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Abstract Gehrlein et al. (Math Soc Sci 66:352–365, 2013) have shown that an increase
of the voters’ preference diversity, as measured by the number k of preference types in a
voting situation, implies a decrease in the probability of having a Condorcet Winner. The
results offered in this paper indicate that this relationship is far from being so clear when we
consider instead the proximity of voting situations to having k distinct preference types. This
measure of agreement is compared to other measures of group mutual coherence previously
analyzed in Gehrlein (Condorcet’s paradox, Springer Publishing, Berlin, 2006). It turns out
that our results are completely consistent with the theory introduced by List (Good Soc
11:72–79, 2002) that is based on an important distinction between two different concepts of
agreement.
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1 Introduction

We consider elections on three candidates {A, B, C} in which each of n voters has one of the
six possible complete preference rankings on the candidates, as shown in Fig. 1.

Here, ni denotes the number of voters with the associated i th preference ranking on
candidates for 1 ≤ i ≤ 6 in a given election. A particular voting situation is denoted as n
and it specifies the number of voters that have each of the possible preference rankings in a
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Fig. 1 Complete preference
rankings on three candidates

A A B C B C
B C A A C B
C B C B A A

given election, such that n = ∑6
i=1 ni . Since voters have complete preference rankings, voter

indifference between candidates is prohibited and voters never have intransitive, or cyclic,
preferences on candidates.

Numerous studies have been conducted to consider various counterintuitive election out-
comes that are also called voting paradoxes that could be observed from voting situations in
elections with commonly used voting procedures. Nurmi (1999) surveysmany of the possible
voting paradoxes that have been described in the literature. All of these voting paradoxes are
interesting, since each suggests possible scenarios that could be pointed out from election
outcomes that might undermine the confidence of the electorate in the voting procedure that
was being used. As a result, many studies have been conducted to evaluate the likelihood with
which each of these voting paradoxes might be observed, and to consider different natural
conditions that might be assumed to hold on the preferences of the electorate that would
prohibit the existence of voting situations that lead to these paradoxical outcomes.

The voting paradox that has received the most attention in the literature is Condorcet’s
Paradox.Todescribe thiswidely studied paradox, let A � B denote the outcome that a specific
voter prefers Candidate A to Candidates B. Then AMB if more voters have A � B than
those who have B � A. If there are only two candidates in an election, simple majority rule
would elect A if AMB. Condorcet (1994) extended the notion of majority rule comparisons
to elections on three candidates by looking only at the pairwise majority comparisons on
the set of pairs of candidates, based on the relative rankings of the candidates in each of
the pairs within the voters’ complete ranking on all candidates. Using the rankings from
Fig. 1, we have for example AMB if n1 + n2 + n4 > n3 + n5 + n6. If AMB and AMC
in a three-candidate election, then Candidate A is the Condorcet Winner (CW), and such
a candidate is widely viewed as being the best choice for selection as the winner. As we
have defined the CW, this is a Strict CW, since there are no ties in the pairwise majority
rule relationships, and this must be true for complete preference rankings when n is odd.
Condorcet’s Paradox occurs when such a candidate does not exist, and Condorcet (1994)
provides an example where the pairwise majority rule is cyclic with AMB, BMC and CMA.
In such a situation, no matter which candidate is selected as a winner, there are a majority
of voters who would prefer to have some other candidate to be selected as the winner. Much
of what is known about the probability that Condorcet’s Paradox might occur is surveyed
in Gehrlein (2006).

As mentioned above, much work has been done to consider conditions on voters’ prefer-
ences that will restrict the probability that various paradoxes will occur. A recent analysis of
this type was performed in Gehrlein et al. (2013) as an extension of work that was initially
performed in Felsenthal et al. (1990), and it is based on the notion of voters’ preference
diversity in a voting situation. Felsenthal et al. (1990) developed definitions of the various
possible categories of voting situations that might exist in terms of the general size relation-
ships between the ni terms with K = {i : ni > 0, f or 1 ≤ i ≤ 6}. When k = #K , with #K
denoting the cardinality of K , k defines the number of coalitions of voter types that exist
with similar preference rankings, and no other voter has a preference ranking on candidates
that is in disagreement with these coalitions. Parameter k represents a simple measure of the
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Table 1 Values of
PCW (∞, I AC(k)) for
1 ≤ k ≤ 6

k PCW (∞, I AC(k))

1 1

2 1

3 39/40 = 0.9750

4 19/20 = 0.9500

5 15/16 = 0.9375

6 15/16 = 0.9375

degree of diversity among voters’ preferences, and there is a logical connection between the
value of Parameter k and the probability that a CW exists in voting situations.

To see this connection, it is obvious from the preference ranking definitions in Fig. 1 that
if k ≤ 2, then some candidate is never ranked as most preferred by any voter, some candidate
is never ranked as least preferred by any voter, and some candidate is never middle-ranked by
any voter. It is widely known that a Strict CW must exist under any of these three conditions
for three-candidate elections when n is odd (see Black 1958; Vickery 1960; Ward 1965), and
muchmore will be said about this later in this paper1. Condorcet’s Paradox can therefore only
exist if at least one Latin Square triple of rankings is contained in K for k ≥ 3, such that each
of the three candidates will be ranked as most preferred, least preferred or middle-ranked by
some voter in a triple of possible preference rankings. There are two possible Latin Square
triples of rankings for three-candidate rankings in Fig. 1 with {1,4,5}⊆ Kor {2,3,6}⊆ K .
The existence of a Latin Square is a necessary condition for Condorcet’s Paradox to exist, but
it is not a sufficient condition. The paradox probability must be nonzero for k = 3, 4 since it
is possible that only one of the two Latin Squares could be present in the associated voting
situations, but it is not necessarily true that a Latin Square must be present in this case. When
k = 5, one of the Latin Squares, but not both, must necessarily be included in the associated
voting situation to increase the likelihood of the existence of a majority rule cycle. And, both
of the possible Latin Square triples must be included in the associated voting situations when
k = 6, to allow the maximum possible number of scenarios for introducing majority rule
cycles into a voting situation. Intuition therefore strongly suggests that the probability that
Condorcet’s Paradox will exist should tend to increase as the degree of diversity of voters’
preference increases, as measured by Parameter k. Moreover, increasing values of k should
generally tend to introduce more degrees of freedom to allow for any voting paradox to be
introduced into voting situations.

The study by Gehrlein et al. (2013) evaluates the strength of this logical relationship
between Parameter k and the probability that a CW exists. The probability representations
in that study are based on an extension of the Impartial Anonymous Culture Condition
(IAC), which assumes that all possible voting situations for a specified n are equally likely
to be observed. The assumption I AC(k) instead assumes that Parameter k is specified for
a given n, and that all possible voting situations with that specified value of k are equally
likely to be observed. This assumption is then used to obtain the limiting probability values
PCW (∞, I AC(k)) that a CW exists as n → ∞. Table 1 summarizes the limiting results for
each 1 ≤ k ≤ 6 from Gehrlein et al. (2013).

1 When k ≤ 2, there are at most two distinct complete rankings that can represent voters’ preferences, so the
more preferred ranking of these two represents the preferences of a strict majority of voters for odd n. The
candidate that is most-preferred in that ranking must therefore be the CW.
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The results of Table 1 indicate that the expected general relationship between the diversity
of voters’ preferences, as measured by Parameter k, and the probability that A CW exists
does indeed hold up, since PCW (∞, I AC(k)) never increases as k increases.

