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Abstract A common misunderstanding found in the literature is that only PLS-PM allows
the estimation of SEM including formative blocks. However, if certain model specification
conditions are satisfied the model is identified, and it is possible to estimate a covariance-
based SEM with formative blocks. Due to the complexity of both SEM estimation methods,
we studied their relative performance in the framework of the same simulation design. The
simulation results showed that the effect of measurement model misspecification is much
larger on the ML-SEM parameter estimates. For a model that includes a correctly specified
formative block, we found that the inter-correlation level among formative MVs and the
magnitude of the variance of the disturbance in the formative block have evident effects on
the bias and the variability of the estimates. For high inter-correlation levels among forma-
tive MVs, PLS-PM outperforms ML-SEM, regardless of the magnitude of the disturbance
variance. For a low inter-correlation level among formative MVs the performance of the two
methods depends also on the magnitude of the disturbance variance. For a small disturbance
variance, PLS-PM performs slightly better compared to ML-SEM. On the contrary, as the
disturbance variance increases ML-SEM outperforms PLS-PM.

Keywords Structural equation modeling · PLS approach · Covariance-based approach ·
Formative mesurement models

1 Introduction

Structural equation modeling (SEM) is a statistical method aimed to model a network of
relationships among variables that cannot be observed nor measured directly, i.e, the latent
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variables (LV). Each LV is measured by a number of observable indicators, usually defined
as manifest variables (MV).

The estimation methods for SEM group into two different approaches: the covariance-
based approach and the component-based approach. Maximum likelihood method (ML-
SEM) is one of the most well-known estimation methods for covariance-based approach
(Bollen 1989), whereas partial lelast squares path modeling (PLS-PM) is the most utilized
method for Component-Based approach (Wold 1982). Both methods have distinctive sta-
tistical characteristics, and selecting a method to SEM depends on the particular research
situation.

If the theoretical model is correct and the standard assumptions underlying SEM are
satisfied, ML estimators are unbiased. PLS estimators lack the accuracy of ML estimators.
However, PLS-PM is a powerful method because of the minimal demands on measurement
scales, sample size, and data distributions. It is particularly applicable for predictive applica-
tions and theory building, but it can be also used appropriately for theory confirmation (Chin
1998; Falk and Miller 1992).

Even though there are situations in which MVs are more realistically thought of as causes
of a LV (formative scheme), most researchers consider them as effects (reflective scheme)
without even questioning their appropriateness for the specific LV at hand. This attitude
may lead to misspecified models and there is growing evidence that measurement model
misspecification has an impact into all SEM estimates (MacKenzie et al. 2005; Jarvis et al.
2003).

A common impression found in the literature is that only PLS-PM allows the estimation
of formative blocks. The implication of formative MVs in Covariance-Based framework
is a rather difficult task. However, if certain model specification conditions are satisfied,
Covariance-Based methods are also capable of handling formative blocks (Bollen and Davis
2009; Williams et al. 2003).

We looked into this issue, and through a simulation study we investigated the effects of
measurement model misspecification and the implications of formative MVs on both ML-
SEM and PLS-PM parameter estimates.

2 Nature, direction and misspecification of relationships between latent variables
and manifest variables

Relationships between MVs and LVs can be modeled in two different ways. Reflective MVs
are considered as being caused by the related LV: variation in LV yields variation in MVs. On
the contrary, formative MVs are viewed as causes of a LV: variation in MVs causes variation
in LV1 (see Fig. 1).

The theoretical differences between the two schemes are not trivial. Reflective blocks
should possess internal consistency (i.e., MVs in each block are supposed to be highly
correlated among each other), while there is no reason to expect high correlation among
formative MVs (Tenenhaus et al. 2005). This also implies that conventional measures used
for evaluating the validity and reliability of a LV cannot be applied for formatively-measured
LVs (Bollen and Lennox 1991; Diamantopoulos 2006). Confirmatory tetrad analysis (CTA)
(Bollen and Ting 2000) is an example of an alternative way for testing construct validity.
Reflective MVs are interchangeable: dropping an indicator from the measurement model

1 In the MIMIC scheme some MVs are considered to be linked to the LV following a formative scheme and
others following a reflective scheme.
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Fig. 1 Measurement models

should not alter the meaning of the LV (Bollen and Lennox 1991). This is not required when
considering formative MVs. As for the nature of the error term in formative blocks, several
definitions are found in the literature (Bollen and Lennox 1991; Edwards and Bagozzi 2000;
Diamantopoulos 2006). The error term in formative blocks is not a measurement error and
it is more properly called as “disturbance”.

