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Abstract The paper describes a mixture distribution generated by Beta Binomial and Uni-
form random variables to allow for a possible overdispersion in surveys when the response
of interest is an ordinal variable. This approach considers the joint presence of feeling,
uncertainty and a possible dispersion sometimes present in the evaluation contexts. After
a discussion of the main properties of this class of models, asymptotic likelihood methods
have been applied for efficient statistical inference. The implementation on the survey on
household income and wealth (SHIW) will confirm the versatility of this distribution and the
usefulness to distinguish the determinants of uncertainty and overdispersion in real data.
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1 Introduction

In categorical data analysis it is often found that data exhibit greater variability than predicted
by the implicit mean-variance relationship. This phenomenon, denoted as overdispersion, is
fairly common in qualitative data and it is usually associated with Poisson, multinomial and
other exponential family models. Failure to take account of this process can lead to serious
underestimation of standard errors and misleading inference for the regression parameters.
Consequently, several approaches have been proposed for handling such a problem as dis-
cussed by Finney (1971), Cox (1983), McCullagh and Nelder (1989), among others. However,
only few papers concern the overdispersion in ordinal data for which some generalizations
of the binary logistic regression are usually introduced.

As arule, overdispersion can be due to interviewer effects, hidden clusters, different num-
ber of categories for each response or, more generally, to the absence of relevant predictors in
the model or design effects, to reasons related to scale usage heterogeneity (Greenleaf 1992;
Rossi et al. 2001), or to a subjective interpretation of the wording of categories (Farewell
1982). Thus, Cochran (1977) considers how to adjust the variance of an estimator to account
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for the sampling design and Hinde and Demétrio (1998) implement a two-stage model for the
response belonging to the linear exponential family. However, the residual variation, beyond
that predicted by the mean, may be so large that no model but the saturated one appears
adequate for the data (Fitzmaurice et al. 1997).

In this context we propose a parametric approach based on a mixture distribution which
extends CUB models, proposed by Piccolo (2003) and discussed by Iannario and Piccolo
(2012). These models are a combination of a discrete Uniform and a shifted Binomial ran-
dom variables to take uncertainty and feeling components of respondents into account. The
generalized model has been denoted as CUBE (Iannario 2014a) for the presence of a Beta-
Binomial distribution instead of the Binomial one in order to include the overdispersion
effect.

The main goal of the paper is to discuss how overdispersion in ordinal data surveys has
to be considered with attention since its omission induces an increase of the uncertainty
and thus biases the interpretation of the possible determinants of the latent variables which
characterize the process of response. Some empirical evidence, derived from both simulated
and real data, will support this assertion and suggest to consider CUBE models as a consistent
formulation for the analysis of ordinal data.

The paper is organized as follows. Section 2 describes the notation and the main charac-
teristics of CUBE models, including some inferential issues. Section 3 is mainly devoted to
the interpretation of parameters. Section 4 summarizes the main results obtained from the
investigation of these models on a simulated data set and mainly on the SHIW, a periodic
survey organized by the Bank of Italy to achieve information on income and wealth of Italian
households. Some concluding remarks end the paper.

2 A finite mixture model for ordinal data

In a given survey, we interpret the ordinal response as a random variable R whose proba-
bility distribution may be defined as the convex combination of two components related to
the personal feeling of the subject towards the item and an inherent uncertainty derived by
a constrained choice among an ordered list of alternatives. Indeed, when a rater expresses
his/her evaluation, several facts are involved: rater’s personal attitudes, educational back-
ground, knowledge about the question, emotional, cognitive and behavioral aspects, such as
the strategies developed to deal with uncertainty (Sartori and Ceschi 2011) and/or the ten-
dencies to respond systematically to questionnaire items on some criterion other than what
the items were specifically designed to measure (Baumgartner and Steenback 2001).