Itwould certainly bepossible to perform this analysis byusingother assumptions that apply
to the likelihood that various voting situations are observed. One commonly used assumption
of this type in the literature is the Impartial Culture Condition (IC), which assumes that each
voter is independently and equally likely to have any of the possible complete preference
rankings on the candidates. We have chosen not to consider IC as a basis in our analysis for
two reasons. First, when the number of rankings on candidates is reduced from the situation
in which all possible complete preference rankings are allowable, the resulting limiting IC-
based probability representations typically converge to values of just zero or one. Second,
and most importantly, recent analysis in Gehrlein and Plassmann (2014) indicates that IAC
can be expected to produce probability estimates that exhibit the same patterns of behavior
for studies of this type as those patterns that are observed in data sets that are taken from
actual election results.

The primary focus of this current paper is to determine if the nature of this broad general
relationship between Parameter k and the probability that a CW exists will be observed
continues to remain valid under additional scrutiny. We find that the answer is that this is not
always the case, and we then analyze what additional restrictions must be assumed in order
for this relationship to become true. Results of the analysis give strong support to theories
that have been presented previously in the work of Christian List and his co-authors. That
is, there are multiple levels at which voters’ preference rankings in a voting situation might
tend to reflect degrees of mutual agreement, and the strongest levels of mutual agreement are
associated with scenarios in which the voters are generally able to come to an agreement on
a consistent listing of candidates along some common dimension of comparison.

2 Measuring the proximity of voting situations to meeting strict conditions

It was mentioned above that a sufficient restriction on three candidate voting situations to
require the existence of a CW is that some candidate is never ranked as least preferred by any
voter. Arrow (1963) showed that this restriction is equivalent to the well-known condition
of single-peaked preferences from Black (1958), who proved that single-peakedness was
sufficient to ensure the existence of a CW in three-candidate elections.

The notion of single-peaked preferences follows from a very natural model to describe
how individual voters form their preference rankings on candidates. Each voter has ameasure
of utility that is associated with each of the given candidates. Each voter then obtains their
associated complete preference ranking on candidates in the same order that the candidates
are ranked according to that voter’s decreasing utility values. For single-peakedness to apply,
all voters must be able to agree on a common ordering of candidates from left to right on a
given dimension, and each voter has some most preferred candidate with maximum utility
along this common ordering of candidates. Each voter’s utility for candidates must then
continuously decrease for candidates when moving in either to the left or right away from
their most preferred candidate in the common ordering. We note that ‘left’ and ‘right’ do not
necessarily correspond to the commonly used definitions of political leanings of candidates
in this discussion. It only refers to the relative geometric position of candidates along a line
that represents some dimension or characteristic.

Niemi (1969) performed an empirical study to try to explain why Condorcet’s Paradox
was not observed very frequently in empirical studies with a small number of candidates. The
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basic premisewas that voting situations only had to be ‘close’ to being perfectly single-peaked
to have a very high probability that a CW exists. His measure of ‘closeness’ or ‘proximity’
of a voting situation to being perfectly single-peaked was simply given as the minimum
proportion of all voters whose preferences must be ignored in order for the remaining voters
to have perfectly single-peaked preferences. If the preferences of a very small proportion
of voters must be ignored to meet this condition, the likelihood that a CW exists should be
expected to be quite high. As this minimum necessary proportion to be removed increases,
which means that voting situations are becoming farther removed from having perfectly
single-peaked preferences, the probability that a CW will be observed is then expected to
decrease consistently.

We apply the same concept from Niemi (1969) here and consider instead the minimum
proportion of voters whose preferences must be ignored in order to create a voting situation
with a specified value of Parameter k. Let PCW (∞, I ACk(α)) denote the limiting probability
that a CW exists when the minimum proportion α of voters must have their preferences
removed from a voting situation in order for the reduced voting situation to have a specified
Parameter k under the I ACk(α) assumption. The I ACk(α) assumption specifies that all
voting situations with the given value of α for the specified k are equally likely to be observed.
Following earlier discussion, if a voting situation has perfectly single-peaked preferences then
some candidate is never ranked as least preferred and therefore k ≤ 4. However, it is quite
possible that a voting situation can exist with k = 4 without reflecting preferences that are
single-peaked, such as when n1 = n5 = 0 with all other ni > 0. Changing the value of α

in PCW (∞, I AC4(α)) therefore represents a less restrictive condition in the current study
than did the proximity to perfect single-peakedness that is suggested in Niemi’s work.

We know that PCW (∞, I AC(k)) behaves as expected as k increases in Table 1. Consider-
ation now changes to whether or not PCW (∞, I ACk(α)) consistently behaves as we expect
when α increases to reflect voting situations that are farther removed from being perfectly
represented by a voting situation with a specified Parameter k.We discussed above the logical
link to this expectation between Niemi’s work and our case of k = 4, and we also pursue
this analysis for all other values of k. The first step of this analysis is to develop limiting
representations for PCW (∞, I ACk(α)) for each 1 ≤ k ≤ 5.

2.1 Limiting representations for PCW (∞, I ACk(α))

If we define x j = n j/n in the limit as n → ∞, a voting situation is described as a
6-tuple x = (x1, x2, . . . , x6) with nonnegative components such that

∑6
i=1 xi = 1. Then let

S(α,∞, k) denote the set of all voting situations that require exactly a minimum proportion
α of voters to be removed in order to have a reduced voting situation for which there are only
kremaining preference ranking types. For every voting situation x ∈ S(α,∞, k) there must
exist a J ⊂ {1, 2, . . . , 6} with #J = 6 − k such that

∑

j∈J

x j = α,
∑

l /∈J

xl = 1 − α, and x j ≤ xl for all j ∈ J and for all l /∈ J. (1)

It follows that S(α,∞, k) is 4-dimensional, and the space of all possible J is defined to have
a 4-dimensional volume C(α,∞, k), with:

C(α,∞, k) =
(

6
6 − k

)

CJ (α,∞, k) . (2)

Here, CJ (α,∞, k) is the 4-dimensional volume of the set of all voting situations that satisfy
the set of constraints in (1) for any given J ⊂ {1, 2, . . . , 6}with #J = 6−k. We note that any
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of the distinct sets of voting situations that are defined by (1) may overlap, but the dimension
of these corresponding intersections is less than four.

For each possible J , letC ′
J (α,∞, k, A),C ′

J (α,∞, k, B) andC ′
J (α,∞, k, C) respectively

denote the 4-dimensional volume of the subsets of all voting situations defined in (1) and for
which A, B and C are also respectively the CW. The volume of the set of all possible voting
situations that are defined by (1) for which a CW exists is then given by C

′
J (α,∞, k), with

C
′
J (α,∞, k) = CJ (α,∞, k, A) + CJ (α,∞, k, B) + CJ (α,∞, k, C).

The procedure that is used to develop a representation for C ′(α,∞, k) for a specified k as
the 4-dimensional volume of the collection of all subsets of voting situations defined by (1)
for which a CW exists is outlined in the following steps:

(i) Choose a subset J1 ⊂ {1, 2, . . . , 6} with #J1 = 6 − k.
(ii) Determine the total number λ1 of isomorphic J that can obtained from J1 by permuting

candidate names, and consider each of these J to be accounted for in later steps.
(iii) Compute the volume C

′
J1

(α,∞, k).
(iv) Continue cycling through this process to find J2, J3, . . . , Jt that have not been accounted

for by any Ji in previous steps of the process, where t is the total number of equivalent
sets of J that have been found by repeating the cycle a total of t times.

Then

C
′
J (α,∞, k) = λ1C

′
J1(α,∞, k) + λ2C

′
J2(α,∞, k) + · · · + λt C

′
Jt
(α,∞, k). (3)

Finally, PCW
k (∞, α, I AC) is obtained with the IAC assumption for the specified k from (2)

and (3) as:

PCW (∞, I ACk(α)) = C
′
J (α,∞, k)

C(α,∞, k)
. (4)

The volumes C(α,∞, k) and C
′
J (α,∞, k) are obtained by using a MAPLE program coded

by one of the authors (see Appendix for details).