In some particular situations determining the real nature of a LV is a difficult task (Edwards
and Bagozzi 2000). Measurement model misspecification is fairly common among published
research studies, and it is proven that it holds the potential for poor parameter estimates and
misleading conclusions (MacKenzie et al. 2005; Jarvis et al. 2003). Its effects extend also
to the estimates of the path coefficients connected to the misspecified block. This is due to
the fact that a reflective treatment of a block that should instead be modeled as formative
reduces the variance of the LV. The variance of a reflectively-measured LV equals the common
variance of its MVs , whereas the variance of a formatively-measured LV encompasses the
total variance of its indicators (Fornell et al. 1991).

Let us consider the common case of an exogenous formative block misspecified as reflec-
tive. If the level of the variance of the endogenous LVs is maintained, the estimates of the
path coefficients connected to the misspecified exogenous LV is likely to be substantially
inflated (Diamantopoulos et al. 2008).

3 Formative indicators in covariance-based SEM

Several alternative formulations have been proposed for SEM specification, but a very gen-
eral formulation was given by Bentler and Weeks (1980). In the Bentler–Weeks approach any
variable in the model (MVs, LVs, errors and so on) is either a dependent or an independent
variable. The distinction between latent and manifest variables is secondary to the distinc-
tion between dependent and independent variables. The covariances among the independent
variables can be part of the model parameters while the covariances among the dependent
variables, or between the dependent variables and the independent variables, are explained
by the model through the so-called free parameters. This model specification permits the
inclusion of formative manifest variables in covariance-based SEM.

The general structural equation is written as

η = Bη + �ξ (1)
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The vector η(m ×1) contains all dependent variables, η′ = [y′,π′], where y is a vector of
reflective MVs and π represents the endogenous LVs in the model. The vector ξ(n × 1) of
all independent variables, ξ

′ = [x′, τ ′, ζ ′
, ε′], contains the formative MVs x, the exogenous

LVs τ , the disturbances ζ , and measurement errors ε. B(m × m) and �(m × n) contain
coefficients capturing the effects of the independent variables on the dependent variables.

To simplify matters, let us consider η, ξ , y, x as deviations from their means. Since some
of the variables in η are measured variables y, we obtain them by means of a suitable selection
matrix G with elements equal to 0 or 1 such that:

y = Gyη (2)

If we have formative MVes x in the vector ξ we extract them by:

x = Gxξ (3)

Gx and Gy are Boolean matrices with all zero entries except for a single element equal to 1
in each row to select x from ξ and y from η respectively.

From the “general structural equation” and the “selection models” follows the “implied
covariance matrix”, given by the following matrix elements:

�yy = Gy(I − B)−1γ
γ
′
(I − B)−1G

′
y

�yx = Gy(I − B)−1γ
G
′
x

�xx = Gx
G
′
x (4)

where 
 is the covariance matrix of the independent variables ξ , and it is not function of
other parameters.

When no measured variable is included in ξ , there are no formative MVs, thus �yx and
�xx are null, and �yy = �.

Identification of formative measurement models still represents an open problem. Obvi-
ously, a necessary but not sufficient condition is the “t-rule” (i.e., the number of free parame-
ters must not exceed the number of elements in the covariance matrix). Regarding the “scaling
rule” (i.e. each LV needs to be scaled for the model to be identified), among other options,
we can fix a weight from a formative MV to the LV at some non-zero value (MacCallum and
Browne 1993).

To resolve the indeterminacy associated with the LV level error term, a necessary but not
sufficient condition is the so-called “2+ Emitted Paths Rule”. Every LV with an unrestricted
variance or unrestricted error variance must emit at least two directed paths to other vari-
ables, when these latter variables have unrestricted error variances (Bollen and Davis 2009).
Another solution is to fix the variance of the disturbance term to zero. However, dropping the
residual term implies the theoretical assumption that the formative MVs completely capture
the underlying LV and no unexplained variance exists. The obtained variable becomes a
“composite variable”, not a formatively-measured LV (MacCallum and Browne 1993).

