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Abstract Monitoring the richness and the diversity of species living in an ecosystem is an

important goal of ecology. To this purpose, measures of biodiversity have been introduced

as statistical summaries of the abundance vector. In particular, we take into consideration

the Gini–Simpson and the Shannon–Wiener indices, along with the effective number of

species calculated through these measures, proposed, respectively, by Laakso and Taa-

gepera (Comp Polit Stud 12:3–25, 1979) and Leti (Statistica descrittiva, Bologna, Il

Mulino, 1983). It is an open question how to associate to these indices a measure of

uncertainty. In this paper we compare confidence intervals based on these measures, cal-

culated through three different bootstrap methods: percentile, -t and accelerated bias-

corrected percentile. We recommend to practitioners to use the percentile procedure, as it

is straightforward and computationally feasible, providing results very close to those

obtained by more complex techniques.

Keywords Gini–Simpson index � Shannon–Wiener index � Leti index �
Laakso–Taagepera index � Bootstrap methods � Confidence intervals

1 Introduction

Biological diversity, also known as biodiversity, is the variation among living organisms

within a given habitat or ecosystem. Biodiversity boosts ecosystem productivity and all the

species play an important role to this purpose. Thus, it is important to monitor the health

and diversity of species over time, such as changes in size and distribution of population of

species, habitats, and interactions among communities.
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Measures of biodiversity are statistical summaries of the abundance vector, that is the

vector of proportions of each species in the community, which helps to understand the

condition of biodiversity and the variables affecting it. Two main factors are taken into

account when measuring biodiversity: richness and evenness. Richness is a proxy of the

number of different kinds of organisms living in the study area. The number of species, s, is

a measure of richness and it is the easiest way to estimate biodiversity. Species richness

does not take into account the number of individuals for each species. However, biodi-

versity does not only depend on richness, but also on evenness. Evenness compares the

similarity of the population size of each of the species belonging to the same environment;

it is a measure of the relative abundance of the different species constituting the richness of

an area. Therefore a well-established diversity index must take into consideration both of

these factors.

In the current practice, biodiversity measures are generally provided by Environmental

Agencies as descriptive indices. However, along with the magnitude, it is also important to

evaluate the degree of uncertainty underpinning a certain measure. In the paper we con-

sider this problem. Firstly, we estimate biodiversity using the Gini index, the entropy and

their effective number of species. Secondly, we propose to calculate confidence intervals

for these measures using percentile, -t and accelerated bias-corrected percentile methods.

In Sect. 2 we describe the data that we will use throughout the paper as a motivating

example. In Sect. 3 we provide a brief overview on biodiversity measures, focusing in

particular on the Gini–Simpson and the Shannon–Wiener diversity indices. In Sect. 4 we put

forward a brief snapshot on the methods to calculate bootstrap confidence intervals that we

will employ in the application. In Sect. 5 we present the results of our work and in Sect. 6 we

provide a simulation study to support our conclusions, which are presented in Sect. 7.

2 Motivating example

We present biodiversity measures for Northern Ireland seabirds, which are a useful and

important indicator to assess the state of the marine environment; in fact, they essentially

represent the top of the food chain. They react to a range of factors such as modification in

food availability, climate change, predation and pollution. For this reason, they have been

studied by the Joint Nature Conservation Committee (JNCC) Seabird Monitoring Program,

launched in 1986 in the UK and Ireland. This Program has provided high-quality datasets

of population counts and demographic parameters.

The species composition may change over the years depending on the quality and

quantity of data for each species. The database includes counts from the 1980s to the

present and updates are provided annually. Data are available online at (http://jncc.defra.

gov.uk/page-4460).

