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Abstract Ragin’s Qualitative Comparative Analysis (QCA) and related set theoretic meth-
ods are increasingly popular. This is a welcome development, since it encourages systematic
configurational analyses of social phenomena. One downside of this growth in popularity
is a tendency for more researchers to use the approach in a formulaic manner—something
made possible, and more likely, by the availability of free software. We wish to see QCA
employed, as Ragin intended, in a self-critical manner. For this to happen, researchers need
to understand more of what is going on behind the results generated by the available software
packages. One important aspect of set theoretic analyses of sufficiency and necessity is the
effect that the distribution of cases in a dataset can have on results. We explore this issue
in a number of ways. We begin by exploring how both deterministic and nondeterministic
data-generating processes are reflected in the analyses of populations differing in only the
weights of types of cases. We show how and why weights matter in causal analyses that
focus on necessity and also, where models are not fully specified, sufficiency. We then draw
on this discussion to show that a recent textbook discussion of hidden necessary conditions
is weakened as a result of its neglect of weighting issues. Finally, having shown that case
weights raise a number of difficulties for set theoretic analyses, we offer suggestions, drawing
on two imagined population datasets concerning health outcomes, for mitigating their effect.

Keywords Qualitative Comparative Analysis (QCA) · Set theoretic methods ·
Case weights · Necessary conditions · Sufficient conditions · Simulation

Ragin’s Qualitative Comparative Analysis (QCA) provides a way of undertaking case-
based configurational analysis, focusing on the necessary and sufficient conditions for
an outcome. QCA is increasingly used to undertake systematic set-theoretic analyses of
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small to medium sized datasets and, occasionally, to analyse large survey datasets. While
regression approaches typically aim to estimate the net effects of variables on an out-
come, while controlling for other variables, QCA typically focuses on the consequences
of conjunctions of conditions (Ragin 1987, 2000, 2008). Whether QCA is a method for
establishing causal or descriptive knowledge is currently a matter of debate. Baumgartner
(2014), who has developed the related Boolean technique of coincidence analysis (CNA),
argues that the Boolean analysis of regularities is the correct route to the establishment of
causes as difference-makers. Others see QCA as a more descriptive approach. We have
argued elsewhere (Cooper and Glaesser 2012) that QCA is best used with some addi-
tional method such as process-tracing when causal understanding is sought. Gerring (2012,
pp. 356–358) makes similar points, discussing what Ragin and others have written on this
topic.

An important question to ask of any method is how it functions when confronted with
a thought experiment in which we postulate some assumed causal structure which should,
ceteris paribus, generate a particular set of regular relationships between explanatory con-
ditions and some outcome. Assuming a particular causal relation, and an associated data
generating process, we would want the results delivered by any analytic method to reflect
these, at least in those cases where we correctly enter all the conditions into our analysis. In
practice, of course, social scientists often analyse data via less than perfectly specified mod-
els, and it is therefore also important to explore, as wewill for the case of QCA, how amethod
copes, given a postulated assumed causal structure, when some explanatory conditions are
omitted from the analytic model and/or some redundant ones are included.

We write then on the assumption that simulations using simple examples are often use-
ful for assessing the extent to which methods can deliver findings that reflect validly some
assumed underlying causal structure (Baumgartner 2014). They can also serve a useful pur-
pose in increasing scholars’ understandingof the potential pitfalls associatedwith any analytic
algorithm, especially those that arise when, as is typical, we have less than perfect knowledge
of the factors causally relevant to an outcome.

Our particular concern in this paper is whether and how weighting, i.e., the distribution of
types of cases with certain characteristics in the sample and/or the population under study,
affects analytic results whenQCA is employed. The importance of this issue has become clear
to us while undertaking QCAs of various datasets (Cooper 2005; Glaesser and Cooper 2012)
and when reflecting on arguments made in Schneider and Wagemann (2012) concerning
the sources of “hidden necessary conditions” in Boolean analyses. We will discuss case
weights in the context of crisp set QCA. We will not address fuzzy set QCA but the reader
familiar with QCAwill be able to see that parallel issues arise when fuzzy sets are employed.
The arguments we make are of general relevance, and not specific to small, medium or
large n QCA. There will be some specific situations, however, where the use, in minimising
a truth table, of a frequency threshold would affect the ways in which weights affect an
analysis.

To follow our arguments, any reader new to QCA will need a brief introduction to the
indices used in crisp set QCA. The paper has the following structure:

• Section1 introduces essential elements of crisp set QCA.
• Section2 explores the problems that the relative proportions of cases can produce for

QCA users with varying degrees of knowledge of the full set of causes of some outcome
who research, in terms of quasi-sufficiency and quasi-necessity, a simple deterministic
structure.

• Section3 considers a non-deterministic structure.
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Fig. 1 Strict and
quasi-sufficiency of X for Y

Fig. 2 Strict and quasi-necessity
of Z for Y

• Section4 discusses related problems in Schneider andWagemann’s treatment of necessary
conditions.

• Section5, in the light of the problems pointed to in the earlier sections, considers possible
ways QCA users might mitigate their consequences.

1 QCA (crisp set): bare bones of measures

For strict sufficiency of a condition, or a conjunction of conditions, X forY, we need, wherever
X is present, to find Y also present. This requires the set of cases with the condition X to be
a subset of the cases with the outcome Y (the left-hand side of Fig. 1). For strict necessity
of a condition Z for Y, on the other hand, we need, given the outcome Y, always to find the
condition Z present. This requires the set of cases with the outcome Y to be a subset of the
set of cases with the condition Z (the left-hand side of Fig. 2). In practice, subset relations
in the social world are frequently not as perfect as these. The more realistic right-hand sides
of the two figures show such approximations to sufficiency (Fig. 1) and necessity (Fig. 2).
Ragin (2008) uses, for crisp sets, a simple measure of the closeness of such relations to strict
subsethood. Consider sufficiency. On the right-hand side of Fig. 1, he takes the proportion
of cases in X that fall within the boundaries of Y as a measure of the consistency of these
data with sufficiency. Such imperfect subset relations are usually described with the terms
quasi-sufficient and, for necessity, quasi-necessary. In the case of Fig. 1, the right-hand side
would give us a consistency of the order of 0.8, usually taken as large enough to support a
claim of quasi-sufficiency.