Another strategy to identification is the so-called “piecewise identification”, based on
breaking the model into smaller pieces and establishing the identification of one piece before
moving on to the next piece (Bollen and Davis 2009).

Once a model is identified, we can estimate its parameters by standard estimation proce-
dures (Bentler and Weeks 1980).

Another important issue that needs to be addressed when modeling formative blocks is
what to do with the covariances among the exogenous MVs in the model (MacCallum and
Browne 1993). Since formative MVs are simply exogenous variables, they may be correlated
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due to spurious causes not considered in the model, thus it would be more appropriate to free
all covariances among them.

Finally, it must be stressed that in the recent SEM literature there is an interesting discussion
on the meaning of the formatively-measured LV. Some researchers state that the known
solutions for the matter of identification imply interpretation difficulties. A recent paper by
Treiblmaier et al. (2011) clearly illustrates this issue. The authors state that a formatively-
measured LV is actually a second-order factor that is predicted by some MVs and that explains
the correlation of its consequent variables. Without this correlation the formatively-measured
LV would disappear, and this is contrary to the idea that the LV is created solely by their
exogenous MVs. This is a very interesting topic which needs further investigations.

4 Design of the simulation study

The aim of this study is to investigate, within the same simulation design, the performance
of both PLS-PM and ML-SEM when a block is modeled as formative.

In order to satisfy the above mentioned identification rules, we considered a formative
exogenous block with unrestricted disturbance variance, that emits at least two directed paths
to other LVs, and the covariances between the measurement errors of the MVs related to the
endogenous LVs were fixed to zero.

A model with this framework is particularly justified when dealing with customer satisfac-
tion data. Indeed in the European Customer Satisfaction Index model (ECSI 1998) literature
suggests that the LV Image may be formatively-measured. We considered the ECSI model
consisting of one formatively-measured exogenous LV, Image (π1), and five reflectively-
measured endogenous LVs, from π2 to π6, that represent Customer Expectations, Perceived
Quality, Perceived Value, Customer Satisfaction and Customer Loyalty, respectively.

The Monte Carlo simulation was conducted by EQS 6.1 for Windows. The data generation
process is consistent with the procedure described by Paxton et al. (2001) for a Monte Carlo
SEM study. We first pre-specified the relationships in the SEM and then simulated data for
the given parameter values.

The true path coefficient values were chosen in order to be as similar as possible to
those commonly encountered in the marketing literature (Vilares et al. 2010). The postulated
structural model is:

π2 = 0.9π1 + ζ 2

π3 = 0.8π2 + ζ 3

π4 = 0.3π2 + 0.7π3 + ζ 4

π5 = 0.3π1 + 0.1π2 + 0.4π3 + 0.3π4 + ζ 5

π6 = 0.3π1 + 0.7π5 + ζ 6 (5)

For the LV Image, we adopted the following formative model:

π1 = 0.4x1 + 0.25x2 + 0.15x3 + 0.1x4 + 0.1x5 + ζ 1 (6)

Afterwards, the outer weights were modified in order to obtain the variance of π1 equal to
one, taking into account the variance of the disturbance σ 2

ζ1
as well. In order to focus on the

issue of formative blocks in SEM, the loadings between the reflective MVs and the related
LVs were set all to 1.

We conducted the simulation setting different variance values of the disturbance ζ 1 in the
formative block. In particular, we set four different values of σ 2

ζ1
, from a small value of 0.05
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(yielding a R2 of 0.95) to a large value of .5 (yielding a R2 of .5). The values of σ 2
ζ1

were
chosen to satisfy the equation:

R2 = 1 − Dev(ζ 1)

Dev(π1)
(7)

For the model considered in this simulation study, the 2+ emitted path rule and t rule are
met. To satisfy the scaling rule a loading was fixed to 1 in each reflective block, and the first
weight in the formative block was fixed to the given parameter value. Furthermore, to confirm
the identification of the model we can use the piecewise identification strategy (Bollen and
Davis 2009).