2.1.1 The case of k = 5

The definitions that are given for α and in (1) lead to the restriction 0 ≤ α ≤ 1
6 when k = 5,

and initial computation leads to

C(α,∞, 5) = (6α − 1)4

4
, for 0 ≤ α ≤ 1

6
.

To obtain C
′
J (α,∞, 5), the initial J in (i) can be any of the singletons from {1,2,…,6}. Any

selection of J will yield equivalent domains for all other singletons in (ii) with λ1 = 6 and
t = 1. Results from (iii) and (3) lead to

C ′(α,∞, 5) = 15(6α − 1)4

64
, for 0 ≤ α ≤ 1

6
.

It then follows from (4) that

PCW (∞, I AC5(α)) = 15

16
, for 0 ≤ α <

1

6
. (5)
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Table 2 Equivalent domains of
voting situations with k = 4

Class (u) Ju Collection of equivalent J λu

1 {1,2} {1,2},{3,5},{4,6} 3

2 {1,3} {1,3},{2,4},{5,6} 3

3 {1,5} {1,5},{1,4},{2,3},{2,6},{3,6},{4,5} 6

4 {1,6} {1,6},{2,5},{3,4} 3

2.1.2 The case of k = 4

When k = 4, C(α,∞, 4) is given by:

C(α,∞, 4) = −170α4 + 245

2
α3 − 30α2 + 5

2
α, for 0 ≤ α ≤ 1

5
,

C(α,∞, 4) = 5

16
(3α − 1)4, for

1

5
≤ α ≤ 1

3
.

There are

(
6
2

)

= 15 possible J from pairs in {1,2,3,4,5,6} that can be partitioned into four

distinct classes of equivalent domains of voting situations that are defined by (1). Table 2
below presents theses classes:

The results after computation and algebraic reduction are as follows:

PCW (∞, I AC4(α)) = 2747α3 − 1924α2 + 462α − 38

40(4α − 1)(17α2 − 8α + 1)
, for 0 < α ≤ 1

6
, (6)

PCW (∞, I AC4(α)) = 8241α4 − 5988α3 + 1494α2 − 132α + 1

120α(4α − 1)(17α2 − 8α + 1)
, for

1

6
≤ α ≤ 1

5
,

PCW (∞, I AC4(α)) = 14

15
, for

1

5
≤ α <

1

3
.

2.1.3 The case of k = 3

For k = 3, C(α,∞, 3) is given by:

C(α,∞, 3) = 985

24
α4 − 85

3
α3 + 5α2, for 0 ≤ α ≤ 1

4
,

C(α,∞, 3) = −2165

72
α4 + 385

9
α3 − 65

3
α2 + 40

9
α − 5

18
, for

1

4
≤ α ≤ 2

5
,

C(α,∞, 3) = 5

6
(2α − 1)4, for

2

5
≤ α ≤ 1

2
.

There are

(
6
3

)

= 20 possible J triples from {1,2,3,4,5,6} that can be partitioned into four

distinct classes of equivalent domains of voting situations that are defined by (1). The partition
of equivalent domains is listed below in Table 3.
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Table 3 Equivalent domains of
voting situations with k = 3

Class
(u)

Ju Collection of equivalent J λu

1 {1,2,3} {1,2,3},{1,2,4},{1,3,5},{2,4,6},{3,5,6},{4,5,6} 6

2 {1,2,5} {1,2,5},{1,2,6},{1,4,6},{2,3,5},{3,4,5},{3,4,6} 6

3 {1,3,4} {1,3,4},{1,3,6},{1,5,6},{2,3,4},{2,4,5},{2,5,6} 6

4 {1,4,5} {1,4,5},{2,3,6} 2

The results are as follows:

PCW (∞, I AC3(α)) = 2041α2 − 1360α + 234

10(197α2 − 136α + 24)
, for 0 < α ≤ 1

6
, (7)

PCW (∞, I AC3(α)) = 6868α4 − 4576α3 + 720α2 + 24α − 1

40α2(197α2 − 136α + 24)
, for

1

6
≤ α ≤ 1

4
,

PCW (∞, I AC3(α)) = 18820α4 − 25696α3 + 12624α2 − 2536α + 157

40(433α4 − 616α3 + 312α2 − 64α + 4)
, for

1

4
≤ α ≤ 1

3
,

PCW (∞, I AC3(α)) = 17848α4 − 25696α3 + 13272α2 − 2824α + 193

40(433α4 − 616α3 + 312α2 − 64α + 4)
, for

1

3
≤ α ≤ 2

5
,

PCW (∞, I AC3(α)) = 149

160
, for

2

5
≤ α <

1

2
.

2.1.4 The case of k = 2

For k = 2, C(α,∞, 2) is given by:

C(α,∞, 2) = −245

48
α4 + 5

2
α3, for 0 ≤ α ≤ 1

3
,

C(α,∞, 2) = 485

24
α4 − 125

4
α3 + 135

8
α2 − 15

4
α + 5

16
, for

1

3
≤ α ≤ 1

2
,

C(α,∞, 2) = −955

24
α4 + 355

4
α3 − 585

8
α2 + 105

4
α − 55

16
, for

1

2
≤ α ≤ 3

5
,

C(α,∞, 2) = 5

16
(3α − 2)4, for

3

5
≤ α ≤ 2

3
.

There are 15 possible J ⊂ {1, 2, 3, 4, 5, 6} with #J = 4 that can be partitioned into four
distinct classes of equivalent domains of voting situations defined by (1). The partition of
equivalent domains is listed below in Table 4.

The resulting IAC probability representations are as follows:

PCW (∞, I AC2(α)) = 101α − 48

2(49α − 24)
, for 0 < α ≤ 1

4
, (8)
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Table 4 Equivalent domains of
voting situations with k = 2

Class (u) Ju Collection of equivalent J λu

1 {1,2,3,5} {1,2,3,5},{1,2,4,6},{3,4,5,6} 3

2 {1,2,3,4} {1,2,3,4},{1,3,5,6},{2,4,5,6} 3

3 {1,2,3,6} {1,2,3,6},{1,2,4,5},{1,3,4,5},
{1,4,5,6},{2,3,5,6},{2,3,4,6}

6

4 {1,2,5,6} {1,2,5,6},{1,3,4,6},{2,3,4,5} 3

PCW (∞, I AC2(α)) = 148α4 + 64α3 − 96α2 + 16α − 1

8α3(49α − 24)
, for

1

4
≤ α ≤ 1

3
,

PCW (∞, I AC2(α)) = 6712α4 − 10256α3 + 5448α2 − 1184α + 97

40(194α4 − 300α3 + 162α2 − 36α + 3)
, for

1

3
≤ α ≤ 1

2
,

PCW (∞, I AC2(α)) = 1991α4 − 4476α3 + 3726α2 − 1356α + 181

5(382α4 − 852α3 + 702α2 − 252α + 33)
, for

1

2
≤ α ≤ 3

5
,

PCW (∞, I AC2(α)) = 14

15
, for

3

5
≤ α <

2

3
.

2.1.5 The case of k = 1

For k = 1, C(α,∞, 1) is given by:

C(α,∞, 1) = α4

4
, for 0 ≤ α ≤ 1

2
,

C(α,∞, 1) = −79

4
α4 + 40α3 − 30α2 + 10α − 5

4
, for 1/2 ≤ α ≤ 2/3,

C(α,∞, 1) = 731

4
α4 − 500α3 + 510α2 − 230α + 155

4
, for 2/3 ≤ α ≤ 3/4,

C(α,∞, 1) = −1829

4
α4 + 1420α3 − 1650α2 + 850α − 655

4
, for 3/4 ≤ α ≤ 4/5,

C(α,∞, 1) = 1

4
(6α − 5)4, for 4/5 ≤ α ≤ 5/6.

