strictly positive and elastic: when AH increases, FI increases as well.

The reason behind this result is, by the way, statistically intuitive: as time spent at the

working place increases, chance of injury increases consequently.

In this application, although there are some improvements in the estimates by using Lp-

norm methods, principally linked to a better explanation of the deterministic part of the

regression model, the results are in line with what happens when using OLS. This is

because data is affected by only a medium degree of collinearity and the estimated p is

close to two.

Fig. 1 Scatter plot of residuals against fitted values, for p = 1.696 and p = 2

Fig. 2 Normal quantile–quantile plot, for p = 1.696 and p = 2

Table 8 OLS regression results
(in terms of elasticity)

Residuals

Range 1Q Median 3Q

-0.344 to 0.483 -0.0558 -0.003317 0.0809

Coefficients

b0 b1 b2 b3
-0.335 -0.694 0.112 1.037
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8 Conclusions

Multicollinearity indicates a situation in which the independent variables in a regression

model are highly correlated, leading to instability and large variance of the OLS estimator.

For this reason, the absence of multicollinearity is essential to obtain optimal estimates

from a multiple regression model.

Ordinary least squares, one of the simplest and most used estimation methods, depends

on different binding assumptions regarding the random variables and the nature of inde-

pendent variables.

In this paper, the Lp-norm methods are considered not only in order to reduce multi-

collinearity in the model, but also in order to see some improvements in the parameter

estimation.

By using Lp-norm, a better performance in terms of variance of parameter estimates is

always gained in the case of non-Normal symmetric distributions, compared to the least

squares situation, even when considering a model with collinear regressors.

When interpreting the simulation results, we notice that the improvements using Lp-

norm estimators in place of least squares are more evident in the case rz = 0.01 and

R2
3:12 ¼ 0:99 (high collinearity) than in the case rz = 1 and R2

3:12 ¼ 0:66 (medium

collinearity). Only in the case of low collinearity, the OLS method gives more efficient

estimates.

So, the use of Lp-norm methods in the presence of stochastic regressors is strongly

recommended. This is linked to the characteristics of these methods, that are adaptive

procedures with respect to the error component of the model and not to the deterministic

one.

Finally, more interesting is the real data application, as it confirms that the coefficients

estimated by Lp-norm can explain reality better than the ones obtained through OLS. It is

evident that Lp-norm estimators, characterized by a lower value of the objective function

compared to OLS, allow for a better explanation of the deterministic component of the

model.

All the simulations were made using R 3.3.2 and Stata 12.0.

Appendix 1

See Tables 10, 11, 12, 13, 14 and 15.

Table 9 L
p
-norm regression

results (in terms of elasticity)
Residuals

Range 1Q Median 3Q

-0.349 to 0.483 -0.0547 -0.00036 0.0727

Coefficients

b0 b1 b2 b3
-0.386 -0.678 0.163 1.034
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Table 10 Mean and variance of b0, b1, b2, b3 for a multiple regression model (b0 = 1, b1 = 2, b2 = 3,
b3 = 4) estimated by Lp-norm method on 5000 samples of size n = 30, n = 50, n = 100, n = 200,
n = 500, n = 1000 (rz = 2, R2 = 0.33)

p M(b0) V(b0) M(b1) V(b1) M(b2) V(b2) M(b3) V(b3)