5 Data generation and simulation results

Once the population parameter values were set, we generated a total of 500 sets of data for
three different sample sizes (100, 250, 500), four different disturbance variance values σ 2

ζ1
(0.05, 0.2, 0.35, 0.5), three different numbers of MVs in the formative block (3, 5, 7), and
three different levels of inter-correlation among MVs in the formative block (0.2, 0.4, 0.6).
We did not take into account inter-correlation levels greater than 0.6 to avoid the issue of
multicollinearity which might arise when estimating a formatively-measured LV. Given that
very often the data do not follow multivariate normal distributions, we also generated data
from non-symmetric distributions with different degrees of skewness and kurtosis (0.5, -0.8;
1.5, 2.5; 2.5, 9) following the Vale and Maurelli (1983) technique built in EQS 6.1.

In order to estimate the ML-SEM and PLS-PM parameters, we employed the “ML” Dis-
crepancy function by means of EQS, and the “centroid scheme” by means of the package
PLSPM in R, respectively.

Three commonly reported measures were used to assess how well the methods estimate
the parameters: the Relative Bias (RBias), the Standard Deviation (St D) and the Root Mean
Square Error (RM SE) of the estimates. RBias is computed as,

RBias = 1

n

n∑

i=1

(θ̂i − θ)

θ
i = 1, 2, . . . , 500 (8)

where n represents the number of replications in the simulation, θ̂i is the parameter estimate
for each replication, and θ is the corresponding population parameter. St D is computed as,

√√√√ 1

n

n∑

i=1

(θ̂i − E(θ̂))2 i = 1, 2, . . . , 500 (9)

where E(θ̂) is the mean of the estimates across the 500 simulated datasets. St D provides
information on the efficiency of estimates.

Finally, RM SE is computed as,
√√√√ 1

n

n∑

i=1

(θ̂i − θ)2 i = 1, 2, . . . , 500 (10)

Obviously, it holds that M SE = bias(θ̂ )2 + V ar(θ̂ ). Thus RM SE entails information on
both bias and variability of the estimates.
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Fig. 2 Mean of the RM SE in the path coefficients connected to π1, for normal data scenario. a PLS-PM and
b ML-SEM

In order to understand the effects of measurement model misspecification on the parameter
estimates, we compared the performance of the two methods (PLS-PM and ML-SEM),
applying both the correct measurement scheme for π1 (i.e., formative scheme) and the wrong
measurement scheme (i.e., reflective scheme).

For the sake of simplicity, at this step we present only the mean of the RM SE in the path
coefficients connected to the exogenous LV π1.

Figure 2a reports the mean of RM SE of the PLS-PM estimates for both the correctly spec-
ified measurement model and the misspecified measurement model, for each inter-correlation
level among MVs (0.2, 0.4, 0.6).

The RM SE of the PLS-PM estimates slightly increases when the measurement model
is misspecified, but the inter-correlation level among MVs does not have any effect on the
estimates. We found that the variability of the PLS-PM estimates is very low and almost
equal for all these considered experimental conditions, thus different RM SE values are
due exclusively to the bias of the estimates. Confirming the expectation, PLS-PM tends to
underestimate the path coefficients, and this bias slightly increases when the measurement
model is misspecified.

This is not the case for the ML-SEM estimates (Fig. 2b). The RM SE increases drastically
when the measurement model is misspecified. This is due to the fact that ML-SEM overes-
timates the path coefficients connected to the exogenous misspecified block. As said above,
reflective treatment of a block that should instead be modeled using the formative scheme
reduces the variance of the LV.

In ML-SEM the MVs inter-correlation level influences the extent of the RM SE in the path
coefficients connected to the misspecified block. This is due to the fact that the greater the
level of the MVs inter-correlation, the smaller the change in the variance of a LV produced
by measurement model misspecification. High MVs inter-correlations yield a less severe
misspecification effect.

As regards the variability of the estimates, we found that the St D of the ML-SEM estimates
increases when the measurement model is misspecified, for inter-correlation levels among
MVs equal to 0.2 and 0.4. When the inter-correlation is on average equal to 0.6, the variability
of the estimates is lower in the misspecified measurement model. Even though an inter-
correlation level equal to 0.6—on average—is not extremely high, this result may be due
to the issue of multicollinearity. High correlation among MVs of a formative block can be
a significant problem for measurement model parameter estimates, while it is a virtue for
reflective blocks. However, the RM SE of the estimates is higher when the measurement
model is misspecified, for all the inter-correlation levels among MVs.