3 Biodiversity measures

3.1 Properties of a biodiversity index

In order to study the biodiversity of a system, let’s suppose to have collected a sample of n

individuals of s different species. Let ðn1; n2; . . .; nsÞ be the frequencies abundance vector,

where ni is the number of individuals belonging to the species i ði ¼ 1; . . .; sÞ, with
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Xs

i¼1

ni ¼ n

and p ¼ ðp1; p2; . . .; psÞ be the proportions abundance vector, with pi representing the

probability that an individual selected randomly from a population belongs to the species i,

defined as

pi ¼ ni=n

so that

Xs

i¼1

pi ¼ 1:

A biodiversity index I is a statistical measure that summarizes the relative abundance

vector p, IðpÞ ¼ Iðp1; p2; . . .; psÞ, with the following essential properties (see for instance

Frosini 2006):

1. IðpÞ is non-negative and zero-indifferent function. We recall that a generic function

IsðpÞ of the vector p of size s, is zero-indifferent if

Is p1; . . .; psð Þ ¼ Isþt p1; . . .; ps; 0; . . .; 0ð Þ

for t[ 0.

2. The index IðpÞ is minimum when all the individuals belong to a single species i, that is

to say

9i� s pi ¼ 1 and pj ¼ 0 8j 6¼ i:

3. The index IðpÞ is maximum when the species are equally common:

pi ¼
1

s
8i

4. The maximum value

f sð Þ ¼ max Is pð Þ½ �

represents a strictly increasing function f ðsÞ of the number of species s: the higher the

value of s, the higher the maximum value, emphasizing the key role played by s in any

measure of biodiversity.

3.2 Biodiversity indices

All the indices satisfying the above properties are called biodiversity indices. In the sta-

tistical literature different diversity indices have been proposed, satisfying different

assumptions. The simplest diversity index is the species richness, namely s, which

expresses the number of species present in an environment:

s ¼ sðpÞ ¼ #ðpi [ 0Þ:

This is a straightforward and intuitive index, but it lacks of information with respect to

the evenness of the distribution. The most widely used measures of biodiversity that take
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into account both abundance and evenness of species present in the community are the

Gini–Simpson and the Shannon–Wiener indices.

3.3 Gini–Simpson diversity index

The Gini–Simpson index was introduced by Gini (1912) as a concentration index and it

was proposed as a measure of biodiversity by Simpson (1949). Let’s first introduce the

probability that two individuals randomly selected from a sample belong to the same

species:

DðpÞ ¼
Xs

i¼1

p2
i

The value of DðpÞ ranges between 0 and 1: 0 represents maximum diversity and 1

indicates absence of diversity. So, the higher the value of DðpÞ, the lower the diversity. The

Gini–Simpson diversity index is obtained as:

EðpÞ ¼ 1 � DðpÞ ¼ 1 �
Xs

i¼1

p2
i ð1Þ

and represents the probability that two individuals, randomly selected from a sample,

belong to different species. Now, the higher the value of this index, the higher the diversity.

The index varies between 0 and 1 and reaches its maximum value when all individuals

belong to a single species, i.e.:

9i � s pi ¼ 1:

Moreover, under the constraints:

Xs

i¼1

pi ¼ 1; 0 � pi � 1 ð2Þ

its maximum value is:

max EðpÞ½ � ¼ s� 1

s

corresponding to the case in which all species are equally distributed. In the ecological

context, the Gini–Simpson diversity index is viewed as a dominance index because it

attributes more weight to common or dominant species. In particular, the weight that the

Gini index gives to each species is 1 � pi. Hence for a rare species, the value of pi is very

low (close to zero), and the associated weight will be closed to one. So, the presence of rare

species causes only small changes in the value of the index.

3.4 Shannon–Wiener diversity index

The Shannon–Wiener diversity index (Shannon 1948; Shannon and Weaver 1949; Wiener

1949), also known as entropy, is a popular diversity index in the ecological literature and it

is given by:
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HðpÞ ¼ �
Xs

i¼1

pilogðpiÞ ð3Þ

where log denotes the natural logarithm.