n = 30

1.1 0.998 2.418 2.001 2.287 2.994 2.983 4.003 2.923

1.5 0.979 1.872 2.001 2.261 3.004 2.300 4.005 2.221

2.0 1.046 1.579 1.993 1.832 2.974 1.856 3.996 1.832

2.5 0.983 1.331 2.002 1.583 3.015 1.590 4.004 1.514

3.0 1.000 1.107 1.994 1.373 2.998 1.313 3.978 1.336

3.5 0.994 0.980 2.012 1.197 2.997 1.172 4.006 1.171

n = 50

1.1 0.997 1.251 1.989 1.496 3.008 1.464 4.010 1.517

1.5 0.986 1.062 2.005 1.237 2.994 1.036 4.021 1.257

2.0 0.993 0.855 2.009 1.006 2.994 1.036 4.004 1.026

2.5 0.998 0.736 1.977 0.879 3.016 0.872 3.991 0.881

3.0 1.020 0.626 1.992 0.759 2.980 0.749 3.983 0.727

3.5 0.993 0.548 1.990 0.643 3.004 0.675 4.002 0.648

n = 100

1.1 1.005 0.556 2.009 0.665 2.975 0.689 4.011 0.689

1.5 0.980 0.479 2.008 0.578 3.015 0.567 4.007 0.593

2.0 1.011 0.407 2.004 0.498 2.999 0.496 3.975 0.479

2.5 0.994 0.345 2.003 0.421 3.004 0.414 4.001 0.409

3.0 0.999 0.295 1.995 0.354 2.993 0.343 4.004 0.353

3.5 1.005 0.243 1.997 0.289 2.998 0.301 4.001 0.294

n = 200

1.1 1.011 0.259 1.993 0.305 2.982 0.313 3.999 0.305

1.5 1.004 0.246 2.003 0.290 2.999 0.286 3.995 0.294

2.0 0.996 0.207 1.984 0.251 3.013 0.243 4.004 0.240

2.5 0.996 0.167 1.995 0.205 3.007 0.200 3.998 0.200

3.0 0.994 0.139 2.002 0.167 3.006 0.162 4.003 0.168

3.5 1.004 0.118 1.998 0.144 3.000 0.144 3.989 0.144

n = 500

1.1 0.995 0.096 2.005 0.116 2.998 0.115 4.004 0.113

1.5 0.993 0.093 1.998 0.112 3.009 0.111 4.002 0.113

2.0 0.999 0.081 2.006 0.093 2.994 0.096 4.001 0.099

2.5 1.002 0.066 2.003 0.081 2.993 0.078 4.000 0.081

3.0 1.004 0.054 1.996 0.067 2.996 0.065 4.002 0.067

3.5 0.999 0.047 1.998 0.056 3.000 0.056 3.998 0.056

n = 1000

1.1 1.000 0.094 1.995 0.119 3.001 0.134 3.999 0.118

1.5 1.004 0.072 2.004 0.103 2.999 0.097 4.001 0.092

2.0 1.006 0.063 1.996 0.098 2.995 0.095 3.991 0.087

2.5 0.999 0.046 2.005 0.075 3.001 0.083 4.000 0.065

3.0 0.992 0.028 2.000 0.030 3.009 0.035 4.009 0.035
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Table 10 continued

p M(b0) V(b0) M(b1) V(b1) M(b2) V(b2) M(b3) V(b3)

3.5 1.000 0.013 1.999 0.032 2.999 0.024 3.999 0.031

OLS simulation results are in bold

Table 11 Mean and variance of b0, b1, b2, b3 for a multiple regression model (b0 = 1, b1 = 2, b2 = 3,
b3 = 4) estimated by Lp-norm method on 5000 samples of size n = 30, n = 50, n = 100, n = 200,
n = 500, n = 1000 (rz = 1, R2 = 0.66)

p M(b0) V(b0) M(b1) V(b1) M(b2) V(b2) M(b3) V(b3)