There are six J ⊂ {1, 2, 3, 4, 5, 6} with #J = 5 that all have of equivalent domains of voting
situations defined by (1). Calculation and algebraic reduction lead to:

PCW (∞, I AC1(α)) = 1, for 0 < α ≤ 1/2, (9)

PCW (∞, I AC1(α)) = 632α4 − 1328α3 + 1044α2 − 368α + 49

8(79α4 − 160α3 + 120α2 − 40α + 5)
, for 1/2 ≤ α ≤ 2/3,
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Fig. 2 Graphs of PCW (∞, I ACk (α)) values for k = 1, 2, 3, 4, 5

PCW (∞, I AC1(α)) = 5200α4 − 14224α3 + 14508α2 − 6544α + 1103

8(731α4 − 2000α3 + 2040α2 − 920α + 155)
,

for 2/3 ≤ α ≤ 3/4,

PCW (∞, I AC1(α)) = 5(6112α4 − 19040α3 + 22200α2 − 11480α + 2221)

16(1829α4 − 5680α3 + 6600α2 − 3400α + 655)
,

for 3/4 ≤ α ≤ 4/5,

PCW (∞, I AC1(α)) = 15

16
, for

4

5
≤ α < 5/6.

2.2 Overall results from PCW (∞, I ACk(α)) representations

In order to visualize how the PCW (∞, I ACk(α)) values change as α increases, Fig. 2 shows
a graph representation of values that are obtained for k = 1, 2, 3, 4, 5 from (9), (8), (7), (6)
and (5) respectively.

Figure 2 shows that PCW (∞, I AC5(α)) is constant over the range of feasible α. The
probability PCW (∞, I ACk(α)) starts out according to expectation when it is maximized at
α = 0 for each = 1, 2, 3, 4; and it then consistently decreases as α increases according to
expectations to a minimum probability value at α

′
k . However, we then find a result contrary to

expectation when PCW (∞, I ACk(α)) consistently increases as α increases to an α value at
α

′′
k . Then, PCW (∞, I ACk(α)) remains at a constant value as α increases over the remainder

of its feasible interval. All results are summarized in Table 5.
The use of Parameter k to measure the degree of diversity among voters’ preferences is

indeed an adequate metric to provide an explanation for the change in the probability that a
CW exists in an overall broad context as the value of kchanges, as seen in Table 1. However,
it fails to act consistently according to expectations when changes in the proximity measure
α to having Parameter k in a voting situation are considered, as seen in Fig. 2. The connection
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Table 5 Summary of change points in PCW (∞, I ACk (α)) for k = 1, 2, 3, 4

k PCW (∞, I ACk (0)) α
′
k PCW (∞, I ACk (α

′
k )) α

′′
k PCW (∞, I ACk (α

′′
k ))

1 1.00000 0.13872 0.89320 0.20000 0.93750

2 1.00000 0.28788 0.90000 0.40000 0.93333

3 0.97500 0.50000 0.91798 0.60000 0.93125

4 0.95000 0.70818 0.93078 0.80000 0.93333

between the case with k = 4 and the condition of single-peaked preferences was discussed
in detail above, and we now consider this link in more detail.

The connection between the probability that Condorcet’s Paradox exists and measures of
group mutual coherence was analyzed in Gehrlein (2006). Group mutual coherence refers
to the degree to which a group of individuals form their individual preference rankings
on candidates according to some rational model, or logically coherent model, for decision
making. A candidate is perfectly Weak Positively Unifying if no voter ranks this candidate
last, so that no voter would consider the election of this candidate the worst possible outcome.
Parameter b is associated with this measure, and it is defined by

b = Min {n1 + n3, n2 + n4, n5 + n6} . (10)

TheMin function refers to the smallest sum contained in the brackets that follow it. Parameter
b measures the proximity of a voting situation to describing a perfectly Weak Positively Uni-
fying candidate by determining the fewest number of ballots on which one of the candidates
is ranked last. As noted above, any voting situation for which b = 0 in (10) describes voter
preferences that are perfectly single-peaked, and single-peakedness certainly represents a
model of group preference formation that would be viewed as representing a group of ratio-
nal individuals who are reflecting group mutual coherence. The ratio αb = b/n describes the
smallest proportion of voters whose preferences would have to be ignored in order for the
preferences of the remaining voters to be single-peaked.

Following the logic behind the earlier definition of PCW (∞, I ACk(α)) above, we let
PCW

S P (∞, I AC(αb)) denote the limiting probability that a CW will exist with the assump-
tion I AC(αb) that all voting situations with limiting Parameter b values given by αb are
equally likely to be observed. A limiting representation for PCW

S P (∞, I AC(αb)) is obtained
in Gehrlein (2005) as

PCW
S P (∞, I AC(αb)) = 11α3

b − 4α2
b − 3αb + 1

(1 − 3αb)(1 − 3α2
b)

, for 0 ≤ αb ≤ 1/4 (11)

PCW
S P (∞, I AC(αb)) = −18α3

b + 18α2
b − 6αb + 1

2αb(1 − 3α2
b)

, for 1/4 ≤ αb < 1/3.

The representations in (11) are used to develop the graph for PCW
S P (∞, I AC(αb)) in Fig. 3,

where it is clear that PCW
S P (∞, I AC(αb)) continuously decreases as αb increases over the

entire feasible range 0 ≤ αb < 1/3, exactly as intuition suggests.
So, PCW (∞, I AC4(α)) does not consistently decrease as α increases, while PCW

S P
(∞, IAC(αb)) does behave as intuition suggests. This happens regardless of the fact that
the existence of single-peaked preferences requires that k ≤ 4, and the conditional proba-
bility that k < 4 is of measure zero in the subspace of single-peaked voting situations with
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k ≤ 4, so that both conditions therefore effectively require that k = 4. Given that, behavior
that is inconsistent with intuition is observed with PCW (∞, I AC4(α)) and behavior that
is consistent with intuition is observed with PCW

S P (∞, I AC(αb)). So, there is some distinct
difference between these two conditions. An answer to this dilemma exists in some very
interesting work regarding possible ‘levels of agreement’ among groups of voters.

3 Substantive-level agreement and meta-level agreement

To describe this concept, List (2002) suggests that there are different levels of agreement that
can exist among voters’ preferences. Voters might have a substantive level agreement at some
elementary level, to the extent that their preferences on candidates tend to reflect some degree
of consistency. However, it is further argued that voters might go beyond this elementary level
of agreement to achieve a higher degree of meta-level agreement, to the extent that the voters
can also agree on some ‘common dimension’ alongwhich the candidates under consideration
can be conceptualized. But, while the voters might be largely in agreement as to what this
common dimension is and the relative placement of the candidates along it, theymight still be
in great disagreement as to what the optimal choice is from the candidates that are positioned
along that dimension. The concept of a mutual agreement with the positioning of candidates
along such a dimension is completely consistent with the notion of single-peaked preferences.
List (2002) then goes on to argue that when voters have agreement on such a meta-level, it
is significantly more likely to reduce occurrences of paradoxical results like Condorcet’s
Paradox than is some elementary agreement on a substantive level.

Dryzek and List (2003) extend the same notion, to argue that the existence of signifi-
cant complexity resulting from multiple relevant issues of consideration might rule out the
possibility of universal agreement among voters on any one of the common dimensions for
comparing candidates. But, they go on to suggest that the multiple relevant issue dimensions
could be coupled with the individual voter’s preference rankings on candidates on the issue
dimensions to lead to some “intra-dimensional single-peakedness”. They also discuss the
impact that deliberation and discussion might have on voters’ “preference structuration” that
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would increase the likelihood that any resulting voting situationwould bemore representative
of single-peaked preferences.