Alongside thesemeasures of consistency, Ragin (2006, 2008) defines associatedmeasures
of coverage. These assess the empirical importance of a condition. In the case of sufficiency,
coverage assesses the extent to which a condition X “covers” the outcome set, i.e., howmany
cases of the outcome are “explained” by the condition. It is mathematically equivalent to the
measure of the consistency with necessity of X for Y, i.e., how much of Y is also X. In Fig. 1
the coverage of X is low (and, correspondingly, X is not necessary or quasi-necessary for
Y). For a necessary condition Z, coverage assesses the extent to which it is also sufficient for
the outcome. Z’s coverage is mathematically equivalent to the consistency with sufficiency
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of Z. In Fig. 2, the coverage of the necessary condition Z is low (and, correspondingly, Z is
not sufficient or quasi-sufficient for Y).

Finally, it is important to note that it is usually configurations, or conjunctions of causes,
that are the focus of analysis in QCA. These are represented by such expressions as
(P∗Q∗∼R)+ (M∗N) where the * indicates set intersection (logical AND), the ∼ negates
a set (“not R” in our example), and+ indicates set union (logical OR). A conjunction such as
P∗Q∗∼R is allowed into the final solution if, say, at least 80% of the cases in the set P∗Q∗∼R
achieve the outcome under study. If it is also true that the configuration P*Q*R meets this
80% threshold for quasi-sufficiency, then the terms P∗Q∗∼R and P∗Q∗R can be minimised
to P∗Q on the grounds that the absence or presence of R, given the chosen threshold, makes
no relevant difference to the proportion of cases achieving the outcome.

2 A simple deterministic structure

Wewill explore the problems that may arise as a result of inadequate reflection on the analytic
effects of case weights for those wishing to undertake causal analysis via QCA or similar
techniques. We will initially work outwards from a postulated causal structure, showing how
the distribution of cases in a dataset, given this structure, impacts on measures of consistency
with sufficiency and necessity. It is important to hold in mind that we are assuming that this
structure exists in the world but that the social scientist undertaking the analysis of its effects
may have a far from perfect knowledge of it.

The first postulated structure links two factors, a condition T and an outcomeO.Whenever
T is present, and only when T is present, does O occur. We will also assume, however, that
our imagined researchers may variously believe that T is the crucial cause of O, or that a
factor S is the sole cause of the outcome, or that S and T together are important. For this
reason, we set out four empirical relationships between the presence and absence of S, T and
O that are compatible with the structure.1 A plausible substantive interpretation of 1–4 might
be that T represents having high cognitive ability, and S membership of the dominant ethnic
group in a society where there are just two ethnic groups, while O is some career outcome.

S∗T => O (Implication 1)

S∗ ∼ T =>∼O (Implication 2)

∼S∗T => O (Implication 3)

∼S∗ ∼T =>∼O (Implication 4)

Now, a researcher using QCA who correctly believes that T is the cause of O will find,
on collecting data of adequate quality, that T is both sufficient and necessary for O, i.e.,
T <=> O.We now, however, explore the case of a researcher who believes that both T and
Smatter for the outcome. Such a researcherwill collect data on S, T andO in order to construct

1 We are assuming, to keep things simpler, that the causal relations between S, T and O are not a function
of the distributions of the possible configurations of the two conditions S and T and their negations in the
populations. In fact, they often will be: in cases, for example, where the configurations are real actors in
conflict over positional goods. We are also bracketing out here any causal analysis of the origin of the pattern
of weights in a truth table. Clearly there are causes behind the weight of cases in a population. Wars would
affect, via migration, the weights of ethnic groups, for example. Birth rates—and their causes—would affect
the weights of children in social classes. Random processes will affect weights in samples from populations.
These matters are clearly also important, but not our concern here.
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Table 1 Truth table representing
implications 1–4

Implications S T Configurations Number
of cases

O: consistency
with sufficiency

1 1 1 ST A 1

2 1 0 S∼T B 0

3 0 1 ∼ST C 1

4 0 0 ∼S∼T D 0

Table 2 Two sets of values for
A–D

Configurations Outcome O Number
of cases

In dataset 1 In dataset 2

ST Present A 16 48

S∼T Absent B 4 4

∼ST Present C 17 5

∼S∼T Absent D 5 5

a truth table to explore the evidence for implications 1–4. Such a truth table will have the
form shown in Table 1 where A–D stand for the number of cases in the four configurations.

Ignoring for the moment the numbers of cases in the rows, we could describe this table by
ST + ∼ST<=> O2 (writing S∗T as ST for convenience), or, after minimising the left-hand
side, T <=> O. T is both sufficient and necessary for O, as we want. What happens if we
begin to vary the number of cases per row? Table2 shows two possible distributions of A–D.

Whatever the values of A–D,3 ST and ∼ST will always be found to be sufficient for O. T
will always be found to be necessary for O. The solution will remain T <=> O. But now
consider a researcher who believes that only S matters and therefore collects no data on T.
The truth table will reduce to just two rows, one for S (with A+B cases) and one for∼S (with
C+D cases). The consistency with sufficiency of S is given by A/(A+B). For dataset 1 it is
0.8, and for dataset 2 it is 0.923. The consistency of S with necessity is given by A/(A+C).
For dataset 1 it is 0.485; for dataset 2 0.906.

In the case of dataset 2 the result suggests that S is both quasi-sufficient and quasi-necessary
for O. For dataset 1, on the other hand, there is good support for quasi-sufficiency but none
for quasi-necessity. Remember the causal structure is fixed. Only the weights of cases have
changed. Given that in much empirical research there is incomplete knowledge of the causal
factors producing an outcome, this dependency of the solution on the weights of cases is
clearly an important issue for users of QCA and related techniques. In this case, for dataset
2, the pattern of case weights has misled the analyst who believed S was the crucial cause.