If we further assume that an extra dispersion is present among respondents as a con-
sequence of personal attitude then a (shifted) Beta-Binomial may be introduced since this
random variable assumes a changeable opinion among the subjects (Chatfield and Good-
hart 1970). In this way, a more general approach would consider a Combination of discrete
Uniform and BEta-Binomial distributions (which produces the acronym CUBE) with prob-
ability mass function: Pr(R =r) = wg.(§,¢) + (1 — ) pf], r =1,2,...,m, where
gr (&, ¢) is the shifted Beta Binomial distribution parameterized by:

r m—r+1
[[To-é&+oxk—D1 J] E+¢*k—1)]
m—1 k=1 k=1
g€ ¢) = (r - 1) — :
[1—&+¢0¢—DIE+¢m—r] [[11+¢%-1]
k=1
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and pf’ =1/m, r=1,2,...,m, is the distribution of a discrete Uniform random variable.
It is immediate to prove that if ¢ = 0 a CUBE model reduces to a CUB model; thus, the latter
is nested in the first one.

The parameter vector @ = (7, &, ¢)" belongs to the parameter space 2(0) = {(«, &, ¢) :
0<m <1, 0<&<1;0 <¢ < oo}. Thus, the parameters 1 — 7, 1 — £ and ¢ may
be related to uncertainty, feeling and overdispersion, respectively. Then, we could exploit
the unit square for a visualization of both models; in fact, CUB models are shown as points
in correspondence with (1 — 7, 1 — &) to visualize uncertainty and feeling, respectively.
Similarly, CUBE models may be represented with points whose sizes become proportional
to ¢.

To relate the personal characteristics of the respondents to uncertainty, feeling and overdis-
persion, respectively, it is possible to include subjects’ covariates in a CUBE model. Given a
T matrix of observed k covariates with rows ¢;,i = 1,2, ..., n, we assume a logistic link,
for instance, among the parameters and the subject’s covariates (Piccolo 2014):

logit(m;) = y; B; logit(§) =w;y; logit(¢)) =x;e; i=12,...,n,

where logit(p) = log(p/(1—p)) and therows y;, w;, x; are subsets of ¢; (here, we assume
that the first element of these vectors is 1). Hence, the parameter vectors 8, y, « are able to
interpret the direction and the weight of the covariates to explain their effect on uncertainty,
feeling and overdispersion, respectively. A log function as a link for ¢ is also admissible.
For a sample of ordinal data r = (r1, 2, ..., ry)’, the log-likelihood function of a CUBE

n
1 1
model is: £ (6) = Z log [n [g,,. &, ¢9) — $i| + Z] . Effective procedures for getting ML
i=1

estimates are obtained by the EM algorithm (McLachlan and Krishnan 1997) and they have
been detailed for CUB (Piccolo 2006) and CUBE models (Iannario 2014a).

The asymptotic theory of ML estimators allows to detect the significance of the para-
meters (Piccolo 2006). In this regard, a relevant issue is the check of a possible significant
overdispersion by testing Hy : ¢ = 0 against H; : ¢ > 0, that is if a CUB model is more
adequate than a CUBE model. Empirical and simulated evidence strongly suggest a likelihood
ratio test (Iannario 2014b), a quantity easily obtained by routinely estimating both CUB and
CUBE models to given observations. It may be worthwhile to mention that in this case the
LRT is testing an hypothesis on the boundary of the parameter space, thus the p-value must
be halved. Finally, the BIC criterion is generally used to compare non-nested models.