List et al. (2013) perform an empirical analysis of the impact that learning and deliberation
have on levels of agreement among groups of decision makers. Subjects were formed into
groups that were presented with background details from 13 different cases. The individuals
were polled to obtain their preferences on issues for the case they were considering both
before and after they were given time to have meaningful directed deliberations with other
members of their group regarding the relative benefits of issue selection for their case. The
level of substantive agreement in each group was measured by

∑k
i=1 γ 2

i for k issues where γi

is the proportion of voters who most prefer the i th issue, and this measure actually decreased
slightly in the study when comparing voter preferences before and after deliberation. How-
ever, the proportion of voters in each group that had preferences that were consistent with
single-peaked preferences increased as a result of deliberation. This change was strongest
for decision situations with lower degrees of salience, such that the issues were not perceived
as being as critical to the decision makers’ personal interests; and therefore would not have
been independently analyzed as thoroughly in advance by the decisionmakers. The increased
proximity to single-peakedness that resulted from learning and deliberation therefore tended
to be associated with a decrease in substantive level agreement. So, when the subjects delib-
erated longer, they tended to disagree more on a substantive level. But, on a meta-level “the
more they come to agree about what they are disagreeing about” (List et al. 2013, p. 89).

The conclusion to be reached from these analyses is that there is a definite connection
between the degree of voters’ understanding of the different ‘dimensions’ for comparing
candidates in an election and their propensity to have single-peaked preferences as a group.
The ability of voters to agree mutually on an ordering of candidates along some form of a
common dimension leads to a meta-level of agreement that is quite different than simple
agreement among preferences on a substantive level. Such a meta-level of agreement among
voters then has a significant positive impact on the probability that a CWwill exist, compared
to a scenario with simple substantive level agreement.

A related general theory was proposed earlier by Grofman and Uhlaner (1985) that is
based on the existence of possible voter “meta-preferences” in the formation of voting sit-
uations. A meta-preference scenario exists when the voters begin by having preferences for
characteristics of broadly defined processes that are then involved in the final determination
of their individual preferences on candidates, rather than simply just having preferences on
candidates. It is then suggested that the additional structure that would be present in the
resulting voting situations, with such mutually agreeable preferences on processes at work
the background during the stage of forming preferences on candidates, would lead to more
of an overall understanding of the entire decision process. This overall understanding would
then lead to more overall stability. Increased stability would presumably minimize the like-
lihood that events such as Condorcet’s Paradox would be observed. While suggesting that
such a higher level of mutual understanding of the process that leads to the development of
voting situations will lead to increased stability in the voting situations, this study does not
stress the importance of having an underlying scenario in which voters mutually agree upon
an ordering of candidates along some form of a common dimension.

The impact of the work of List and his coauthors on the observations that we have made
to this point is quite evident. When considering PCW (∞, I AC4(α)), a situation exists that is
strongly suggestive of the presence of some underlying substantive level of agreement among
voters, since the resulting voting situations indicate that only four of the possible preference
rankings are relevant, even with n → ∞. This definitely reflects a scenario that indicates the
existence of some degree of elementary rationality in the process by which voters are forming
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preference rankings on candidates, such that voters clearly do not appear to have been simply
randomly selecting an ordering on candidates without thinking about it. This substantive level
of agreement is then adequate in an overall sense to provide logically consistent changes in
PCW (∞, I AC(k)) as k increases in Table 1, but it does not provide an adequate framework
in a more refined sense to result in consistent changes in PCW (∞, I AC4(α)) as α changes
in Fig. 2.

Muchmore is impliedwhenattention is shifted to the considerationof PCW
S P (∞, I AC(αb)),

where it is similarly agreed that only four of the possible preference rankings are relevant.
A much stronger meta-level of agreement is suggested in this scenario, because it is further
specified that there are only four relevant preference rankings that are feasible in any voting
situation because some candidate does not tend to be ranked as least preferred by any of the
voters. Our measure α therefore acts as a proximity measure in a substantive level of agree-
ment scenario, while αb acts as measure of proximity in amore strongly structuredmeta-level
of agreement scenario. It is therefore quite reasonable to expect results that are related to
αb to behave more consistently than those related to α. Moreover, there is a much stronger
relationship between the decrease in PCW

S P (∞, I AC(αb)) values (1.00 to 0.750) over the
range of corresponding αb in Fig. 3 than we observe in the decrease in PCW (∞, I AC4(α))

values (0.950 to 0.931) over the range of corresponding α in Fig. 2.
The observation regarding the link between the current study and List’s work is further

reinforced by considering two other measures of group mutual coherence from Gehrlein
(2005).

4 Other measures of group mutual coherence

A candidate is perfectly Weak Negatively Unifying if no voter ranks this candidate as being
most preferred, so that all voters are unified in their opposition to having this candidate
chosen as the winner. Parameter t measures the proximity of a voting situation to suggesting
the existence of such a candidate by counting the minimum number of ballots on which the
same candidate is ranked first, with

t = Min {n1 + n2, n3 + n5, n4 + n6} . (12)

As t decreases in voting situations, a smaller proportion of voters ranks one of the candidates
as being the most preferred candidate. A voting situation for which t = 0 describes a voting
situation in which voters’ preferences are perfectly single-troughed or single-dipped, and
k ≤ 4 in such a voting situation. Following the definition of single-peaked preferences, when
voters’ preferences are single-dipped each voter has a least preferred candidate with mini-
mum utility along some common ordering of candidates. Each voter’s utility for candidates
must then continuously increase for candidates when moving in either direction left or right
from their least preferred candidate in the common ordering. The ratio αt = t/n that follows
from (12) defines the smallest share of voters whose preferences must be ignored for the pref-
erences of the remaining voters to be in complete agreement with single-dipped preferences.
Following the definition of PCW

S P (∞, I AC(αb)), let PCW
SD (∞, I AC(αt )) denote the limiting

probability that a CW exists when a minimum proportion αt of voters must be removed from
a voting situation to have the remaining voter preferences be perfectly single-dipped. It is
proved in Gehrlein (2005) that PCW

S P (∞, I AC(αb)) = PCW
SD (∞, I AC(αt )) when αb = αt .

So, all discussion above applies to a comparison of how PCW
SD (∞, I AC(αt )) changes with

αt relative to how PCW (∞, I AC4(α)) changes with α.
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A candidate is perfectly Polarizing if no voter ranks this candidate in second place, so
that all voters believe that this candidate is either the best or the worst of the three available
candidates. Parameter cmeasures the proximity of a voting situation to describing such a
candidate, by representing the smallest number of voters in a voting situation who rank the
same candidate in second place, with

c = Min {n1 + n6, n2 + n5, n3 + n4} . (13)

We again have k ≤ 4 when c = 0 for a voting situation, and there is an increase in the
number of voters who believe that one of the candidates is either the best or the worst of
the three candidates as the value of c decreases. It is important to note that there is no
connection between the existence of polarizing candidates and a model with some common
ordering of candidates along a dimension, as developed in the models that formed the basis
of single-peaked and single-dipped preferences.