The entropy quantifies the uncertainty in predicting the species identity of an individual

selected at random from the dataset. This uncertainty increases as the number of species

increases and as the individuals are distributed more evenly among the species. A high

value of HðpÞ would be representative of a diverse and equally distributed community and

lower values show a less diversity community. A value of 0 would represent a community

with just one species (where conventionally 0log0 ¼ 0). Moreover, under the constraint

(2), the maximum value of HðpÞ occurs when each species in the community has the same

frequency pi ¼ 1=s:

maxðHðpÞÞ ¼ logðsÞ:

In contrast with the Gini–Simpson index, the Shannon–Wiener diversity index is par-

ticularly sensitive to the number of rare species in a community, i.e., those species char-

acterized by extremely low relative frequency. In this case, the weight that the entropy

gives to each species is logðpiÞ.

3.5 Normalization of diversity indices

It is worth observing that normalization should not be used in the context of biodiversity

measures because it removes the effect of the number of species, which is instead of

interest in this framework. More precisely, a normalized diversity index does not satisfy

property 4 of Sect. 3.1.

3.6 Effective number of species

Diversity indices have a wide variety of range and behaviors. If we apply them to an

equally distributed community of s species, each index would return a different value (e.g.,

s, 1 � 1=s, logðsÞ). One might expect that the diversity of an equally distributed population

of 10 species is twice the diversity of an equally distributed population of 5 species.

However, this does not happen using diversity indices. That is the reason of the intro-

duction of the effective number of species.

Given a system with s species with biodiversity measured by the index Is, the effective

number of species, r, is obtained by solving the equation:

maxðIrÞ ¼ Is

with solution

r ¼ f�1ðIsÞ

satisfying properties 1–4 of Sect. 3.1, because of the strict monotonicity of the function f.

To derive the effective number of species for the Gini–Simpson index, we need to solve

with respect to r the equation:
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maxðErðpÞÞ ¼ 1 � 1

r
¼ EsðpÞ

The solution is the Laakso–Taagepera index (Laakso and Taagepera 1979):

FðpÞ ¼ 1

1 � EsðpÞ
¼ 1Ps

i¼ 1 p
2
i

Similarly, solving the equation:

logðrÞ ¼ max HrðpÞ½ � ¼ HsðpÞ

The effective number of species for the Shannon–Wiener index is given by:

L(pÞ ¼ exp HsðpÞ½ � ¼
Ys

i¼1

p
�pi
i

and it is called Leti diversity index (Leti 1983).

4 A snapshot on bootstrap confidence intervals

In this article we use three different methods to calculate bootstrap confidence intervals

(CI): the percentile, the -t and the accelerated bias-corrected percentile. For a compre-

hensive description of these methods, we refer the reader to Carpenter and Bithell (2000)

and to Tu and Shao (1995). In particular, we have drawn B ¼ 1000 samples with

replacement of size n from our vector of data ðx1; . . .; xnÞ with xi ¼ k if the individual i

belongs to the species k (for i ¼ 1; . . .; n and k ¼ 1; . . .; s), that is to say, we have con-

sidered B bootstrap samples from a Multinomial distribution with parameters n and

p ¼ ðp1; p2; . . .; psÞ.

4.1 Bootstrap percentile CI

The bootstrap percentile CI represents the simplest way to calculate accurate bootstrap CI.

Let #̂n be an estimator for the parameter # and #̂�
n the bootstrap estimator based on a

bootstrap sample ðx�1; . . .; x�nÞ, so that #̂�
n ¼ #̂ðx�1; . . .; x�nÞ. If we define the distribution

function of #̂�
n as

G�ðtÞ ¼ Pð#̂�
n � tÞ

then the bootstrap percentile method returns the CI

½#�
a; #

�
1�a�

where #�
a is the a� quantile of the bootstrap version of #̂�

n:

#�
a ¼ G��1 að Þ ¼ inf t 2 R : G�ðtÞ � af g:

Hence, we can approximate the distribution function G� with the empirical distribution

function GB of the B bootstrap replications.
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4.2 Bootstrap-t CI

With this method we need to calculate a bootstrap version of the estimator #̂n, i.e.,

#̂�
n ¼ #̂ðx�1; . . .; x�nÞ, as well as a bootstrap version of the standard deviation of the estimator

#̂n

r̂�a ¼ r̂ðx�1; . . .; x�nÞ:

So, if the ‘‘studentized’’ statistic

T�
n ¼ #̂�

n � #̂n

r̂�n

is pivotal, then the bootstrap-t CI for # with nominal level ð1 � 2aÞ is given by

½#̂n � t�1�ar̂n; #̂n � t�ar̂n�

where t�a is the a� quantile of the bootstrap version of the ‘‘studentized’’ statistic.