Now, since we know, by our design of the thought experiment, the generative causal
basis underlying 1–4, we know that S is not necessary, since implication 3, compatible with
T <=> O, says ∼ST => O. A problem exists concerning the assessment of the necessity
of S for the researcher who believes S is the cause of O. Note that we can imagine population
proportions which raise the consistency of S with necessity much higher. If we give C in
dataset 2 the value of 1, then we have a consistency of 48/(48 + 1), i.e., 0.980. It is worth

2 This non-minimised relation also reminds us that, as Baumgartner (2008) notes, as long as there are at least
two terms on the left-hand side, there is an asymmetry between sufficiency and necessity. It makes sense to
think of causal influences running from left to right, but not from right to left, since knowing O does not tell
us which of the two left-hand side terms are present.
3 As long as they each are above zero and we have adequate evidence for the implication claims 1–4.
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Fig. 3 Quasi-necessity of S as the ratio of A to C varies

looking at the range of possible values for the consistency with necessity of S in our example
(where T <=> O). If we fix A at 100 and let C vary in relation to it (from 1 to 100 for
illustration)4 then it is easy to see that the consistency varies from a little over 0.99 to exactly
0.50. This is shown in Fig. 3.

It is often argued that the necessity (or sufficiency coverage) of a factor should only be
assessed where the factor has first been shown to be sufficient (Ragin 2008). However, given
less than perfect knowledge of the causal factors operating on an outcome, the distribution
of cases, as we have seen, also affects consistency with sufficiency. Again, consider the
researcher who believes S is the crucial cause. Returning to datasets 1 and 2, we can see that
the consistency with sufficiency of S is given by A/(A + B). In dataset 1 it is 16/(16 + 4), or
0.800. In dataset 2, it is 48/(48 + 4), or 0.923. If we change the value of A to 2 in dataset 2,
this consistency becomes 2/(2 + 4), or just 0.333. If we fix A at 100 and, illustratively, let B
vary from 1 to 100, then the consistency of S with sufficiency varies from 0.99 to 0.5, as did
its consistency with necessity when varying C. Now, in this simple deterministic world, both
B and C can be varied independently of A and of each other without affecting implications
1–4. We assume our generative causal structure remains intact under these changes. We can
for example, having fixed A at 100, and leaving the irrelevant D at 5, reverse the values of B
and C in two new datasets 3 and 4 (Table 3). When we do this, we switch the consistencies
of S with sufficiency and necessity, as Table 3 records.

We have shown that, given a fixed causal structure, and a researcher with incomplete
knowledge of which causes matter, a wide range of results for consistencies are possible,
simply as a result of changes in the weights of types of cases in the dataset. This suggests that,
for any researcher thinking causally rather than descriptively, QCA analyses that ignore the
effects of case weights on consistency formulae may be problematic. To this point we have
considered a deterministic structure but allowed its analysis in terms of quasi-sufficiency
and quasi-necessity. In the next section we will assume that the causal structure is not fully
deterministic.

4 The crucial issue here is the ratio of A to C, not the absolute sizes of A or C.
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Table 3 Two more datasets

Configurations Percent with
outcome

Numbers of cases Dataset 3 Dataset 4

ST 100 A 100 100

S∼T 0 B 1 100

∼ST 100 C 100 1

∼S∼T 0 D 5 5

Consistency (necessity) of S 0.50 0.99

Consistency (sufficiency) of S 0.99 0.50

Table 4 Consistencies with
sufficiency for four
configurations

S T Configurations Proportion gaining
the outcome (O)

1 1 ST 0.99

1 0 S∼T 0.65

0 1 ∼ST 0.2

0 0 ∼S∼T 0.1

Table 5 Three invented
populations

S T A: numbers B: numbers C: numbers

1 1 100 200 200

1 0 100 20 1,800

0 1 100 100 100

0 0 100 100 100

3 A non-deterministic causal scenario

We continue by considering a simple non-deterministic structure in which there are two
causal factors, S and T, and an outcome O. The assumption is again that there is a particular
structure in the world, but that the researcher has imperfect knowledge of its features. The
postulated structure is such that, for the four possible configurations of S and T and their
negations, all else being equal, the proportions gaining the outcome O are those shown in
Table4.5 Here, differently from the earlier structure, we are assuming that both S and T are
causes of O. We will also assume, however, that a researcher might suspect that S alone, or
T alone, or both S and T may be causes of O.

For the sake of our illustration of the ways weights may affect various researchers’ find-
ings we will consider three possible datasets, shown in Table5.6 Table6 sets out all indices of

5 This fictitious structure, for our current purposes, is best seen as incorporating a random element (as in,
e.g., ST causes the probability of gaining the outcome to be 0.99). It would also be possible to see it as having
omitted some relevant causal factor but, given the ways in which imperfect model specification can also affect
the assessment of sufficiency (see Sect. 2 and what follows in this section), this possible account of it is best
avoided in this paper.
6 Again, we are assuming, to keep things simpler, that the causal relations between S, T and O are not a
function of the distributions of the configurations in the populations (see footnote 1).

123



334 B. Cooper, J. Glaesser

Table 6 Consistencies above 0.8 with sufficiency and necessity (coverage in brackets)

Sets Population A:
consistency
with
sufficiency

Population A:
consistency
with
necessity

Population B:
consistency
with
sufficiency

Population B:
consistency
with
necessity

Population C:
consistency
with
sufficiency

Population C:
consistency
with
necessity

∼T 0.844 (0.621)

T 0.905 (0.727)

∼S

S 0.820 (0.845) 0.845 (0.82) 0.959 (0.876) 0.876 (0.959) 0.979 (0.684)

∼ST

S∼T 0.837 (0.65)

ST 0.990 (0.510) 0.990 (0.822) 0.822 (0.99) 0.990 (0.142)

∼S∼T

consistency with sufficiency and necessity that pass a threshold of 0.8, adding the coverage
figures in brackets. For completeness, given that any researcher may or may not know cor-
rectly what the true causes of O are, we have included in the table all of S, T, their negations
and conjunctions of these.

First, we can see from Table6 that, considering quasi-sufficiency, the results from all three
populations tell us that ST is quasi-sufficient for O at a very high level (0.99). Any researcher
correctly believing that S and T are both causes here would have found this result to be
unaffected by the different weighting of cases in the three datasets. The researcher believing
just S to be the cause of O would have found S to be sufficient, using a threshold of 0.8,
in datasets A and B but not C. If s/he had happened to use a stricter threshold of 0.9, then
S would have been found to be sufficient in just dataset B. Weighting matters, unless we
assume a researcher with full knowledge of the causes operating.