The ratio αc = c/n that follows from (13) is therefore a measure of the proximity of a vot-
ing situation to representing a scenario inwhich voters have completely polarized preferences.
Gehrlein (2005) obtains a limiting representation PCW

PC (∞, I AC(αc)) for the probability that
a CW exists when a minimum proportion αc of voters must be removed from a voting situ-
ation to have the remaining voter preferences reflect the existence of a perfectly polarizing
candidate, with

PCW
PC (∞, I AC(αc)) = 139α3

c − 28α2
c − 54αc + 16

16(1 − 3αc)(1 − 3α2
c )

, for 0 ≤ αc ≤ 1/4 (14)

PCW
PC (∞, I AC(αc)) = 39α3

c − 63α2
c + 29αc − 1

16αc(1 − 3α2
c )

, for 1/4 ≤ αc < 1/3.

The representation on (14) was used to compute PCW
PC (∞, I AC(αc)) for the graph in Fig. 3,

which shows some interesting results. First, PCW
PC (∞, I AC(αc)) does consistently decreases

according to intuition as αc increases over its range. Figure 3 also shows a significantly
weaker relationship between the decrease in PCW

PC (∞, I AC(αc)) values (1.000 to 0.875)
over its range of corresponding αc than we observe in the decrease of PCW

S P (∞, I AC(αb))

values (1.000 to 0.750) over the range of corresponding αb. There are definite reasons to
explain why the strength of the relationship between PCW

PC (∞, I AC(αc)) and αc is weaker
than the strength of the relationship between PCW

S P (∞, I AC(αb)) and αb.

5 The difference between parameters b, t and c

The development of the model with a perfect Weak Positively Unifying Candidate, where
there is increased agreement that some candidate is not the least preferred as Parameters b
decreases, suggests that increases in the level of concordance or similarity among voters’
preferences should exist with decreases in Parameter b. In the same way, the model with a
perfect Weak Negatively Unifying Candidate, where there is increased agreement that some
candidate is not the most preferred as Parameters t decreases, also suggests that the level
of concordance among voters preferences will increase as Parameter t decreases. On the
other hand, our model with a Weak Polarizing candidate has a very different nature, and sug-
gests that voters’ preferences should become more antagonistic or divergent as Parameter c
decreases. It is not suggested that holding an election in such a scenario is a desirable situa-
tion, but such situations do exist and one would not describe the voters as acting irrationally
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while forming their preferences in such situations. So, when the phrase mutually coherent
preferences is used, it does not necessarily imply that voters’ preferences are mutually con-
cordant or in agreement. It means that voters’ preferences are being formed by an underlying
process that implies that voters are generally acting in a manner that can be exemplified by
a model of understandable behavior. It is of interest to see how levels of concordance and
antagonism actually change as Parameters b,t and c change.

The classical measure of Concordance from basic statistical analysis is given by Kendall’s
Coefficient of Concordance (Kendall and Smith 1939), which reduces in our case to H1(n),
with

H1(n) = (n5 + n6 − n1 − n2)
2 + (n2 + n4 − n3 − n5)

2 + (n1 + n3 − n4 − n6)
2

2n2 .

To determine how H1(n) changes as k changes for Parameters b, t and c; we start by devel-
oping a representation for the conditional expected value E [H1(n)|n, I ACS P (m)] of H1(n)

given the assumption of I ACS P (m) for n voters with a specified value of Parameter b equal
to m. This process starts by partitioning the space of all possible n into three subspaces for
each of Parameters b, t and c.

The three subspaces for which Parameter b has a specified value of m is defined by using
ni j to denote the sum ni + n j from Fig. 1:

Subspaceb
1 : n56 = m, n13 ≥ m and n24 ≥ m

Subspaceb
2 : n56 ≥ m + 1, n13 = m and n24 ≥ m

Subspaceb
3 : n56 ≥ m + 1, n13 ≥ m + 1 and n24 = m.

In order to accumulate the sum of all values, Sb
i (m, F(n)), of a function F(n) over all n

in Subspace iwhen Parameter b has a specified m, we use:

For Subspaceb1 :

Sb
1 (m, F(n)) =

∑n−2m

n13=m

∑n13

n3=0

∑n−m−n13

n4=0

∑m

n6=0
F(n), wi th m ≤ n

3
. (15)

To obtain F(n) from summation indexes in Subspaceb
1:

n3 = n3 n1 = n13 − n3 n6 = n6 n5 = m − n6

n4 = n4 n2 = n − m − n13 − n4

For Subspaceb2 :

Sb
2 (m, F(n)) =

∑n−2m

n56=m+1

∑n56

n5=0

∑m

n1=0

∑n−m−n56

n2=0
F(n), wi th m ≤ n − 1

3
. (16)

To obtain F(n) from summation indexes in Subspaceb
2:

n5 = n5 n6 = n56 − n5 n1 = n1 n3 = m − n1

n2 = n2 n4 = n − m − n56 − n2

For Subspaceb3 :

Sb
3 (m, F(n)) =

∑n−2m−1

n56=m+1

∑n56

n5=0

∑m

n4=0

∑n−m−n56

n3=0
F(n), wi th m ≤ n − 2

3
. (17)
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To obtain F(n) from summation indexes in Subspaceb
3:

n5 = n5 n6 = n56 − n5 n4 = n4 n2 = m − n4

n3 = n3 n1 = n − m − n56 − n3.

In order to obtain a count of the total number of possible voting situations forwhich Parameter
b has a value of m, we use F(n) = 1 in (15), (16) and (17), and after reduction:

Sb
1 (m, 1) = (n + 1 − 3m)(m + 1) [(n + 1)(n + 5) − 3m(m + 1)]

6
(18)

Sb
2 (m, 1) = (n − 3m)(m + 1) [(n + 1)(n + 5) − 3m(m + 2)]

6

Sb
3 (m, 1) = (n − 1 − 3m)(m + 1) [(n + 1)(n + 6) − 3m(m + 3)]

6
.

By using all of this with the well-known fact that the total number of voting situations

for n voters is given by
[∏5

i=1(n + i)
]
/120, we obtain a representation for the probability,

Pb(n, m), that Parameter b has a value equal to m for n voters with IAC:

Pb(n, m) =
∑3

i=1 Sb
i (m, 1)

[∏5
i=1(n + i)

]
/120

= 60(n − 3m)(m + 1) [(n + 1)(n + 5) − 3m(m + 2)]

(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)
,

f or m ≤ n − 1

3
. (19)

The same procedure that was used above can be used to partition the space of possible voting
situations for which Parameter c has a specified value of m:

Subspacec
1 : n34 = m, n16 ≥ m and n25 ≥ m

Subspacec
2 : n34 ≥ m + 1, n16 = m and n25 ≥ m

Subspacec
3 : n34 ≥ m + 1, n16 ≥ m + 1 and n25 = m.

As above, the sum of all values of a function F(n) over all n in Subspace iwhen Parameter
c has a specified m, is denoted Sc

i (m, F(n)), with:

For Subspacec1:

Sc
1(m, F(n)) =

∑n−2m

n16=m

∑n16

n1=0

∑n−m−n16

n2=0

∑m

n3=0
F(n), wi th m ≤ n

3
. (20)

To obtain F(n) from summation indexes in Subspacec
1:

n1 = n1 n6 = n16 − n1 n3 = n3 n4 = m − n3

n2 = n2 n5 = n − m − n16 − n2

For Subspacec2:

Sc
2(m, F(n)) =

∑n−2m

n34=m+1

∑n34

n4=0

∑m

n1=0

∑n−m−n34

n2=0
F(n), wi th m ≤ n − 1

3
. (21)
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To obtain F(n) from summation indexes in Subspacec
2:

n4 = n4 n3 = n34 − n4 n1 = n1 n6 = m − n1

n2 = n2 n5 = n − m − n34 − n2

For Subspacec3:

Sc
3(m, F(n)) =

∑n−2m−1

n34=m+1

∑n34

n4=0

∑m

n2=0

∑n−m−n34

n1=0
F(n), wi th m ≤ n − 2

3
. (22)

To obtain F(n) from summation indexes in Subspacec
3:

n4 = n4 n3 = n34 − n4 n2 = n2 n5 = m − n2

n1 = n1 n6 = n − m − n34 − n1.