In keeping with these results, we think that in the case of uncertainty on the real nature of a
LV (i.e., the probability of erroneously selecting a measurement scheme is high), researchers
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Fig. 3 Mean of the RM SE in the path coefficients connected to π1, for non-normal data scenario. a PLS-PM
and b ML-SEM

should choose PLS-PM rather than ML-SEM, as the RM SE of the ML estimates is much
higher when the measurement model is misspecified.

Figure 3 reports the mean of the PLS-PM estimates RM SE (3a) and the mean of the
ML-SEM estimates RM SE (3b) for both the correctly specified measurement model and
misspecified measurement model, for the non-normal data scenario. It does this for each
inter-correlation level among MVs (0.2, 0.4, 06). For the sake of simplicity we show only the
results for data with the highest degrees of skewness and kurtosis, i.e., 2.5 and 9, respectively.

As we can see in Fig. 3, these results are not significantly different from those of the normal
data scenario, for both the PLS-PM and the ML-SEM estimates. It is well known that PLS-
PM is a powerful method because of the minimal demands on distributional assumptions of
the variables (Chin 1998). However, ML-SEM is also generally robust against the violation
of distributional assumptions (Satorra 1990). This may explain our simulation results for the
non-normal data scenario.

We also compared the performance of the two methods for three different numbers of
MVs in the formative block (3, 5, 7), and for three different sample sizes (100, 250, 500).
The results were not unexpected and we obtained no interesting findings in the case of
measurement model misspecification. On the whole, we found that ML-SEM estimates are
sensitive to the sample size and the number of MVs in the formative block, while PLS-PM
estimates are extremely robust.

For all the reasons above and for the sake of simplicity, we did not take into account these
experimental conditions, which would also complicate the reading of the results. Following
we show the results for the ECSI model presented above, with a sample size of 250 and five
formative MVs.2

Table 1 shows R Bias, St D, RM SE , and their absolute mean, Mean(abs), for the for-
mative block outer weights (except for the first weight that was fixed in the ML-SEM), for
both the smallest value of σ 2

ζ1
equal to 0.05 (left hand side) and the largest value equal to 0.5

(right hand side), for an inter-correlation level among the MVs equal to 0.6.
When σ 2

ζ1
is small, the outer weight estimates are nearly unbiased and with low variability

in both methods. As the variance of ζ1 increases (see the right-hand side of Table 1), we
found that the bias of both PLS and ML estimates grows, but PLS-PM estimates are by
far more biased compared to the ML’s. The variability of the estimates increases for both
methods, but PL-PM still produces estimates with lower variability. In terms of the RM SE
we found that PLS-PM performs slightly better than ML-SEM, regardless of the magnitude
of the disturbance variance.

2 Note that 250 is the common sample size used to estimate an ECSI model, and it is also a large enough
number for good parameter estimations in both methods.
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Table 1 Outer weights RBias, StD and RMSE, for two disturbance variance values (σζ1 = √
0.05 and

σζ1 = √
0.5), and high inter-correlation level among the MVs (ρ = 0.6)

σζ1 = √
0.05, ρ = 0.6 σζ1 = √

0.5, ρ = 0.6

Outer Bias StD RMSE Outer Bias StD RMSE

Model PLS ML PLS ML PLS ML Model PLS ML PLS ML PLS ML

π1,x2 0.027 0.040 0.079 0.101 0.080 0.102 π1,x2 0.393 0.178 0.140 0.204 0.163 0.208

π1,x3 0.023 0.046 0.080 0.091 0.080 0.092 π1,x3 0.456 0.227 0.139 0.142 0.150 0.145

π1,x4 0.080 0.084 0.084 0.088 0.084 0.089 π1,x4 0.356 0.194 0.141 0.138 0.144 0.139

π1,x5 −0.020 0.018 0.079 0.086 0.079 0.086 π1,x5 0.275 0.151 0.140 0.134 0.142 0.135

Mean (abs) 0.037 0.047 0.080 0.091 0.081 0.092 Mean (abs) 0.370 0.187 0.140 0.154 0.150 0.157

Bold values correspond to the absolute average of the value in the corresponding column

Table 2 Outer weights RBias, StD and RMSE, for two disturbance variance values (σζ1 = √
0.05 and

σζ1 = √
0.5), and low inter-correlation level among the MVs (ρ = 0.2)