n = 30

1.1 0.992 0.567 2.014 0.711 2.987 0.685 4.010 0.702

1.5 1.008 0.483 1.996 0.565 3.003 0.590 3.995 0.550

2.0 0.987 0.382 2.012 0.456 3.005 0.450 4.005 0.468

2.5 0.997 0.332 2.000 0.391 2.997 0.382 4.007 0.409

3.0 1.006 0.275 1.996 0.337 2.995 0.332 4.001 0.342

3.5 1.006 0.249 1.996 0.292 3.003 0.299 3.990 0.296

n = 50

1.1 0.991 0.304 2.003 0.379 3.007 0.369 4.005 0.368

1.5 1.003 0.264 1.997 0.315 3.010 0.322 3.983 0.321

2.0 1.014 0.226 1.994 0.269 2.985 0.261 3.991 0.262

2.5 1.009 0.184 1.995 0.221 2.990 0.217 3.998 0.214

3.0 0.998 0.153 2.005 0.185 2.995 0.186 4.001 0.179

3.5 1.006 0.134 1.999 0.162 2.993 0.163 3.999 0.161

n = 100

1.1 1.008 0.141 2.003 0.176 2.986 0.167 3.998 0.164

1.5 1.005 0.122 1.987 0.145 3.001 0.147 4.000 0.148

2.0 0.997 0.107 2.004 0.126 2.999 0.128 3.998 0.124

2.5 0.995 0.087 1.999 0.102 3.000 0.105 4.008 0.106

3.0 0.999 0.073 2.003 0.087 2.996 0.087 3.999 0.087

3.5 1.003 0.063 1.996 0.076 3.001 0.074 3.998 0.073

n = 200

1.1 1.009 0.062 1.993 0.074 2.994 0.076 3.995 0.079

1.5 1.001 0.058 2.003 0.068 3.002 0.071 3.994 0.072

2.0 0.997 0.051 1.999 0.059 3.006 0.060 4.001 0.063

2.5 1.001 0.041 2.001 0.049 2.997 0.051 3.998 0.050

3.0 0.992 0.034 2.008 0.041 3.004 0.042 4.000 0.041

3.5 0.999 0.030 2.002 0.035 2.994 0.037 4.002 0.036

n = 500

1.1 0.998 0.023 1.998 0.028 3.000 0.028 4.001 0.029

1.5 1.001 0.022 1.996 0.027 2.997 0.027 4.002 0.028

2.0 1.000 0.019 2.000 0.023 3.001 0.022 3.999 0.023

2.5 1.001 0.016 1.998 0.019 3.000 0.019 4.001 0.020

3.0 0.999 0.013 2.000 0.016 2.999 0.017 4.001 0.016
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Table 11 continued

p M(b0) V(b0) M(b1) V(b1) M(b2) V(b2) M(b3) V(b3)

3.5 0.997 0.011 2.001 0.014 3.002 0.013 4.000 0.013

n = 1000

1.1 0.998 0.012 2.002 0.014 2.999 0.014 4.000 0.013

1.5 0.998 0.011 2.001 0.013 3.003 0.014 4.001 0.014

2.0 1.002 0.010 2.000 0.012 2.997 0.012 4.000 0.012

2.5 0.997 0.008 2.001 0.009 3.003 0.009 3.999 0.010

3.0 0.998 0.006 2.000 0.008 3.001 0.008 3.999 0.008

3.5 1.001 0.006 2.001 0.007 2.999 0.007 3.999 0.007

OLS simulation results are in bold

Table 12 Mean and variance of b0, b1, b2, b3 for a multiple regression model (b0 = 1, b1 = 2, b2 = 3,
b3 = 4) estimated by Lp-norm method on 5000 samples of size n = 30, n = 50, n = 100, n = 200,
n = 500, n = 1000 (rz = 0.01, R2 = 0.99)

p M(b0) V(b0) M(b1) V(b1) M(b2) V(b2) M(b3) V(b3)