After calculations are performed, we find Pc(n, m) = Pb(n, m). This result verifies the
findings in Gehrlein (2005), but it is reproduced here since the IAC-space partitioning process
that is used for Parameter cwill be very useful in later discussion. Simple symmetry arguments
can be applied to show that Pt (n, m) = Pb(n, m).

A representation for E [H1(n)|n, I ACS P (m)] is then obtained by following the logic that
led to (19) with (15), (16) and (17), and

E [H1(n)|n, I ACS P (m)] =
∑3

i=1 Sb
i (m, H1(n))

∑3
i=1 Sb

i (m, 1)
, f or m ≤ n − 1

3
.

The resulting representation was obtained, but it is very complex, and it was verified by
computer enumeration for several n. We set k = αkn and then consider the limiting case as
n → ∞ to obtain E [H1(n)|∞, I ACS P (αb)], with

E [H1(n)|∞, I ACS P (αb)] = 1044α4
b − 957α3

b + 121α2
b + 87αb − 21

60(3α2
b − 1)

, for 0≤αb <1/3.

(23)

Based on the definition of H1(n) it follows obviously from Fig. 1 that

E [H1(n)|∞, I ACSD(αt )] = E [H1(n)|∞, I ACS P (αb)] .

We also obtain a representation for E [H1(n)|n, I ACPC (m)] with Parameter c for finite n
by using the Sc

i (m, H1(n)) for 1 ≤ i ≤ 3 from (20), (21) and (22), with

E [H1(n)|n, I ACPC (m)] =
∑3

i=1 Sc
i (m, H1(n))

∑3
i=1 Sc

i (m, 1)
, f or m ≤ n − 1

3
.

The resulting representation is very complex, but it was verified by computer enumeration.
When attention is restricted to the limiting case, we find

E [H1(n)|∞, I ACPC (αc)] = 72α4
c − 66α3

c + 13α2
c + 6αc − 3

15(3α2
c − 1)

, for 0 ≤ αc < 1/3. (24)

Computed values of E [H1(n)|∞, I ACS P (αb)] and E [H1(n)|∞, I ACPC (αc)] are obtained
from (23) and (24) respectively for each αb, αc = 0(.03).33 and the results are shown in
graphical form in Fig. 4.
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It is clearly observed in Fig. 4 that there is a consistent decrease in the expected value of
H1(n) as each of αb, αt and αc increases. However, the relationship between the expected
value of H1(n) and αb, and therefore αt , is much stronger than the relationship between the
expected value of H1(n) and αc.

As noted above, the opposite effect of concordance of voters’ preferences is the degree of
antagonism that exists among voters’ preferences, and Kuga and Nagatani (1974) conducted
an analysis of the relationship between the degree of antagonism that is present in voting
situation and the probability that a CW exists. Their measure of antagonism is given by
H2(n), with

H2(n)

= 4 [(n1 + n2 + n4)(n3 + n5 + n6) + (n1 + n2 + n3)(n4 + n5 + n6) + (n1 + n3 + n5)(n2 + n4 + n6)]

3(n − 1)(n + 1)
,

for odd n.

It was proved in their analysis in the limit as n → ∞ with IAC that a negative correlation
exists between H2(n) and the probability that a CW exists.

Following the discussion above, we now consider the relationship between the condi-
tional expected value of H2(n) and specified values of Parameters b, t and c. The resulting
representation for E [H2(n)|n, I ACS P (m)] and E [H2(n)|n, I ACS P (m)] are also very com-
plicated, but they have been verified by enumeration for several values of n. The limiting
representations are given by

E [H2(n)|∞, I ACS P (αb)] = 2(72α4
b − 66α3

b − 5α2
b + 6αb + 3)

9(1 − 3α2
b)

, for 0 ≤ αb < 1/3.

(25)

E [H2(n)|∞, I ACPC (αc)] = 2(36α4
c − 33α3

c − 16α2
c + 3αc + 6)

15(1 − 3α2
c )

, for 0 ≤ αc < 1/3.

(26)
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We note that E [H2(n)|∞, I ACPC (αc)] + E [H1(n)|∞, I ACPC (αc)] = 1, but it is also
found that this result only holds in the limit as n → ∞.

Computed values of E [H2(n)|∞, I ACS P (αb)] and E [H2(n)|∞, I ACPC (αc)] are
obtained from (25) and (26) respectively for each αb, αc = 0(.03).33 and the numerical
results are displayed graphically in Fig. 4, where it is clearly observed that there is a consis-
tent increase in the expected value of H2(n) as each ofαb,αt andαc increases.Aswe observed
above for H1(n), the relationship between the expected value of H2(n) and αb, and therefore
αt , is much stronger than the relationship between the expected value of H2(n) and αc.

We observe that both Parameters b and t are much more strongly correlated to mea-
sures of both expected concordance and expected antagonism than is Parameter c. It was
mentioned above that Kuga and Nagatani (1974) proved that there is a negative correlation
between H2(n) and the probability that a CW exists as n → ∞ with IAC. The results of
Fig. 4 tell us that there is a much stronger relationship between both Parameters b and t to
H2(n) than we observe between Parameter c and H2(n). So, the much stronger relationship
that is observed between PCW

S P (∞, I AC(αb))
[
PCW

SD (∞, I AC(αt ))
]
and αb [αt ] than that

observed between PCW
PC (∞, I AC(αc)) and αc in Fig. 3 is to be quite expected. A negative

correlation between antagonism and the probability that a CW exists logically corresponds
to a positive correlation between concordance and the probability that a CW exists. So, the
same arguments can be made on the basis of considering changes in expected concordance
values of H1(n) in Fig. 4, compared to the probabilities that a CW exists in Fig. 3.

6 Conclusion

Our results are displaying three different levels of agreement, which have three correspond-
ing levels of impact on the probability that a CW exists, and all are completely consistent
with the theory proposed by List and his coauthors. A substantive level of agreement is found
with the basic assumption that only four of the preference rankings are considered to be
feasible preference rankings in voting situations. This assumption provides an adequate level
of some elementary agreement among voters’ preferences to induce PCW (∞, I AC(k)) to
consistently change in an expected fashion as k increases, but it then fails to provide suf-
ficient structure to voters’ preferences to result in the observation of consistent changes in
PCW (∞, I AC4(α)) as α changes as a proximity measure.

The models based on Parameters b and t provide significantly more structure to voters’
preferences to yield an underlying common ordering of candidates along some dimension,
as implied by single-peakedness and single-dippedness respectively. These two models com-
pletely conform to the requirements for meta-level agreement, and they produce the strongest
relationship between the associated parameter values and the probability that a CW exists.

We find that themodel based on Parameter c falls between these two extreme cases. It does
reflect a model in which voters can be viewed as forming preferences on a common rational
basis. This model provides an adequate logical structure to voters’ preferences to yield a
consistent relationship between changes in Parameter c and the probability that a CW exists.
However, it falls short of requiring the existence of a common ordering of candidates along a
common dimension, as suggested for a completemeta-level agreement in thework of List and
his coauthors; and we therefore do not observe as strong a relationship between Parameter c
and the probability that a CW exists as we do with the models based on Parameters b and t .

The results that have been obtained in this current study are obviously applicable only
to the case of three-candidate elections. It is generally accepted that increasing the number
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of candidates will significantly increase the likelihood that any paradoxical voting outcomes
might beobserved.While the typeof analysis that is presentedhere is not easily extended to the
consideration of more than three candidates, it is very tempting to speculate that conditions
approaching single-peaked preferences or single-dipped preferences would have an even
more dramatic impact on the probability that a CW exists for more than three candidates than
we have just observed.