The evaluation of the predictive ability of ordinal data models requires some critical
discussion. In fact, the estimated model refers to a whole probability distribution (optimal in
a likelihood sense) whereas observations are integers r; € {1, 2, ..., m}. As a consequence,
to measure predictive ability of a CUBE model (without covariates) we need to synthesize the
estimated p, (@) by means of a single number 7; = 7, Vi: this predictor may be the estimated
expectation, modal value or median, for instance. Then, given the sample mean 7 and variance
52 of observed ratings, the root mean square error (RMSE) of prediction is equal to:

which is minimized when we select as predictor the expectation from the estimated model.
Thus, RMSE =~ s if we compare models whose expectations are sufficiently similar. A
critical point is that RMSE is based on a point estimate and although helpful to measure
predictive ability of models it cannot be used to discriminate among models since it is
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Fig. 1 CUBE probability distributions for varying parameters 7, &, ¢. Each model (left panel) is visualized
as a point in the parameter space (right panel) with abscissa and ordinate related to uncertainty (1 — 7) and
feeling (1 — &), respectively. The size of the points is proportional to the overdispersion parameter (¢)

affected by possible misspecifications. More elaborate measures are necessary for models
with covariates.

3 Interpretation of the CUBE model parameters

The general shape of the CUBE distribution derives from the corresponding properties of the
Beta-Binomial random variable (Tripathi et al. 1994): unimodal models with an intermediate
mode arise when ¢ < 0.5. Instead, bimodal distributions with modal values at R = 1 and
R = m are obtained when ¢ > 0.5. Finally, a CUBE random variable has positive, zero,
negative asymmetry according to & 3 %

Figure 1, left panel, shows several CUBE probability distributions for m = 7 and for
varying parameters 7, &, ¢. In the right panel these models are visualized in the parameter
space: the size of the point is proportional to ¢, thus greater points denote models with higher
overdispersion.

To investigate the role of the CUBE model parameters we briefly consider central moments
and variability measures.

First of all, the expectation of a CUBE random variable is given by E(R) = (m + 1)/2 +
w(m — 1)(1/2 — &) and it is unaffected by the overdispersion parameter ¢; thus, it may be
consistently related to the feeling which is invariant with respect to overdispersion.

Instead, the parameter 7 is related to heterogeneity concepts as shown by computing the
normalized Gini index G = (1 — X1, pl-2) m/(m — 1). In fact, with obvious notation and

according to lannario (2012, pp. 169-170), we get:
Geupe =1 —n% (1 — GgEra).
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Fig. 2 Variance of CUBE models as a function of & for fixed ¢ and different levels of =

Then, for a given Beta-Binomial component (characterized by £ and ¢), heterogeneity as
measured by the Gini index is inversely related to 7 and it increases with the uncertainty
measure (thatis, 1 — 7).

The variance of a CUBE random variable is:

Var(R) = Var(R*) + m& (1 — &) (m — 1) (m — 2) I—d:¢’

where Var(R*) is the variance of a CUB random variable with the same parameters (7, &).
The additional contribution to the variance of a CUBE distribution increases with ¢ (and )
by a quantity which is maximized when & = 1/2 (Iannario 2014a). Instead, when £ — 0 or
& — 1 the overdispersion effect tends to 0.

Notice that £ is mainly related to the categories of the response while 7 is mostly related
to the probabilities of these categories as a whole. In the same line of reasoning it is possible
to consider the relationship of the ¢ parameter with the shape of the distribution. In fact,
we observe that the overdispersion parameter ¢ modifies also the shape of the distribution
by changing the relative importance of a modal value: compare models J and T of Fig. 1,
for instance, which have similar feeling and uncertainty but a quite different parameter of
overdispersion.

A strong relationship among the parameters exists, especially with reference to the vari-
ability. Figure 2 shows that the variance is symmetric with respect to & = 1/2 and how it
changes as a function of & when ¢ is given, for different levels of 7. The behaviour of these
curves confirms that Var(R) may be a confusing measure to detect the overdispersion of
this model.
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Fig. 3 A measures for varying parameters 7, ¢, fixed &

Finally, we consider the mean difference since it synthesizes the mutual variability of the
responses. It has been used also to describe a possible inflated distribution (Gerstenkorn and
Gerstenkorn 2003). Given a probability distribution p, = Pr(R = r|@) with distribution
function F, = Z;zl pr, ¥ =1,2,..., m, the mean difference A is defined by:

m m—1
A= D Ir=slprps =22 F(-F),
r#s=1 r=1

where the second formulation is the Finetti and Paciello (1930) formula and it is computa-
tionally effective.