n = 30

1.1 0.981 0.599 1.999 0.491 3.000 0.585 3.999 0.597

1.5 1.009 0.590 2.000 0.473 2.999 0.573 4.000 0.561

2.0 1.004 0.487 2.000 0.452 3.000 0.470 4.000 0.561

2.5 1.007 0.278 1.999 0.433 3.999 0.380 4.000 0.490

3.0 1.006 0.273 1.999 0.421 2.999 0.342 4.000 0.445

3.5 1.003 0.245 1.999 0.403 2.999 0.304 4.000 0.391

n = 50

1.1 1.007 0.309 1.999 0.384 2.999 0.360 3.999 0.315

1.5 0.989 0.261 1.999 0.315 3.000 0.316 3.999 0.310

2.0 1.018 0.220 1.000 0.260 3.000 0.264 4.000 0.258

2.5 1.003 0.206 2.000 0.186 3.000 0.185 3.999 0.222

3.0 1.007 0.152 1.999 0.172 3.000 0.185 3.999 0.185

3.5 0.999 0.135 1.999 0.164 2.999 0.151 4.000 0.166

n = 100

1.1 0.982 0.136 1.999 0.166 3.000 0.163 4.000 0.164

1.5 0.994 0.128 1.999 0.151 2.999 0.147 3.999 0.148

2.0 0.979 0.088 2.000 0.125 2.999 0.133 3.999 0.123

2.5 0.999 0.064 2.000 0.104 2.999 0.130 4.000 0.104

3.0 1.000 0.055 2.000 0.054 3.000 0.052 3.000 0.056

3.5 0.999 0.050 2.000 0.054 2.999 0.038 3.999 0.049

n = 200

1.1 1.000 0.055 1.999 0.056 2.999 0.061 4.000 0.056

1.5 0.999 0.053 1.999 0.054 2.999 0.053 3.999 0.053

2.0 1.001 0.049 2.000 0.054 3.000 0.050 3.999 0.048

2.5 0.999 0.040 1.999 0.050 3.000 0.047 4.000 0.044

3.0 1.000 0.036 2.000 0.047 3.000 0.045 4.000 0.042
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Table 12 continued

p M(b0) V(b0) M(b1) V(b1) M(b2) V(b2) M(b3) V(b3)

3.5 1.000 0.035 2.000 0.040 2.999 0.041 4.000 0.039

n = 500

1.1 1.000 0.038 1.999 0.036 2.999 0.036 2.999 0.034

1.5 1.000 0.033 2.000 0.033 3.000 0.032 3.999 0.030

2.0 0.999 0.030 2.000 0.029 3.000 0.030 4.000 0.029

2.5 0.999 0.028 2.000 0.025 3.000 0.026 3.999 0.026

3.0 1.000 0.026 1.999 0.024 2.999 0.026 4.000 0.026

3.5 1.000 0.026 2.000 0.023 3.000 0.024 4.000 0.024

n = 1000

1.1 1.000 0.034 2.000 0.036 2.999 0.035 4.000 0.031

1.5 0.999 0.031 2.000 0.032 2.999 0.030 3.999 0.026

2.0 0.999 0.025 1.999 0.027 2.999 0.027 3.999 0.021

2.5 1.000 0.017 2.000 0.026 3.000 0.022 4.000 0.018

3.0 1.000 0.012 2.000 0.021 3.000 0.019 4.000 0.013

3.5 1.000 0.011 1.999 0.015 2.999 0.013 4.000 0.011

OLS simulation results are in bold

Table 13 Mean and variance of b0, b1, b2, b3 for a multiple regression model (b0 = 1, b1 = 2, b2 = 3,
b3 = 4) estimated by Lp-norm method (Lpmin) on 5000 samples of size n = 30, n = 50, n = 100, n = 200,
n = 500, n = 1000 (rz = 2, R2 = 0.33)

p M(b0) V(b0) M(b1) V(b1) M(b2) V(b2) M(b3) V(b3) M(p̂) V(p̂) Conv.