Measures of necessity are also affected by the caseweights, of course. For a researcherwho
enters both S and T in their QCA model, and finds the solution for sufficiency of ST => O,
the consistency with necessity of ST will vary across the three datasets from 0.510 in dataset
A, through 0.822 in B, to 0.142 in C. Separate assessments of the necessity of the two factors
are also weights-dependent. T only passes the 0.8 threshold in dataset B. S passes it in all
three datasets to differing degrees.7

How important are these effects of weights? The answer partly hinges on the position one
takes on the purpose of QCA and related techniques. Baumgartner (2014) argues that the
purpose ofBoolean techniques is to gain causal knowledge via the analysis of regularities, and
that this requires, ideally, a solution of the formC1+C2+C3 <=> O,where the disjunction
of conjuncts on the left-hand side is both sufficient and necessary for the outcome O. On
this argument, if ST <=> O appears as the solution, with ST both sufficient and necessary
for O, then this lends support to a causal claim. Using our threshold of 0.8, and when the
researcher correctly believes both S and T matter, this solution would appear for population
B, but not for A or C. The key point is perhaps that any causal conclusions based merely on
an analysis of the regularities deriving from our postulated causal structure will vary with the
weights characterising our dataset. If the researcher is assumed to know that S and T matter,

7 It is perhaps important to note that our arguments do not depend on the particular threshold (0.8) employed.
Given appropriate case weights and/or postulated causal structures, the problems we discuss could also appear
with stricter thresholds such as 0.9.
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the key problem in this particular scenario concerns the ways the assessment of necessity
vary with case weights. Any researcher deciding on the necessity of a causal condition, or a
combination of conditions, purely on the basis of the consistency with necessity taken from
a particular population would seem to be effectively assuming that the distribution of cases
in this particular population is, in some sense, privileged.8

There is another view of this issue. Someone arguing that the sufficiency of ST is the
crucial matter to uncover might argue that the varying assessments of nearness to necessity—
in their guise of coverage—merely give us useful descriptive information about the empirical
importance of this pathway in the three datasets. Ragin has argued this position, arguing that
the best uses of the truth table analysis in QCA are “more descriptive”, providing “a basis
for causal interpretation at the individual case level”.9 Here the analysis of sufficiency is
prioritised and any subsequent assessment of the necessity of individual factors appearing
in solutions should depend not only on the numerical index of consistency with necessity
but should also entail “a good measure of corroborating substantive evidence and theoretical
argumentation”.10

Considering in this section a non-deterministic causal structure, we have shown again that
case weights matter. In the case of necessity, even when we assumed, initially, that we knew
that S and T are the important causal factors, and that we knew the causal consequences
for the outcome of their various conjunctions, we found the assessment of necessity of
some conditions and configurations varying across our three populations. We want now to
show how these weighting problems considered so far are reflected in a recent discussion
by Schneider and Wagemann of “hidden necessary conditions”. We have previously pointed
out some problems with their textbook discussion of “hidden necessary conditions” (Cooper
et al. 2014). We will revisit these, but then develop a more general perspective on one of the
issues they raise, drawing on our discussion earlier in this paper.

4 Schneider and Wagemann on “hidden necessary conditions” and inconsistent truth
table rows

So far, in thought experiments, we have considered the problems weights might cause given
two causal structures, one deterministic, one not. We will now discuss an example from
a prominent textbook on set theoretic methods (Schneider and Wagemann 2012) where the
generative causal structure is, as is often the case in empirical science, unknown to the analyst.
The focus in this section is on assessing quasi-necessity.

Having previously discussed “hidden necessary conditions” due to incoherent counter-
factuals in the context of limited diversity11 Schneider and Wagemann (2012) begin their
second section on “hidden necessary conditions” by arguing that such incoherent assump-
tions about remainders are not the only reason for the disappearance of necessary conditions.
They note that necessary conditions can disappear even from a conservative solution term

8 We will not discuss samples from populations in this paper, but clearly much of what we write has implica-
tions for the use of QCA with samples, especially where some cases are more or less represented than others
via sampling (see Glaesser and Cooper 2012). We should also note, concerning populations, that sometimes
there will be only one population. Some implications of this for the analysis of necessity are considered in
Sect. 5.
9 Personal communication (email), 10/11/14.
10 Personal communication (email), 10/11/14.
11 Cooper et al. (2014) also provide a critical discussion of Schneider and Wagemann’s arguments and
proposals re the treatment of necessary conditions given limited diversity.
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Table 7 Schneider and Wagemann’s (2012) Table 9.2

Rows Conditions Outcome

A B C Y Cases with Y Cases with ∼Y Consistency for Y

1 0 0 0 0 0 1 0

2 0 0 1 1 20 0 1

3 0 1 0 0 0 39 0

4 0 1 1 0 0 15 0

5 1 0 0 1 10 0 1

6 1 0 1 1 15 0 1

7 1 1 0 1 4 1 0.8

8 1 1 1 0 0 2 0

(their preferred term for what Ragin terms a complex solution). This can arise, they say, when
“inconsistent truth table rows are included in the logicalminimisation that contain the absence
of the necessary condition” (p. 225). By “inconsistent” rows, they refer to rows containing
cases where some achieve the outcome and some do not. They illustrate this possibility with
the hypothetical example reproduced here as Table7.

Schneider and Wagemann’s argument proceeds as follows. Looking at row 7 of Table7,
it can be seen that, of these five cases that are AB∼C, four have the outcome Y. This config-
uration is therefore quasi-sufficient for Y, with a consistency of 0.8. If we run a QCA on the
truth table in Table7 that allows row 7 to go forward (i.e., accepting a consistency of 0.8 as
adequate for quasi-sufficiency) we obtain the following minimised solution:

A∼C+ ∼BC => Y. (1)

The first term, A∼C, has a consistency with sufficiency of 0.93 and the second, ∼BC, of
1.0. As Schneider and Wagemann note, no single condition appears in both paths and one
might be “tempted to conclude there is no necessary condition for Y” (p. 226). They note,
however, that separate tests for necessary conditions show ∼B to be necessary for Y, with a
very high consistency of 0.92.12 They argue that, “based on the empirical evidence, we have
good reasons to consider∼B to be a relevant necessary condition for Y”. They argue (p. 226)
that ∼B disappears because it is “minimized from the sufficiency solution by matching row
5 of Table 9.2 (A∼B∼C) with the inconsistent row 7 (AB∼C) into the sufficient path A∼C.
. . . thus, the necessary condition disappears from the sufficiency solution because both the
former and the latter are not fully consistent.”