σζ1 = √
0.05, ρ = 0.2 σζ1 = √

0.5, ρ = 0.2

Outer Bias StD RMSE Outer Bias StD RMSE

Model PLS ML PLS ML PLS ML Model PLS ML PLS ML PLS ML

π1,x2 0.018 0.007 0.055 0.066 0.056 0.066 π1,x2 0.396 0.041 0.100 0.100 0.147 0.101

π1,x3 0.017 0.007 0.059 0.063 0.060 0.064 π1,x3 0.429 0.066 0.101 0.086 0.123 0.087

π1,x4 0.034 0.016 0.063 0.063 0.064 0.064 π1,x4 0.358 0.014 0.104 0.082 0.111 0.082

π1,x5 −0.018 −0.019 0.055 0.056 0.056 0.057 π1,x5 0.328 0.011 0.103 0.079 0.109 0.080

Mean (abs) 0.022 0.013 0.059 0.063 0.059 0.063 Mean (abs) 0.378 0.033 0.102 0.087 0.123 0.087

Bold values correspond to the absolute average of the value in the corresponding column

Considering an inter-correlation level equal to 0.2 (see Table 2), we found that ML-SEM
outperforms PLS-PM in terms of bias of the estimates, regardless of the disturbance variance
magnitude. As σ 2

ζ1
increases the bias of the PLS estimates grows drastically, while it slightly

increases in the ML estimates. The variability of the estimates is almost similar for the two
methods when the variance of ζ 1 is small. As the variance of ζ 1 increases the St D of both
methods estimates increases, but in this case ML-SEM outperforms PLS-PM also in terms
of St D. In terms of the RM SE , when the variance of ζ 1 is low the two methods perform
almost similar. As the variance of ζ 1 increases ML-SEM outperforms PLS-PM.

Let us consider now the path coefficients connected to π1 when the inter-correlation
level among MVs is equal to 0.6 (Table 3). On average, the PLS estimates are more biased
compared to those of the ML-SEM, and the difference is more evident when σ 2

ζ1
increases.

In terms of St D, PLS-PM outperforms ML-SEM by far. As σ 2
ζ1

increases the variability of
the PLS estimates remains stable, while it increases in the ML estimates. In terms of RM SE ,
PLS-PM outperforms ML-SEM, regardless of the magnitude of σ 2

ζ1
.

It must be noticed that ML-SEM method extremely overestimates the path coefficient
between “Image”, (π1), and “Customer Satisfaction”, (π5), and it does this systematically.
This result is unexpected and needs further investigations.

Considering a low inter-correlation level among MVs (see Table 4), we found that ML-
SEM outperforms PLS-PM in terms of bias of the estimates, while PLS-PM outperforms
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Table 3 Inner paths coefficients RBias, StD and RMSE, for two disturbance variance values (σζ1 = √
0.05

and σζ1 = √
0.5), and high inter-correlation level among the MVs (ρ = 0.6)

σζ1 = √
0.05, ρ = 0.6 σζ1 = √

0.5, ρ = 0.6

Outer Bias StD RMSE Outer Bias StD RMSE

Model PLS ML PLS ML PLS ML Model PLS ML PLS ML PLS ML

π1,π2 −0.181 −0.002 0.029 0.150 0.166 0.151 π1,π2 −0.400 0.000 0.044 0.275 0.362 0.275

π1,π5 −0.253 0.388 0.055 0.200 0.093 0.231 π1,π5 −0.644 0.406 0.045 0.438 0.199 0.455

π1,π6 −0.181 0.124 0.046 0.099 0.071 0.106 π1,π6 −0.540 0.062 0.038 0.144 0.166 0.145

Mean (abs) 0.205 0.171 0.043 0.150 0.110 0.162 Mean (abs) 0.528 0.156 0.042 0.286 0.242 0.292

Bold values correspond to the absolute average of the value in the corresponding column

Table 4 Inner paths coefficients RBias, StD and RMSE, for two disturbance variance values (σζ1 = √
0.05

and σζ1 = √
0.5), and low inter-correlation level among the MVs (ρ = .2)

σζ1 = √
0.05, ρ = 0.2 σζ1 = √

0.5, ρ = 0.2

Outer Bias StD RMSE Outer Bias StD RMSE

Model PLS ML PLS ML PLS ML Model PLS ML PLS ML PLS ML

π1,π2 −0.190 0.016 0.028 0.086 0.173 0.088 π1,π2 −0.400 0.003 0.044 0.155 0.363 0.155