n = 30

1.1 0.965 2.604 2.058 3.009 2.998 3.137 4.008 3.149 1.428 1.922 21

1.5 1.022 2.200 1.957 2.684 2.992 2.740 3.992 2.647 1.994 4.328 44

2.0 0.994 1.837 1.999 2.270 2.994 2.129 4.044 2.271 2.530 6.931 55

2.5 1.012 1.562 1.984 1.978 2.973 1.908 4.007 1.919 3.126 9.316 94

3.0 0.982 1.396 2.034 1.699 3.027 1.751 3.694 1.763 3.625 11.078 107

3.5 1.021 1.260 2.012 1.494 2.971 1.515 3.995 1.549 4.096 12.903 129

n = 50

1.1 1.025 1.285 2.008 1.579 2.991 1.569 3.959 1.550 1.203 0.241 3

1.5 0.998 1.140 2.003 1.436 2.978 1.395 3.998 1.392 1.604 1.126 8

2.0 0.989 1.014 2.007 1.234 2.992 1.207 4.006 1.224 2.198 2.747 19

2.5 1.022 0.849 1.997 0.997 2.997 1.062 3.968 1.025 2.932 5.406 28

3.0 0.994 0.722 2.014 0.885 3.009 0.911 3.992 0.882 3.506 7.138 55

3.5 1.013 0.656 1.990 0.788 2.980 0.780 4.002 0.774 4.032 8.671 79

n = 100

1.1 1.005 0.544 2.012 0.669 2.981 0.648 3.997 0.673 1.137 0.036 2

1.5 1.004 0.535 2.012 0.596 2.996 0.611 3.980 0.635 1.489 0.056 3

2.0 0.998 0.454 1.985 0.544 3.011 0.528 4.006 0.530 2.021 0.577 9

2.5 0.998 0.377 1.989 0.450 3.012 0.456 4.002 0.455 2.632 1.520 12

3.0 0.999 0.322 1.993 0.375 3.012 0.405 4.000 0.381 3.232 2.800 15

3.5 0.999 0.279 1.999 0.337 3.001 0.332 4.000 0.331 3.942 5.043 27
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Table 13 continued

p M(b0) V(b0) M(b1) V(b1) M(b2) V(b2) M(b3) V(b3) M(p̂) V(p̂) Conv.

n = 200

1.1 1.001 0.258 1.990 0.307 2.998 0.311 4.005 0.316 1.118 0.017 0

1.5 1.010 0.248 1.986 0.298 2.994 0.301 4.001 0.308 1.489 0.056 3

2.0 1.002 0.218 1.989 0.251 3.002 0.255 3.999 0.250 1.992 0.146 2

2.5 0.998 0.175 1.996 0.210 2.996 0.204 4.011 0.216 2.523 0.387 3

3.0 1.004 0.148 1.995 0.168 2.999 0.180 3.997 0.183 3.101 0.950 6

3.5 1.000 0.128 2.004 0.158 2.996 0.150 3.998 0.150 3.677 1.850 10

n = 500

1.1 1.000 0.092 1.996 0.113 3.004 0.112 3.997 0.113 1.010 0.007 0

1.5 0.999 0.097 1.997 0.110 3.000 0.110 3.998 0.119 1.498 0.121 0

2.0 1.000 0.081 2.003 0.097 3.003 0.100 3.994 0.098 1.998 0.051 1

2.5 1.000 0.068 2.006 0.079 2.998 0.082 3.997 0.082 2.497 0.105 2

3.0 0.998 0.055 2.008 0.069 2.994 0.067 3.999 0.065 3.027 0.233 4

3.5 1.001 0.046 2.004 0.055 2.998 0.058 3.997 0.055 3.555 0.355 5

n = 1000

1.1 1.002 0.083 1.996 0.117 3.000 0.119 3.997 0.126 1.099 0.004 0

1.5 0.996 0.083 2.010 0.126 2.998 0.120 3.999 0.126 1.498 0.010 0

2.0 0.999 0.066 1.995 0.096 3.011 0.089 3.995 0.097 2.000 0.023 0

2.5 1.000 0.037 1.999 0.062 3.002 0.067 4.000 0.065 2.502 0.051 1

3.0 0.999 0.014 2.006 0.036 2.993 0.035 4.002 0.036 3.012 0.105 0

3.5 0.995 0.009 2.008 0.015 2.998 0.012 4.001 0.012 3.528 0.201 1

Table 14 Mean and variance of b0, b1, b2, b3 for a multiple regression model (b0 = 1, b1 = 2, b2 = 3,
b3 = 4) estimated by Lp-norm method (Lpmin) on 5000 samples of size n = 30, n = 50, n = 100, n = 200,
n = 500, n = 1000 (rz = 1, R2 = 0.66)