Our earlier discussion of the effects of the relative numbers of cases suggests this is far
from the whole story. To see why, consider a small change in the truth table, one that removes
the problem of inconsistency. Assume, contrary to what we see in Table7, that all five cases
in row 7 achieve the outcome Y. What then happens when we undertake a QCA that parallels
that reported by Schneider and Wagemann? On the basis of changing just one case from not
having to having the outcome, we obtain the same algebraic solution as in Eq.1 (though in
this case both terms are strictly sufficient, i.e., have consistencies of 1). And, once again, ∼B
is quasi-necessary for Y (with a consistency of 0.90 rather than 0.92).We have no inconsistent

12 45 of the 49 cases with the outcome Y have the condition ∼B.
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rows, but we still have the “problem”. Clearly, ∼B, when it is a quasi-necessary condition,
can disappear from the solution even in the absence of the inconsistency in row 7.

The problem of this hidden necessary condition is not then due to the inconsistency of row
7 per se. What then is its cause? Our earlier discussion suggests that the relative number of
cases per row may be a crucial factor: analysing deterministic datasets 1 and 2, we found that
a researcher focusing attention on the single condition S would find the condition S quasi-
necessary for dataset 2, but not for dataset 1, simply as a result of the differing distributions
of case numbers in the configurations. A glance at Schneider and Wagemann’s truth table
shows there are quite different numbers of cases in its various rows. It is therefore instructive
to undertake another analysis. If we increase the number of cases in row seven to 40, but
retain the proportion in this row achieving the outcome at 0.8, we obtain the same solution
for sufficiency (with the first term having a consistency of 0.84 and the second of 1), but
we now find that a test for the necessity of ∼B returns a consistency of only 0.58. ∼B is no
longer a quasi-necessary condition. The “problem” of its being a hidden necessary condition
disappears. The inconsistency of row 7 is not the fundamental problem. Even given this
inconsistency, we can remove the problem of the disappearance of ∼B by reweighting so
that it is no longer a necessary condition in the first place. This is what we found earlier when
we kept the proportion of cases within the configurations obtaining the outcome the same in
populations A–C (see Sect. 3), but varied the case numbers. Our varying of the numbers had
a marked effect on whether or not certain conditions or configurations of conditions passed
the threshold for quasi-necessity.

The fundamental problem is not due to inconsistencies per se (though these will certainly
modify the way it appears) but to the weight of cases in the rows of truth tables, coupled
with the manner in which the arithmetic of proportions works. Indeed, we can make the
problem much worse by running the analysis with just one case in row 7—a case which has
the outcome—and therefore with no inconsistency characterising this row. Doing this, we
obtain the solution for sufficiency in Eq.1 (with both terms having consistencies of 1) while
the consistency with necessity of ∼B rises to an almost perfect 0.98, higher than the 0.92
that provided the basis for Schneider and Wagemann’s arguments.

Clearly, Schneider and Wagemann, in choosing their example, have brought an important
issue to our attention. In our view, however, in concentrating on just the inconsistency,
they have not treated it in a general enough fashion. We also need to consider weights. To
explore the consequences of weighting for their example, we will now consider how several
consistency and coverage measures vary as we change the weighting of the rows in their
table. We will present two graphs that illustrate the general patterns we find as we vary the
number of cases in row 7 while holding the other case numbers constant. The first graph
(Fig. 4) maintains Schneider and Wagemann’s consistency of 0.8 for row 7. In the second
(Fig. 5) we move away from their focus on inconsistency and raise the consistency of row 7
to a perfect 1.0.

Figure4 shows how the consistency with necessity of ∼B falls away as we increase the
number of cases in row 7. Schneider andWagemann choose to have five cases in this row—a
small number in relation to the rows including ∼B that achieved the outcome (respectively
20, 10 and 15). It is important to note that, given the particular distribution of cases in the
other rows, the consistency with necessity of ∼B falls away much more quickly than does
that of the consistency of the solution for sufficiency itself. Once we have 25 cases in row 7
we find that the consistency with necessity of ∼B is below 0.7 and the original problem of
∼B being a (hidden) necessary condition begins to disappear.

Figure5, where the AB∼C row now has 100% consistency with sufficiency rather than
80%, shows a perhaps more striking pattern than Fig. 4. Here, looking at the situation where
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there are just five cases in row 7 (i.e., reproducing Schneider andWagemann’s case numbers),
we have a consistency with necessity of ∼B of 0.90—very close to that of 0.92 in Schneider
andWagemann’s original “inconsistent row” example. If we drop the cases in row 7 to 4 then,
even without any inconsistency, we are back to their result: a consistency with necessity of
∼B of 0.92 while ∼B still does not appear in all the terms in the solution for sufficiency. The
overall solution, A∼C+ ∼BC, maintains a perfect consistency of 1.0 here as the number
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of cases in row 7 is varied. There is a sense in which the inconsistent case introduced by
Schneider and Wagemann to make their argument concerning a hidden necessary condition
is actually irrelevant. If we delete just this case from the dataset, the row AB∼C (now with a
consistency of exactly 1) goes forward into the solutionA∼C+∼BC, and the consistencywith
necessity of ∼B remains at 0.92.13 Perhaps the most important general point to emphasise
about Fig. 5 is that, given perfect sufficiency for all of the rows of Table7, the necessity
index for ∼B changes as we vary the weight of cases in AB∼C. The coverage indices for the
two minimised terms in the solution also vary (but always add to 1). It makes sense to see
coverage here as indicating the relative empirical importance of the two pathways A∼C and
∼BC as the weights change.