Differently from the percentile method, the bootstrap-t involves a deviance estimate, r̂n.

However, it is possible to obtain such an estimate, using a second-level bootstrap: for each

bootstrap sample ðx�1; . . .; x�nÞ, we generate M ¼ 100 additional bootstrap samples to cal-

culate the usual sample variance. Consequently, such a double bootstrap method is com-

putationally more intensive than the percentile bootstrap.

4.3 Bootstrap accelerated bias-corrected percentile CI

The bias-corrected accelerated (BCa) bootstrap is a generalization of the percentile method

introducing the two constants z0 (bias correction) and a (acceleration) in order to adjust for

bias and skewness of the bootstrap distribution. Consider an increasing function h, and the

transformation ĝn ¼ hð#̂nÞ with standard deviation r ¼ 1 þ ag, such that

P
ĝn � g

r
þ z0 � z

� �
¼ HðzÞ

where H is a continuous, strictly increasing and symmetrical transformation (e.g. the

standard normal distribution function). Thus, a CI for the parameter # with nominal level

ð1 � 2aÞ is given by

½#a; #1�a�

where

#a ¼ h�1 ĝn þ
z0 þ za

1 � a z0 þ zað Þ r̂n
� �

za ¼ H�1ðaÞ

r̂n ¼ 1 þ aĝn

Under these assumptions it is possible to derive the equalities:
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G� #að Þ ¼ z0 þ
z0 þ za

1 � a z0 þ zað Þ

� �

z0 ¼ H�1ðG�ð#̂nÞÞ

where

G� tð Þ ¼ Pð#̂�
n � tÞ

is the distribution function of the bootstrap version of #̂n. So, the quantiles:

#�
a ¼ G��1 H z0 þ

z0 þ za

1 � a z0 þ zað Þ

� �� �

¼ inf t 2 R : G�ðtÞ � H z0 þ
z0 þ za

1 � a z0 þ zað Þ

� �� �

lead to the ð1 � 2aÞ BCa CI for the parameter #:

#�
a; #

�
1�a

� �
:

According to Efron (1987), we have estimated the bias correction and the acceleration

by using the suitable function implemented in R.

5 Results

5.1 Descriptive analysis

Data from the JNCC are available for five countries (England, Scotland, Wales, Ireland,

Northern Ireland). To the purposes of this application, we will focus only on Northern

Ireland data. The practice of considering separately ecological data from different GB

countries is particularly recommendable, being the territory very large and characterized

by geographic areas being climatically and morphologically very different.

We remark that JNCC data are described through different labels, which indicate, in

particular, the adjustment and the accuracy of the counting method. For these details, we

refer the reader to the explanation available online. In this paper, we consider seven species

of seabird (excluding three species with very low and not reliable counts) and we only take

into account entries labeled as ‘‘accurate’’.

We show results for the period 2006–2009, calculating the Gini–Simpson index (EðpÞ),
the Shannon–Wiener index (HðpÞ) and the corresponding effective number of species,

given by the Laakso–Taagepera index (FðpÞ) and the Leti diversity index (LðpÞ). Table 1

shows the total observations per year, and Table 2 shows the diversity indexes per year.

From Table 2 it does emerge a very similar trend between the two indices EðpÞ and

HðpÞ, as well as between the effective number of species FðpÞ and LðpÞ, with a slightly

decline over 2006–2008 and a recovery in 2009. We recall that the indices FðpÞ and LðpÞ
represent the number of equally common species which would produce the value of the

index that it has been really observed. For the Gini–Simpson index this value is between

three and six species, while for entropy is between six and nine species. This happens as

the entropy attributes larger weight to rare species than the Gini–Simpson index.
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5.2 Comparison of confidence intervals

In Fig. 1 we show CI for the E(p) index across years, as obtained by means of the three

bootstrap methods. The same analysis has been done with index H(p) (Fig. 2), index

F(p) (Fig. 3) and index L(p) (Fig. 4).