p M(b0) V(b0) M(b1) V(b1) M(b2) V(b2) M(b3) V(b3) M(p̂) V(p̂) Conv.

n = 30

1.1 1.021 0.637 1.985 0.794 2.986 0.719 3.994 0.774 1.428 1.978 10

1.5 0.994 0.576 1.994 0.726 3.031 0.707 3.989 0.709 1.660 3.106 21

2.0 0.999 0.451 2.009 0.547 2.985 0.575 4.016 0.556 2.516 6.837 63

2.5 0.995 0.410 1.996 0.499 3.008 0.486 4.006 0.498 3.160 9.523 70

3.0 0.985 0.360 1.997 0.427 3.009 0.422 4.023 0.448 3.751 11.871 119

3.5 0.980 0.326 2.015 0.388 3.009 0.398 4.019 0.393 4.085 12.835 132

n = 50

1.1 1.002 0.317 1.983 0.388 3.009 0.327 4.005 0.387 1.204 0.332 1

1.5 0.984 0.299 2.000 0.361 3.012 0.350 4.014 0.351 1.591 1.080 7

2.0 1.002 0.255 1.989 0.310 3.015 0.313 3.987 0.306 2.242 3.058 25

2.5 1.009 0.211 1.993 0.254 2.987 0.259 3.997 0.258 2.895 5.142 34

3.0 1.007 0.180 1.990 0.217 2.999 0.225 3.994 0.217 3.520 7.231 51

3.5 0.997 0.158 2.002 0.193 2.996 0.196 4.009 0.193 4.093 9.154 66

n = 100

1.1 1.000 0.141 1.996 0.167 3.000 0.170 4.001 0.171 1.145 0.040 0
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Table 14 continued

p M(b0) V(b0) M(b1) V(b1) M(b2) V(b2) M(b3) V(b3) M(p̂) V(p̂) Conv.