Since A(§) = A(l — &), it suffices to consider & € (0, 1/2). Then, we plot A as a
function of ¢ € (0, 0.3) for given values of & = {0.05, 0.25, 0.35, 0.50} and different
levels of 7 € (0, 1).

Figure 3 shows that the value of A monotonically increases with ¢ (abscissa) and, given
&, for higher level of . Thus, we may assume that in this model the overdispersion is related
to the concept of mutual variability and it increases when respondents give ordinal responses
mostly different each other.

4 Empirical evidence
We prove that the variability induced by the overdispersion may be wrongly detected as

uncertainty if the statistical model is misspecified. To this end, we consider both a simulated
set of ordinal data and some specific responses related to the SHIW data set: in the first
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Fig. 4 Simulated ordinal distribution and fitted CUB and CUBE models

Table 1 Mixture models fitted to an ordinal data set with overdispersion

Models b4 & ¢ Log —lik BIC
CUB 0.520 0.370 —1867.1 3748
CUBE 0.981 0.411 0.201 —1851.1 3723
True values 0.900 0.400 0.200

case no covariates are involved whereas in the second case also covariates are found to be
significant for all components.

4.1 Simulated data set

We generate a sample of n = 1, 000 ratings from a CUBE model with m = 7, spec-
ified by 7 = 09, = 04 and ¢ = 0.2. We get the observed frequencies n =
(36, 99, 141, 197, 216, 182, 129) shown in Figure 4 (left panel). Table 1 lists the main
results of the estimation process (all parameters are significant).

With respect to the true value of w = 0.9, the specification of a CUBE model estimates a
closer value whereas CUB model provides a seriously biased estimate of 7 which implies a
larger uncertainty.

Figure 4 compares the fitting of CUB and CUBE models (left panel) with the observed
distribution of simulated data; it is evident that the latter sharply pinpoints the frequency
distribution. Although the estimated CUB model is able to mimic the pattern of the frequency
distribution it shows a poor fit at categories 1 and 5.

The visualization in the parameter space (Fig. 4, right panel) emphasizes how the misspec-
ified CUB model includes a greater uncertainty which instead is correctly estimated by the
corresponding CUBE model; then, notice how the level of £ is barely affected by the presence
of overdispersion since it is mainly related to location and skewness of the distribution.

This example (which we repeated with several other models) manifests how the presence
of overdispersed data biases the evaluation of the uncertainty if we limit ourselves to consider
only the class of CUB models; this misspecification causes inefficiency in the estimation and
interpretation steps of the inferential process.
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Table 2 Estimated CUB and CUBE models for the items in the two waves

Item Waves Model log-lik BIC RMSE
compr 2008 CUB —7274.9 14566 1.6711
CUBE —7166.4 14358 1.6701

2010 CUB —6844.6 13706 1.6225

CUBE —6733.4 13491 1.6218

klima 2008 CUB —6875.0 13767 1.5412
CUBE —6768.4 13562 1.5409

2010 CUB —6443.5 12904 1.5076

CUBE —6319.3 12663 1.5066

facil 2008 CUB —7255.6 14528 1.6590
CUBE —7177.3 14379 1.6584

2010 CUB —6912.5 13841 1.6307

CUBE —6806.2 13637 1.6300

4.2 SHIW data set

The SHIW data set is a large survey periodically accomplished by the Bank of Italy to
measure income and wealth components of the Italian households. In addition, it collects
several information on related issues as economic perceived conditions, capital gains, finan-
cial assets, health status, family choices, and so on. At the end, the interviewer asks some
topics about the interview: “interviewee level of understanding of the questions” (compr),
“general atmosphere in which the interview took place” (klima) and “easiness for the inter-
viewee to answer the questions” (facil). The ordinal responses range from 1 (low) to 10 (high)
and we will concentrate our analysis on the last two waves (2008 and 2010): the available
observations consist of 3, 887 and 3, 816 interviews, respectively.