We have shown by first considering hypothetical examples in Sects. 2 and 3 and then
discussing Schneider and Wagemann’s (2012) example that analytic work using QCA must
pay more attention to the weights of cases in the rows of truth tables than has been, to now,
usual. This is particularly important in the case of causally oriented analyses of necessity but,
in addition, when we cannot be sure we have a full and correctly specifiedmodel of the causal
structure we are exploring, the relative weights may also, as we have shown earlier, adversely
affect analyses of sufficiency. Schneider and Wagemann (2012), addressing situations where
the analysis of necessary conditions can go awry, have argued that the inconsistency in a row
of a truth table is a crucial factor. We have argued, by generalising their example, that the
crucial factor is actually not this inconsistency but the case weights characterising a truth
table. Their problem of a hidden quasi-necessary condition both can arise in the absence of
any such inconsistency and also fail to appear in the face of one.

Schneider andWagemann, arguing that this problem is due to the inconsistent row, propose
the “imperfect remedy” of increasing thresholds for consistency. They point out that had a
stricter threshold for sufficiency of 1.0 been used to analyse Table7, then the inconsistent
row AB∼C would not have been allowed into the minimisation process and the “necessary
condition ∼B would not thus have been logically minimised away”. However, as they note,
were the same threshold used for testing necessity, ∼B would no longer be a necessary
condition.Wehave shown that this problem is amore difficult one than they suggest, having its
roots not so much in inconsistent rows as in the distribution of cases across rows (even where
there are no inconsistencies at all). For this reason, even in truth tables with no inconsistent
rows, the problem needs to be at the forefront of a QCA-user’s mind.We therefore need more
discussion of how to deal with this problem.

5 What to do about this problem?

We have considered the difficulties that can arise if the issue of case weights is not taken seri-
ously. In the rest of the paper we will discuss what we might do to alleviate the problematic
effects of varying weights across populations. We will focus, given the space available, on
necessity, and consider it in the simplest context of having full knowledge of the causal struc-
ture.14 We start by considering the usefulness here of measures of empirical importance such
as coverage and relevance. We then develop an alternative approach that we first suggested
in Cooper et al. (2014).

13 Note that the coverage index for the necessity of ∼B (i.e., the extent to which ∼B is sufficient for the
outcome) remains at 0.978 (=45/46) for every point on both graphs. This is because the cases in row 7 are
irrelevant to its calculation.
14 In the case of sufficiency, our earlier discussion has shown the importance of having correct knowledge of
causes.
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Table 8 Society D Unhealthy
baby (∼Y)

Healthy
baby (Y)

Totals

Adequately nourished
mother (X)

25 3,000 3,025

Not adequately nourished
mother (∼X)

1,200 100 1,300

Totals 1,225 3,100 4,325

5.1 Measures of trivialness and relevance: a way forward?

Can the work that has been done on measures of coverage, triviality and relevance (Goertz
2006; Ragin 2006; Schneider and Wagemann 2012) offer us a way to address the issues
raised earlier? To explore this question, we will employ a thought experiment involving two
populations sharing the same causal structure. Consider Table8. This, we will assume for the
moment, is the full data from a small population (Society D) on the relation between nourish-
ment in pregnancy and the health of babies. We will also assume that there is an underlying
causal relation between maternal nourishment and a baby’s health. In this population the
majority of mothers (69.94%) are adequately nourished (our X). Most babies (71.68%) are
healthy (our Y).

Having an adequately nourished mother is close to being perfectly sufficient for the sub-
sequent health of the baby. In addition, when the mother is not adequately nourished, over
90% of babies are unhealthy. Maternal nourishment clearly matters. It is also clear that hav-
ing an adequately nourished mother is a quasi-necessary condition for being a healthy baby
(consistency of 0.968, coverage of 0.992). Adequate nourishment is both quasi-necessary
and quasi-sufficient for a healthy baby. Now we consider how some of the measures of the
trivialness and/or relevance of a necessary condition behave with these data.

Goertz (2006) argues that a necessary condition becomes more relevant as it becomes
more sufficient. Adequate nourishment passes this test, and, correspondingly, Ragin’s (2006)
coverage measure is high. Goertz also argues that the number of cases in the ∼X, ∼Y cell
allows us to assess the trivialness of a necessary condition. Zero cases in this cell indicate
trivialness. We have 1,200 cases here, far from zero. This is certainly large enough for us to
be able to check, for example, that ∼X tends to imply ∼Y which we want to see when X
tends to being necessary for Y.

Schneider andWagemann (2012, pp. 233–237) argue that X and Y being nearly constants
is another basis for a necessary condition being trivial. They offer a formula for assessing
trivialness and relevance (on a single scale) that addresses this problem, claiming (p. 237)
that this parameter: “… can be deemed a valid assessment of the relevance of a neces-
sary condition. Low values indicate trivialness and high values relevance.”15 Applying the
“Schneider-Wagemann formula16 for relevance”, where low scores on a 0–1 scale indicate
trivialness, and high scores relevance, then we obtain for the necessary condition “adequate
nourishment” a score of 0.981. Adequate nourishment is, on their measure, a relevant nec-
essary condition. All seems well so far, with the various parameters lining up.

15 The treatment of trivialness/relevance as a single scale (where relevance indicates non-trivialness) differ-
entiates their approach from that of Goertz. For him, relevance parallels Ragin’s coverage, i.e., the degree to
which a necessary condition is also sufficient. See footnote 12 on p. 237 of their book.
16 This is SUM(1−Xi)/SUM(1−MIN(Xi, Yi)). The key point here is that cases in the X, Y cell of a 2× 2
table contribute nothing to the summation. Schneider and Wagemann (2012) argue that their formula picks up
a source of trivialness missed by Ragin’s coverage measure.
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Table 9 Society E Unhealthy
baby (∼Y)

Healthy
baby (Y)

Totals

Adequately nourished
mother (X)

25 3,000 3,025

Not adequately nourished
mother (∼X)

12 1 13

Totals 37 3,001 3,038

Table 10 Various indices for
societies D and E

Indices Society D Society E

Consistency with necessity of X 0.968 0.9997

Coverage (re necessity) of X 0.992 0.992

S-W relevance measure for X 0.981 0.342

Consistency with sufficiency of X 0.992 0.992

Consistency with sufficiency of ∼X 0.077 0.077

But now consider our focus—weighting. Consider Table9, taken from a second society
(Society E), where just the weight of cases in the ∼X row happens to be different. The
consistency with quasi-sufficiency of X and ∼X for Y are unchanged. Consider the rows.
Having an adequately nourished mother is again close to being perfectly sufficient for the
subsequent health of the baby. Again, when themother is not adequately nourished, over 90%
of babies are unhealthy. Having an adequately nourished mother is a necessary condition
for being a healthy baby (consistency of almost 1, coverage of 0.992). Again, adequate
nourishment is quasi-necessary and quasi-sufficient for a healthy baby.