1.5 0.998 0.132 2.002 0.156 2.996 0.160 4.003 0.160 1.495 0.164 1

2.0 1.002 0.113 1.995 0.141 2.999 0.132 3.998 0.131 2.038 0.569 3

2.5 0.997 0.092 1.994 0.113 3.013 0.114 3.997 0.118 2.653 1.603 3

3.0 0.998 0.083 2.004 0.100 2.996 0.099 4.004 0.098 3.248 2.978 11

3.5 1.000 0.066 2.002 0.082 3.000 0.080 3.999 0.081 3.970 4.760 21

n = 200

1.1 0.997 0.065 1.998 0.077 3.002 0.078 4.002 0.077 1.121 0.017 0

1.5 0.991 0.061 2.004 0.075 3.008 0.074 4.001 0.075 1.489 0.056 0

2.0 1.002 0.053 1.999 0.063 3.000 0.064 3.996 0.063 2.005 0.149 3

2.5 0.997 0.043 1.999 0.052 3.007 0.051 4.000 0.052 2.547 0.417 1

3.0 0.997 0.036 2.001 0.044 3.001 0.045 4.000 0.043 3.105 0.934 4

3.5 0.996 0.032 2.001 0.038 3.003 0.038 4.002 0.036 3.682 1.958 3

n = 500

1.1 1.000 0.023 2.001 0.029 3.001 0.029 3.995 0.028 1.104 0.007 0

1.5 0.999 0.022 1.999 0.028 2.999 0.028 3.995 0.027 1.494 0.020 2

2.0 1.004 0.020 1.996 0.024 2.993 0.025 4.000 0.024 1.994 0.050 0

2.5 0.999 0.017 2.000 0.020 3.001 0.021 3.998 0.020 2.509 0.010 0

3.0 0.998 0.013 1.999 0.017 3.001 0.017 4.001 0.016 3.023 0.231 3

3.5 0.998 0.012 1.999 0.014 2.999 0.014 4.003 0.015 3.457 0.500 1

n = 1000

1.1 0.998 0.011 1.999 0.014 3.002 0.013 4.000 0.014 1.100 0.004 0

1.5 1.000 0.011 2.000 0.014 3.000 0.014 3.998 0.014 1.498 0.009 0

2.0 1.000 0.010 2.000 0.011 3.001 0.012 3.996 0.012 1.997 0.023 0

2.5 1.001 0.008 1.998 0.010 3.000 0.009 3.999 0.010 2.505 0.050 1

3.0 0.999 0.006 2.001 0.008 3.001 0.008 3.998 0.008 3.006 0.100 0

3.5 0.998 0.005 1.999 0.007 3.000 0.007 4.002 0.006 3.522 0.203 1

Table 15 Mean and variance of b0, b1, b2, b3 for a multiple regression model (b0 = 1, b1 = 2, b2 = 3,
b3 = 4) estimated by Lp-norm method (Lpmin) on 5000 samples of size n = 30, n = 50, n = 100, n = 200,
n = 500, n = 1000 (rz = 0.01, R2 = 0.99)

p M(b0) V(b0) M(b1) V(b1) M(b2) V(b2) M(b3) V(b3) M(p̂) V(p̂) Conv.

n = 30

1.1 0.998 0.629 1.999 0.739 3.000 0.741 4.000 0.755 1.400 1.509 0

1.5 1.000 0.527 2.000 0.642 2.999 0.643 3.999 0.652 1.889 3.555 1

2.0 0.998 0.429 2.000 0.526 2.999 0.541 4.001 0.536 2.463 5.443 1

2.5 0.999 0.369 1.999 0.404 2.999 0.451 3.999 0.473 2.969 7.292 2

3.0 1.000 0.326 2.000 0.404 3.000 0.400 4.000 0.404 3.492 8.910 1

3.5 1.000 0.301 1.999 0.349 2.999 0.372 4.000 0.359 3.820 9.966 4

n = 50

1.1 1.000 0.310 1.999 0.380 3.000 0.374 4.000 0.384 1.215 0.326 0

1.5 1.000 0.289 1.999 0.349 3.000 0.350 3.999 0.346 1.594 0.935 0

2.0 1.000 0.239 1.999 0.285 3.000 0.295 3.999 0.295 2.206 2.467 0
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Table 15 continued

p M(b0) V(b0) M(b1) V(b1) M(b2) V(b2) M(b3) V(b3) M(p̂) V(p̂) Conv.