Table 2 summarizes the global fitting of the models and we deduce a better performance
of the CUBE mixture. We present also the RMSE when 7 = 7 and it barely improves for
overdispersed models. Since all opinions about the quality of the interview show high levels
of feeling and low levels of uncertainty only small differences among the three items are
observed.

Figure 5 summarizes the estimated models of the ordinal variables (compr, klima, facil)
in the parameter space and emphasizes how the introduction of an overdispersion parameter
induces a regular decrease of the uncertainty. It is evident that satisfaction is always higher
for the 2010 wave whereas the overdispersion is substantially unchanged between the waves.
Thus, the respondents do not change their relative habits except for improving their feeling.

Then, we check the significance of explanatory covariates for each parameter in case of
the response to Global comprehension of questions collected in 2010. We found a significant
impact of Education for uncertainty, Gender for feeling and perceived Health status for
overdispersion. The estimated CUB and CUBE models are reported in Table 3 and fitting
measures clearly favour the model with overdispersion. Noticeably, the relationship between
covariates and uncertainty and feeling, respectively, is maintained in both models. Then, by
considering the sign of the parameters ﬁ, 7 and &, we observe that the Global comprehension
of questions is higher for men, the level of uncertainty increases for lower level of Education
and overdispersion increases with a lower perception of own Health status.

Since the estimated CUBE models generate a probability distribution of responses condi-
tional to subjects’ covariates, it is possible to create profiles of expected responses for given
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Fig. 5 Visualization of CUB and CUBE models for compr, klima, facil in both waves

Table 3 Global comprehension of questions: estimated models with covariates (wave 2010)

Components Covariates CUB model parameters CUBE model parameters
Uncertainty Constant ﬁo = —1.824(0.324) /§0 = —1.610(0.441)
Education B = 1.446(0.130) Bl = 1.657(0.195)
Feeling Constant 70 = —1.593(0.023) 70 = —1.536(0.025)
Gender P1= 0.133(0.033) P1= 0.139(0.036)
Overdispersion Constant Qg = —3.541(0.259)
Health status ap = 0.284(0.096)
10) —6737.1 —6660.5
BIC 13507.0 13370.5
I —|—— A: Low education, Man, low Health status
—e— B: High education, Woman, high Health status L]
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Fig. 6 CUBE models: expected profiles of probability for Global comprehension of questions

levels of covariates. Specifically, we compare the probabilities of responses of a low educated
man with a low level of perceived health (A: Gender =Man, Education = compulsory class,
Health = 1) with those of a high educated woman, with a high level of perceived health status
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(B: Gender =Woman, Education= post graduate, Health=10). Figure 6 shows how the
effect of covariates appreciably changes the expected distribution of the responses.

5 Concluding remarks

We discussed the class of CUBE models to explicitly take a possible overdispersion into
account in case of ordinal responses; such a component is interpreted as generated by an
interpersonal variability of subjects which are requested to make a choice among ordinal
categories. This enriched model may be estimated with a limited number of parameters since
-with respect to cumulative models- we do not estimate cutpoints. In addition, it turned out
that the omission of a component related to the overdispersion of the responses can cause an
undue increase of the estimated uncertainty as confirmed by a simulated data analysis and a
real case study.

Given the availability of free and effective software for estimating both CUB and CUBE
models, a convenient strategy is to fit both of them to the available observations. Since CUB
models are nested into CUBE models the comparison of log-likelihood functions computed
at their maxima leads to a likelihood ratio test which is able to confirm or reject the need for
an overdispersion component.

In this respect, further studies are required to select significant variables for CUBE models
and also to implement faster procedures to estimate these models in presence of several
covariates.
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