π1,π5 −0.285 0.253 0.052 0.162 0.100 0.179 π1,π5 −0.645 0.379 0.046 0.370 0.199 0.387

π1,π6 −0.139 0.197 0.042 0.081 0.059 0.100 π1,π6 −0.541 0.058 0.039 0.114 0.167 0.115

Mean(abs) 0.205 0.155 0.041 0.110 0.111 0.122 Mean (abs) 0.529 0.147 0.043 0.213 0.243 0.219

Bold values correspond to the absolute average of the value in the corresponding column

ML-SEM in terms of St D, regardless of the magnitude of the disturbance variance. In terms
of the RM SE , we found that PLS-PM performs slightly better than ML-SEM for a low
variance of the disturbance. As the variance of ζ 1 increases ML-SEM outperforms PLS-
PM.

Overall, our simulation results confirm that PLS estimators lack the parameter accuracy of
ML estimators, and this bias is manifested in overestimating the loadings and underestimating
the path coefficients, and the larger the disturbance variance the bigger the bias. On the
contrary, PLS generally produces estimates with lower variability compared to those obtained
using ML estimation method.3

In order to provide researchers with some guidelines when having to choose between
ML-SEM and PLS-PM to estimate formative blocks in SEM, we can take into account
the RM SE of the estimates. In keeping with the results we obtained, we think that for a
quite high inter-correlation level among formative MVs (ρ = 0.6), researchers should pre-
fer PLS-PM rather than ML-SEM, regardless of the disturbance variance. For low inter-
correlation levels among formative MVs the decision depends on the magnitude of the
disturbance variance. When σ 2

ζ1
is small, PLS-PM performs slightly better compared to

ML-SEM. On the contrary, as the disturbance variance increases ML-SEM outperforms

3 We do not show the results for the outer loadings in the reflective blocks and for the path coefficients not
connected to π1 because they showed no interesting findings. Confirming the expectation, we found that
PLS estimates present systematically more bias and lower variability compared to those obtained using ML
estimation, regardless of the experimental conditions.
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PLS-PM. Hence, in the latter case, researchers should prefer ML-SEM rather than PLS-
PM.

6 Conclusion and future research

Measurement model misspecification may yield severe effects especially on the ML-SEM
parameter estimates. Therefore, it is important to understand the effects of including formative
blocks in SEM.

This study attempted to give some insight into this issue, comparing the bias and the
variability of the ML-SEM estimates with those of the PLS-PM in the same simulation
study.

For a model with a correctly specified formative block, we found that the inter-correlation
level among formative MVs and the magnitude of the disturbance variance in the formative
block have evident effects on the bias and the variability of the estimates.

In order to merge the information on the bias to the information on the variability of the
estimates, we computed the RM SE of the estimates. In terms of the Mean Square Error of
the estimates, we found that for high inter-correlation levels among formative MVs, PLS-
PM outperforms ML-SEM, regardless of the magnitude of disturbance variance. For low
inter-correlation levels the performance of the two methods depends on the magnitude of
the disturbance variance. When the disturbance variance is small, PLS-PM performs slightly
better compared to ML-SEM. On the contrary, as the disturbance variance increases ML-SEM
outperforms PLS-PM.

Different levels of complexity of the inner model were also included in this study. When
the values of the population parameters were kept constant the complexity of the inner model
did not have any effect on the estimates. On the contrary, the bias and the variability of
the estimates were sensitive for different population parameter values. Since in a simulation
study the value of the parameters should reflect values commonly encountered in applied
research, we think that it would be interesting to run simulation studies considering other
well-established models (like the ECSI model), where measurement model misspecifica-
tion frequently occurs. Different model specifications can also be considered including an
endogenous formatively-measured LV.

Besides the descriptive statistics that we used to summarize and present the simulation
results, inferential statistics can be used as well. For example, the experimental conditions can
be dummy or effect coded, and main effects and interactions among experimental conditions
can be evaluated using standard regression procedures.

Finally, we think that it would also be interesting to look further into the issue of multi-
collinearity among formative MVs.

Acknowledgments The Authors gratefully acknowledge Dr. Ab Mooijaart, Emeritus Professor at University
of Leiden, Department of Psychology, Faculty of Social Sciences, for his suggestions and comments.