Three main results pop out from our analysis. First, the width of the bootstrap CI

obtained for the four measures of diversity considered is very small, and the confidence

Table 1 Total counts of seabirds
in Northern Ireland, period
2006–2009

Year Total count

2006 16.928 units

2007 14.970 units

2008 15.124 units

2009 10.696 units

Table 2 Diversity indices val-
ues, period 2006–2009

Index 2006 2007 2008 2009

E(p) 0.790 0.764 0.709 0.836

H(p) 1.931 1.909 1.761 2.105

F(p) 4.754 4.230 3.436 6.087

L(p) 6.898 6.746 5.819 8.206

Fig. 1 Confidence intervals in the period 2006–2009 for the three bootstrap methods -t, percentile and BCa
associated with the E(p) index
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bounds calculated adopting different bootstrap methods is very similar. Second, we can

notice that results obtained with the percentile method and with BCa are very close. This

might indicate that, in this context, the BCa procedure does not provide a compelling

advantage. Third, occasional differences do emerge by comparing the bootstrap-t method

with the other two methods. This is reasonable, as the -t method is indeed conceptually

different as compared to the percentile procedures. We may observe that, in terms of length

of the CI, the bootstrap-t provides results sometimes better (e.g., for the index EðpÞ—year

2007, or for the index HðpÞ for year 2009), and sometimes worse (e.g., EðpÞ index, for the

year 2008, or HðpÞ for the year 2006) than those obtained with the other methods.

6 A simulation study

In order to support our conclusions, a simulation study was performed. A new population

ðn1; n2; . . .; nsÞ, of s ¼ 25 groups, was generated from a uniform distribution in the interval

[0, 1000], where ni is the number of elements belonging to the group iði ¼ 1; . . .; sÞ. The

relative abundance vector p ¼ ðp1; p2; . . .; psÞ was obtained from the population, with pi ¼

ni=n and the population size n ¼
Ps

i¼1

ni.

We applied the three bootstrap techniques, percentile, -t and BCa to the new population,

resampling from a multinomial distribution with parameters n, the population size and p,

the relative abundance vector. For each method, Gini and Entropy indices were calculated

and B ¼ 1000 bootstrap replications were generated, and for the deviance estimation in the

bootstrap-t, M ¼ 100 second level bootstrap samples were used. Table 3 shows the results,

Fig. 2 Confidence intervals in the period 2006–2009 for the three bootstrap methods -t, percentile and BCa
associated with the H(p) index
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Fig. 3 Confidence intervals in the period 2006–2009 for the three bootstrap methods -t, percentile and BCa
associated with the F(p) index

Fig. 4 Confidence intervals in the period 2006–2009 for the three bootstrap methods -t, percentile and BCa
associated with the L(p) index
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which are very similar to those obtained with JNCC data. In particular, the widths of the

bootstrap CI are very small for the three methods and very close together for both of the

indices.

7 Conclusions

In this paper, we have considered two indices of biodiversity commonly used in the context

of ecological applications, such as the Gini–Simpson index and the Shannon–Wiener

index. In addition, we have considered the effective number of species corresponding to

these indices and given by the Laasko–Taagepera and the Leti diversity indices, respec-

tively. Even though these indices are frequently adopted in ecological reports, it is not still

in use the practice of showing the indices along with a measure of uncertainty, such as that

provided by a CI.

Bootstrap methods represent a useful tool to estimate CI in case of complex indices,

such as those previously described. In this paper we have considered three different

techniques: percentile, bootstrap-t and BCa. Our simulations have shown that all three

methods lead to quite convergent and consistent results, with the only exception, in some

cases, of the -t method. Following these results we might recommend practitioners to

adopt, in this context, the percentile method, as it is not computationally demanding and it

is as well less demanding in terms of theoretical assumptions. More generally, these

findings are in agreement with some simulation studies provided by Carpenter and Bithell

(2000) and Tu and Shao (1995).
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