2.5 1.000 0.203 1.999 0.243 2.999 0.253 4.000 0.249 2.824 4.165 1

3.0 0.999 0.180 2.000 0.213 3.000 0.214 3.999 0.214 3.386 5.913 1

3.5 0.999 0.156 2.000 0.188 3.000 0.191 3.999 0.182 3.935 7.458 1

n = 100

1.1 1.000 0.131 2.000 0.162 3.000 0.164 3.999 0.163 1.139 0.038 0

1.5 1.000 0.127 2.000 0.156 2.999 0.152 3.999 0.157 1.487 0.151 0

2.0 1.000 0.096 1.999 0.133 3.000 0.130 4.000 0.131 2.041 0.506 0

2.5 0.999 0.059 2.000 0.132 2.999 0.129 4.000 0.114 2.610 1.237 0

3.0 0.999 0.035 2.000 0.122 3.000 0.046 3.999 0.069 3.276 2.723 0

3.5 1.000 0.027 1.999 0.064 3.000 0.037 4.000 0.061 3.824 3.942 0

n = 200

1.1 0.999 0.064 2.000 0.069 3.000 0.077 4.000 0.97 1.119 0.018 0

1.5 0.999 0.056 2.000 0.066 3.000 0.062 4.000 0.089 1.502 0.058 0

2.0 1.000 0.041 1.999 0.044 3.000 0.048 3.999 0.059 1.998 0.147 0

2.5 1.000 0.040 1.999 0.039 2.999 0.042 3.999 0.048 2.558 0.414 0

3.0 0.999 0.039 2.000 0.037 2.999 0.039 4.000 0.044 3.086 0.903 0

3.5 1.000 0.027 1.999 0.029 3.000 0.033 4.000 0.037 3.683 1.741 0

n = 500

1.1 0.999 0.032 2.000 0.033 2.999 0.033 4.000 0.031 1.103 0.009 0

1.5 1.000 0.029 2.000 0.030 2.999 0.031 4.000 0.029 1.502 0.033 0

2.0 0.999 0.026 1.999 0.027 3.000 0.027 3.999 0.025 1.978 0.161 0

2.5 1.000 0.023 2.000 0.025 2.999 0.026 3.999 0.024 2.502 0.311 0

3.0 0.999 0.020 2.000 0.023 2.999 0.025 4.000 0.021 3.091 0.937 0

3.5 0.999 0.016 1.999 0.020 3.000 0.023 3.999 0.019 3.588 1.457 0

n = 1000

1.1 0.999 0.015 2.000 0.017 3.000 0.016 4.000 0.013 1.108 0.055 0

1.5 1.000 0.012 1.999 0.013 2.999 0.013 4.000 0.011 1.501 0.049 0

2.0 1.000 0.007 2.000 0.010 2.999 0.008 3.999 0.010 2.002 0.063 0

2.5 0.999 0.007 2.000 0.009 3.000 0.005 4.000 0.006 2.505 0.107 0

3.0 1.000 0.005 1.999 0.007 3.000 0.005 3.999 0.005 2.998 0.146 0

3.5 1.000 0.004 2.000 0.006 3.000 0.004 3.999 0.003 3.532 0.208 0
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Appendix 2

See Table 16.

Table 16 Fatal occupational
accidents (FI), gross domestic
product (GDP), unemployment
rate (UNR) and working hours
(WH), for UK (1971–2007).
Source Mouza and Targoudtzidis
(2012)

Year FI GDP UNR WH

1971 780 3.823 3.4 1905

1972 669 4.117 3.7 1871

1973 763 4.651 2.7 1927

1974 651 4.989 2.6 1888

1975 620 5.431 4.1 1883

1976 584 5.904 5.4 1866

1977 524 6.425 5.8 1847

1978 499 7.108 5.7 1826

1979 492 7.891 4.7 1818

1980 440 8.413 5.8 1773

1981 441 9.077 8.8 1715

1982 472 9.843 10.1 1730

1983 448 10.599 10.9 1717

1984 438 11.272 10.9 1733

1985 400 12.005 11.2 1766

1986 355 12.736 11.3 1768

1987 361 13.656 10.3 1758

1988 529 14.805 8.5 1798

1989 370 15.674 7.1 1786

1990 346 16.361 6.9 1771

1991 297 16.638 8.6 1767

1992 276 17.003 9.8 1732

1993 245 17.740 10.2 1726

1994 191 18.842 9.3 1740

1995 209 19.755 8.5 1743

1996 207 20.977 7.9 1742

1997 212 22.435 6.8 1740

1998 188 23.311 6.1 1734

1999 162 24.249 5.9 1723

2000 213 26.041 5.4 1711

2001 206 27.585 5 1714

2002 183 28.888 5.1 1696

2003 168 29.863 5 1677

2004 172 31.747 4.7 1672

2005 164 32.695 4.8 1676

2006 191 34.137 5.4 1669

2007 178 35.669 5.3 1670
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