References

Bentler, P., Weeks, D.: Linear structural equations with latent variables. Psychometrika 45(3), 289–308 (1980)
Bollen, K.A.: Structural Equations with Latent Variables. Wiley, New York (1989)
Bollen, K.A., Davis, W.R.: Causal indicator models: identification, estimation, and testing. Struct. Equ. Model

16(3), 498–522 (2009)

123



902 P. Dolce, N. C. Lauro

Bollen, K., Lennox, R.: Conventional wisdom on measurement: a structural equation perspective. Psychol.
Bull. 110(2), 305–314 (1991)

Bollen, K., Ting, K.: A tetrad test for causal indicators. Psychol. Methods 5(1), 3–22 (2000)
Chin, W.W.: The partial least squares approach for structural equation modeling. In: Marcoulides, G. (ed.)

Modern Methods for Business Research, pp. 295–336. Lawrence Erlbaum Associates, London (1998)
Diamantopoulos, A.: The error term in formative measurement models: interpretation and modelling implica-

tions. J. Model Manag. 1(1), 7–17 (2006)
Diamantopoulos, A., Riefler, P., Roth, K.P.: Advancing formative measurement models. J. Bus. Res. 61(12),

1203–1218 (2008)
ECSI (1998) European Customer Satisfaction Index. Report prepared for the ECSI Steering Committee
Edwards, J., Bagozzi, R.: On the nature and direction of relationships between constructs and measures.

Psychol. Methods 5(2), 155–174 (2000)
Falk, R., Miller, N.: A Primer for Soft Modeling. University of Akron Press, Akron (1992)
Fornell, C., Rhee, B.D., Yi, Y.: Direct regression, reverse regression, and covariance structure analysis. Mark.

Lett. 2, 309–320 (1991)
Jarvis, C., MacKenzie, S., Podsakoff, P.: Critical review of construct indicators and measurement model

misspecification in marketing and consumer research. J. Consum. Res. 30(2), 199–218 (2003)
MacCallum, R., Browne, M.: The use of causal indicators in covariance structure models: some practical

issues. Psychol. Bull. 114(3), 533–541 (1993)
MacKenzie, S.B., Podsakoff, P.M., Jarvis, C.B.: The problem of measurement model misspecification in

behavioral and organizational research and some recommended solutions. J. Appl. Psychol. 90(4), 710–
730 (2005)

Paxton, P., Curran, P.J., Bollen, K.A., Kirby, J., Chen, F.: Monte carlo experiments: design and implementation.
Struct. Equ. Mode 8(2), 287–312 (2001)

Satorra, A.: Robustness issues in structural equation modeling: a review of recent developments. Qual. Quant.
24(4), 367–386 (1990)

Tenenhaus, M., Esposito, V.V., Chatelin, Y.M., Lauro, C.: Pls path modeling. Comput. Stat. Data Anal. 48(1),
159–205 (2005)

Treiblmaier, H., Bentler, P.M., Mair, P.: Formative constructs implemented via common factors. Struct. Equ.
Model 18(1), 1–17 (2011)

Vale, C., Maurelli, V.: Simulating multivariate nonnormal distributions. Psychometrika 48(3), 465–471 (1983)
Vilares, M., Almeida, M., Coelho, P.: Comparison of likelihood and pls estimators for structural equation

modeling: a simulation with customer satisfaction data. In: Esposito Vinzi, V., Chin, W., Henseler, J.,
Wang, H. (eds.) Handbook of Partial Least Squares, pp. 289–305. Springer-Verlag, Berlin (2010)

Williams, L.J., Edwards, J.R., Vandenberg, R.J.: Recent advances in causal modeling methods for organiza-
tional and management research. J. Manag. 29(6), 903–936 (2003)

Wold, H.: Soft modeling: the basic design and some extensions. In: Jöreskog, K., Wold, H. (eds.) Systems
Under Indirect Observation, p. 154. North-Holland, Amsterdam (1982)

123


	Comparing maximum likelihood and PLS estimates for structural equation modeling with formative blocks
	Abstract
	1 Introduction
	2 Nature, direction and misspecification of relationships between latent variables  and manifest variables
	3 Formative indicators in covariance-based SEM
	4 Design of the simulation study
	5 Data generation and simulation results
	6 Conclusion and future research
	Acknowledgments
	References