We don’t now have many cases in the ∼X∼Y cell, but enough, we think, to check that
∼X tends to imply ∼Y.17 By this test, and coverage, the necessary condition X remains non-
trivial and relevant. However, in Schneider and Wagemann’s terms, both X and Y are nearly
constants—the cases in this cell dominate—and, if we turn to their trivialness/relevance
formula, then we get for the quasi-necessary “adequate nourishment” a low score of 0.342.
Adequate nourishment, on their measure, is a trivial necessary condition. We can see that
their formula is sensitive to the weights of the X and ∼X rows, when nothing else, and
certainly not the causal consequences of X and∼X, is changed. Table10 summarises several
measures for the two societies.

There is a small difference in the necessity ofX forY, but onRagin’smeasure of importance
(coverage, or the sufficiency of X for Y), the necessary condition is equally important in the
two populations. The crucial difference is in the result from Schneider and Wagemann’s
formula. What should we make of this? Can it help us, for example, advise a policy maker?
Two possible views follow.

(1) A counterfactual thought experiment can be undertaken in which we shift the cases from
the ∼X row into the X row and then, assuming all else remains equal,18 allocate the
health outcomes to these new cases of X that the original cases of X have. The point of

17 Since, comparing Tables8 and 9, the 12 in the ∼X, ∼Y cell in Table9 forms a smaller proportion of the
total cases, we might perhaps argue that the problem of a potentially trivial necessary condition X is greater
for this second population—in the sense that this cell is nearer the zero that would indicate trivialness for
Goertz (2006).
18 This may not be the case in practice.
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this is to simulatewhatwould happen if wewere able, ceteris paribus, to removematernal
malnourishment from the population. Doing this for Table8, we produce a reduction in
the number of unhealthy babies from 1,225 to 36 (a 97.08% reduction). For Table9,
the corresponding result is a 32.14% reduction19, indicating a sense in which maternal
nutrition is a less important factor in society E than D. This experiment suggests that the
S-W formula can help us.

(2) There is, however, an alternative view. The results of the thought experiment required
us to have two populations to compare. It is easy to imagine a situation in which we
only have an analysis of one population. If this had happened to be the population in
Table9—and this seems just as likely a scenario as that in Table8—then the S-W formula
would have reported that X is a trivial, not a relevant necessary condition. In spite of this,
in this population, all else being equal, changing the nutritional status of the mothers in
the ∼X row would produce a substantial reduction in the numbers of unhealthy babies.
Twelve20 of the 12 unhealthy babies in the ∼X row would become healthy. The overall
number of unhealthy babies would see a 32.14% reduction. In these senses, it isn’t a
trivial condition.

Both populations are possible scenarios. In each the generative causal structure is the
same (i.e., X and ∼X generate the same proportions of the two possible outcomes). Only
the relative weights of X and ∼X cases differ. The reason, of course, that in our first thought
experiment we saw a greater reduction in unhealthy babies was simply because, while the
generative causal structure remained the same, proportionally more of these appeared in the
∼X row.21

What conclusion might we draw from this section? One possible lesson might be that it
is often worth introducing some policy-oriented thought experiments into the discussion of
suchmatters as trivialness and relevance.Much discussion of these matters rightly focuses on
the relative sizes of the sets X and Y, and related matters, and attempts to develop generally
applicable formulae. But we know from other summarising measures that it is important
to bear in mind the details of any particular case. The arithmetic average, for example,
is a useful measure, as long as the distribution being summarised isn’t bimodal, doesn’t
have many outliers, etc. In the same way as the latter features can cause problems for the
interpretation of an average, we think that the weights of the rows of truth tables can cause
problems when interpreting the meaning and implications of measures used in QCA. We
must be careful when employing formulaic approaches.

5.2 Another approach

With that advice in mind, we will indicate one way of thinking about the problem that can
keep things clear in one’smindwhen undertaking the analysis of truth tables. To illustrate this,
we will return to Table7. The suggested approach involves regarding each row as evidence
for the sufficiency or otherwise of the configuration it represents, while ignoring at this stage
finer details concerning the degree of consistency with sufficiency (or necessity).22 Assume,

19 This result is not sensitive to rescaling the tables so that they have the same total population.
20 More precisely, 11.89.
21 The coverage of ∼X for ∼Y is also much higher for society D than for society E: 0.980 versus 0.324.
In Ragin’s terms, ∼X has more empirical importance for ill health in society D than E, even though the
(probabilistic) causal consequences of ∼X for any individual remain the same.
22 Ragin’s (2008) truth table algorithm behaves similarly, in the analysis of sufficiency, in the way it minimises
a truth table.
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Table 11 Eight statements
concerning sufficiency (idealised
version of Table7)

Configurations with the
outcome Y

Configurations with the
outcome ∼Y

AB∼C => Y ABC => ∼Y

∼A∼BC => Y ∼A∼B∼C => ∼Y

A∼BC => Y ∼AB∼C => ∼Y

A∼B∼C => Y ∼ABC => ∼Y

for the sake of argument, that the evidence for each configuration in Table7 is considered
good enough to treat it as warrant for the eight claims in Table11.

Looking at the truth table in this way, we see that ∼B is not strictly a necessary condition
for Y, since AB∼C => Y. If we were to run a QCA on the temporary assumption that there
is just one case per row, we would obtain a consistency with necessity for ∼B for Y of 0.75,
reflecting the fact it appears in three of the four rows to the left of Table11. It can readily
be seen, however, that the higher the number of cases for the three lower rows to the left of
Table11 (∼A∼BC, A∼BC, A∼B∼C) in relation to those for the row AB∼C, the higher will
be the reported consistency with necessity of ∼B for Y, and the more serious the problem of
this quasi-necessary condition being hidden in the solution for sufficiency will appear to be.
If we allocate three cases each to the three lower rows on the left-hand side, leaving the row
AB∼C with just one, then consistency with necessity for ∼B for Y is 0.90. If, however, we
allocate 10 cases to AB∼C, while leaving the lower three rows with just one case each, then
the consistency with necessity for ∼B for Y falls to 0.23.