Appendix: Volume computation

Given J ⊂ {1, 2, . . . , 6} with #J = 6 − k, let SJ(α,∞, k) be the set of all voting situations
that satisfy the set of constraints in (1). One way to evaluate the 4-dimensional volume
CJ(α,∞, k) of SJ(α,∞, k) proceeds as follows:

Step 1 Rewrite all the constraints that defined SJ (α,∞, k)in terms of a 4-component
vector y. To achieve this, choose s ∈ J and t /∈ J ; then rewrite each constraints in (1) taking
into account that xs = α + xs − ∑

j∈J x j and xt = 1 − α + xt − ∑
j /∈J x j . The new set

of constraints denoted by SJ (y, α,∞, k) now depends only on the 4-component vector y =
(x j ) j �=s,t and each constraint can be put in the standard form c j y ≤ α j , 1 ≤ j ≤ p where c j

is a 4-component vector, α j is an affine function of the parameter α and p is the total number
of such constraints.

Step 2 Find the set V(J,y) of all vertices of SJ (y, α,∞, k). To do this, consider any
subset { j1, j2, j3, j4} of {1, 2, . . . , p} such that c j1 , c j2 , c j3 and c j4 are linearly independent
and let v be the unique solution to c j1 y = α j1 , c j2 y = α j2 , c j3 y = α j3 and c j4 y = α j4 .
Note that v may not be a vertex of SJ (y, α,∞, k) since there may still exist some other
constraints c j y = α j , j �= j1, j2, j3, j4 that should be satisfied by v. Thus v is called a
potential vertex and is affected a validity domain that consists in the set

Rv = {c jv ≤ α j , for all j �= j1, j2, j3, j4 }

Since each α j is an affine function of α, each Rv is either empty or a union of some real
ranges on α ∈ [0, 1]. Let Iv be the collection of all r ∈ [0, 1] such that r is a bound of an
interval in the validity domain of v. Collecting all bounds r from all validity domains over
potential vertices in a single finite subset I = {r1, r2, . . . , rq} of [0,1] with r j < r j+1, the set
V (J, y) of all vertices of SJ (y, α,∞, k) for r j < α < r j+1 is the set of all potential vertices
the validity domains of which contain the interval (r j , r j+1).

Step 3 Find a triangulation of SJ (y, α,∞, k)to derive the volume. Note that each facet
Fj of SJ (y, α,∞, k) corresponds to at least one constraint c j y ≤ α j from the definition
of SJ (y, α,∞, k). Each vertex can then be attached to the subset of facets it belongs to.
Choosing a vertex, said v1, from V (J, y),a dissection of SJ (y, α,∞, k) is obtained by
considering all pyramids v1Fj with apex v1 and bases Fj such that v1 is out of Fj . This is in
fact the initial step of the well knownCohen andHickey algorithm of triangulating a polytope
(Cohen and Hickey 1979). This operation is then applied recursively to find a triangulation
of SJ (y, α,∞, k) into simplices, each containing five points that are affine independent.
Finally the volume of SJ (y, α,∞, k) is the sum of the volumes of each simplex obtained
in its triangulation using the following formula of the 4-dimensional volume of a simplex
�(a0, a1, a2, a3, a4, a5) :

vol(�(a0, a1, a2, a3, a4, a5)) = |det(a1 − a0, a2 − a0, a3 − a0, a4 − a0, a5 − a0)|
4! . (27)
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Table 6 Vertices of
SJ (y, α, ∞, 4) and their
repartition on facets

Vertices Components Facets for the vertex

v1 (α, α, α, 0) 3,4,5,10

v2 (α, α, α, α) 6,7,8,9

v3 (α, α, 1 − 4α, 0) 2,3,4,10

v4 (α, α, 1 − 4α, , α) 1,6,7,9

v5 (α, 1 − 4α, α, 0) 2,3,5,10

v6 (α, 1 − 4α, α, α) 1,6,8,9

v7
(
α
2 , α

2 , α
2 , α

2
)

3,4,5,6,7,8

v8
(

α
2 , α

2 , 1 − 5α
2 , α

2

)
1,2,3,4,6,7

v9
(

α
2 , 1 − 5α

2 , α
2 , α

2

)
1,2,3,5,6,8

v10 (1 − 4α, α, 0) 2,4,5,10

v11 (1 − 4α, α, α) 1,7,8,9

v12
(
1 − 5α

2 , α
2 , α

2 , α
2

)
1,2,4,5,7,8

For illustration, we now apply this method to evaluate the 4-dimensional volume of
SJ (α,∞, 4) with J = {6, 5}. By setting x6 = α − x5, x1 = 1 − α − x2 − x3 − x4 and
y = (x2, x3, x4, x5), SJ (α,∞, 4) is represented by set SJ (y, α,∞, 4) of all 4-component
vectors y such that:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1
1 1 1 −1

−1 0 0 −1
0 −1 0 −1
0 0 −1 −1

−1 0 0 1
0 −1 0 1
0 0 −1 1
0 0 0 1
0 0 0 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

y ≤

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − α

1 − 2α
−α

−α

−α

0
0
0
α

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(28)

By solving all possible combinations of four equations extracted from the list of constraints
in (28), the collection of all validity domains shows that the set of vertices is stable for α in
[0,1/5] and [1/5,1/3] respectively. Moreover, the set of constraints in (28) is not feasible for
α >1/3 and is of dimension lower than 4 for α =0 or α =1/3. For α in [0,1/5], the list of
vertices is provided in Table 6.

A facet Fj of SJ (y, α,∞, 4) corresponds to the constraint c j y = α j obtained by saturating
the j thconstraint in (28). In Table 6, the presence of j in the column “Facets for the vertex”
means that the corresponding vertex lays on Fj . Starting with v12 as the initial vertex, we
obtain a triangulation of SJ (y, α,∞, 4) into eight simplexes as shown in Fig. 5.

In Fig. 5, each simplex in the triangulation corresponds to a terminal node and consists in
the set of the five vertices linked to that node. The 4-dimensional volume of SJ(y, α,∞, 4)
is then derived by performing (27) for each of the eight simplexes obtained:

vol(SJ (y, α,∞, 4)) = 1

6
α(1 − 4α)(17α2 − 8α + 1) for 0 <α <

1

5
.
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Fig. 5 A triangulation of SJ (y, α,∞, 4)

Since there are fifteen possible J ⊂ {1, 2, . . . , 6} with #J = 2, then for 0 < α < 1
5

C(α,∞, 4) = 15vol(SJ (y, α,∞, 4))

= −170α4 + 245

2
α3 − 30α2 + 5

2
α.

The same technique applies for α in [1/5,1/3], and subsequently for all the other sets of
voting situations considered in the paper. To overcome the difficulty due to a huge number
of potential vertices and multiple validity domains for distinct value k = 5,4,3,2,1, we have
built a program using MAPLE codes for computerized evaluations.2

It is worth noticing that all the results we have obtained have been checked by using an
alternative technique based on Barvinok algorithm (see e.g. Lepelley et al. 2008). In this case,
we rewrite each set of constraints in terms of m and n j , j = 1, 2, . . . , 6 instead of α = m/n
and x j = n j/n, where m denotes the minimum number of voters we should remove from
a voting situation in order for the reduced voting situation to have kremaining preference
ranking types. We then derive, via Barvinok algorithm, the quasi polynomial representing
the total number of integer points that satisfy the set of constraints as a function of m and n.
The corresponding volume is the coefficient of the leading term in n when m is replaced by
αn in that representation.
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