We can apply this same approach to the simple dataset from societiesD andE. In both cases
we can argue, let’s assume, that we have good enough evidence for the two (quasi-sufficiency)
claims:

(1) Adequately nourished mother => Healthy baby
(2) NOT (Adequately nourished mother) => NOT (healthy baby)

The first of these is equivalent to the left-hand side of Table11; the second to the right-
hand side. If we were to pretend for a moment that these are both sufficient rather than
(strong) quasi-sufficient claims, we could deduce from (2) the necessity of an “adequately
nourishedmother” for a healthy baby. Thiswould enable us to say, having temporarily ignored
the differing weights of X and ∼X, that, for both societies D and E, our X is sufficient
and necessary for Y (or, more strictly, quasi- in both cases). From this one-case-per-row
perspective, the weights of the cases in the rows of D and E make no difference to this
conclusion. We know, however, that when these sufficiency relations are expressed in a
particular simulated social setting characterised by some particular number of cases in the
X and ∼X rows, the quasi-necessity of X is, in some sense, of a different sort in D to that in
E, in so far as getting rid of malnourishment would remove a larger percentage of unhealthy
babies in D than in E.

5.3 A dilemma and a suggested response

Where does this leave us? We have shown, by analysing several simulated datasets, that the
weights of cases in the rows of a truth tablewill affect QCA results concerning the consistency
with necessity and, in some situations, sufficiency of a factor.

Should we worry about the fact that assessments of necessity, for example, vary as the
weights of cases in rows of truth tables vary? We suspect that the position a scholar will take
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Table 12 Four statements
concerning sufficiency (from
Sect. 2)

Configurations with the
outcome O

Configurations with the
outcome ∼O

ST => O S∼T => ∼O

∼ST => O ∼S∼T => ∼O

here will reflect their philosophical position. Someone of an empiricist frame of mind might
want to argue that the assessment of necessity should accurately reflect just the observed
patterns of data in whatever society is being studied. If the observed world, with our assumed
causal structure in Sect. 2 (resulting in implications 1–4), looks like our dataset 2, and if we
only enter S into our model, then S is quasi-sufficient and quasi-necessary for O, but if the
world looks like our dataset 1 then it is only quasi-sufficient.

On the other hand, a realist (e.g., Bhaskar 1975, 1979; Pawson 1989) might argue that if
we have adequate evidence from the study of the four types of case in datasets 1 and 2 in
Sect. 2 such that we can complete the one case per row table shown here as Table12, and,
better still, also have an understanding of plausible causal mechanisms that suggests T is
causally relevant and S not, then, irrespective of the weights of cases23 we can say that in
both worlds observed via these datasets, T is sufficient and necessary for O, and S is not
necessary for O. For the realist, we think, this would provide a single right answer.

Aswe saw in the previous section, we could also, in a similar way, argue for a single correct
answer in the analysis of the societies D and E. However, this single answer doesn’t capture
the important “empirical” difference we saw between these societies when we carried out
the thought experiment of removing malnourishment in mothers. We suggest the following
resolution of this dilemma.

When analysing necessary conditions within a strictly causal perspective, it is informative
to perform our one-case-per-row exercise. There seems to be a sense in which the answer this
giveswill be the right one, especially for a realist. If, in both societies D and E, there are causal
processes that lead to (i) (nearly) all babies of malnourished mothers being unhealthy and (ii)
(nearly) all babies of adequately nourished mothers being healthy, then it would seem right
to privilege these two sufficiency claims (which parallel and actually arise from generative
causal processes)—PLUS the implication of (i) that adequate maternal nourishment is also
necessary for a baby’s health—over any formulaic results such as those deriving from the
S-W relevance formula (which showed adequate nourishment to be a relevant necessary
condition in one of these societies but not in the other).

On the other hand, the S-W formula did capture an important difference of relevance to
policy makers in the two societies. Similarly, Ragin’s coverage measure for necessity also
captures something crucial for policy makers about the empirical importance of nourishment
in both societies (that it is not only necessary but also sufficient for a healthy outcome).
We therefore also suggest a second stage in which the nature of necessary conditions that
have passed the test of the one-case-per-row exercise are explored by means of the various
approaches developed by Ragin, Goertz and Schneider and Wagemann but also by means of
various thought experiments of the sort we have used here.24 In addition, wherever possible,

23 Beyond there being enough to warrant the causal claims.
24 Baumgartner, in his very important work on CNA—a configurational method that uses an alternative
minimisation algorithm to that employed in QCA—tends in his more fundamental papers effectively to assume
one case per row (e.g., Baumgartner 2013, 2014). However, in his application, with Epple, of CNA to the case
of the Swiss minarets referendum (Baumgartner and Epple 2014) this approach is combined with one that
takes account of case numbers when calculating coverage, etc.
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reference to plausible causal mechanisms is also likely to be helpful when judging what the
necessity of a condition actually comprises.

Ideally, of course, any scholar employing a Boolean approach will aim to establish a
disjunction of configurations jointly sufficient and necessary for an outcome (Baumgartner
2014). To achieve this s/he will need, as well as eliminating redundant factors, to avoid
omitting key explanatory factors from analytic models. In the latter ideal scenario, the issues
we have raised become less important, though the assessment of the necessity of individual
conditions will still vary with weights. Knowledge of plausible generative mechanisms,
whether derived from theory or from within-case studies, will be useful in approaching this
goal. However, most scholars will not achieve this degree of perfect explanatory knowledge
and therefore need, we believe, to take account of the issues we have discussed.

We have argued before (Cooper and Glaesser 2012; Cooper et al. 2014) that there is more
complexity in QCA than sometimes first meets the eye. Case weights add another layer of
complexity to those we have previously discussed. Our view, confirmed by the exercise we
have undertaken here, is that QCA users should always try to see beneath and around any
formulaic approaches in the set theoretic field. We hope our discussion here, and any further
work it encourages, will support such an approach.
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