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Abstract The Fleiss’ kappa statistic is a well-known index for assessing the reliability of
agreement between raters. It is used both in the psychological and in the psychiatric field.
Unfortunately, the kappa statistic may behave inconsistently in case of strong agreement
between raters, since this index assumes lower values than it would have been expected. The
aim of this paper is to propose a new method to avoid this paradox through permutation tech-
niques. Furthermore, we study the problem of kappa confidence intervals and, in particular,
we suggest to use Bootstrap confidence intervals free of paradoxes.

Keywords Inter-rater agreement · Fleiss’ kappa · Kappa paradoxes ·
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1 Introduction

The kappa statistic was proposed by Cohen (1960) to measure the agreement between two
raters (also called “judges” or “observers”), independently judging n subjects through a scale
consisting of q categories. Kappa has become a well known index for the comparison of
expert advices, especially in the psychometric field (Uttal et al. 2013; Harvey and Tang
2012; Markon et al. 2011; Östlin et al. 1990).

A comprehensive review of inter-rater agreement coefficients has been put forth by Gwet
(2008) and Dijkstra and Eijnatten (2009).

The use of Cohen’s kappa statistic has been increasing despite two important paradoxes
(Cicchetti and Feinstein 1990; Feinstein and Cicchetti 1990): (i) the presence of high levels
of raters’ agreement with low kappa values (related to prevalence of the trait in the sample)
and (ii) the lack of predictability of changes in the statistic with different marginals (due
to the symmetry of rates in the disagreement categories). This paradoxical behaviour has
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been widely studied (Cicchetti and Feinstein 1990; Feinstein and Cicchetti 1990; Lantz and
Nebenzahl 1996; Shoukri 2004).

On the contrary, very little attention has been devoted so far to a similar problem affecting
the statistic proposed by Fleiss (1971) as a multiple-raters generalization of the Cohen’s
kappa. As a matter of fact, in specific situations, Fleiss’ kappa takes very low values even in
the case of high agreement.

This paradox is due to the fact that this measure of agreement for nominal scales is
not invariant under permutation of categories. In order to solve this problem, we propose a
permutation-invariant version of Fleiss’ kappa that is not affected by the paradox.

Since the problem depends on particular combination of category assignment and the scale
is nominal, we apply permutation techniques without loss of information. In particular, we
permute the dataset, we calculate Fleiss’ kappa on each “permuted” dataset and we synthesize
the results with a robust statistic.

In Sect. 2 we describe Fleiss’ statistic, in Sect. 3 we discuss its paradoxical behaviour and
in the subsequent Sections we show a method to solve the problem of paradoxes through the
combined use of permutation techniques and resampling methods.

2 Fleiss’ kappa statistic

We consider an inter-rater reliability study with n subjects and r rates per subject. All raters
have to assign each subject in one of q exhaustive and mutually exclusive categories.

These studies involve raters who are experts in a given area (e.g. physicians—in particular
psychologists and psychiatrists—archaeologists, art critics, judges, etc.). It is possible to
quantify the agreement among observers who have participated to a survey.

Table 1 shows the frequency distribution of r raters by n subjects and q response categories:
ri j represents the number of rates assigning the i th subject (i = 1, ..., n) to the j th category
( j = 1, ..., q).

In Table 1, the marginal distribution ri · = ∑q
j=1 ri j = r provides the total number of

raters and the marginal r· j = ∑n
i=1 ri j provides the total number of assignments to category j.

When two or more raters agree in assigning the subject i to category j , then the agreement
among raters is showed by the corresponding frequency in Table 1: ri j ≥ 2.

Using the binomial coefficient, we determine the number of concordant pairs:

(
ri j

2

)

= ri j
(
ri j − 1

)

2
.

Table 1 Distribution of raters by
subject and response category

Subject Category Tot.

1 · · · j · · · q

1 r11 · · · r1 j · · · r1q r1· = r

.

.

. · · · · · · · · · · · · · · ·
.
.
.

i ri1 · · · ri j · · · riq ri · = r

.

.

. · · · · · · · · · · · · · · ·
.
.
.

n rn1 · · · rnj · · · rnq rn· = r

Tot. r·1 · · · r· j · · · r·q rn
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We define the proportion of pairs of concordant raters assigning subject i to category j as:

Pi j =
(ri j

2

)

(r
2

) = ri j
(
ri j − 1

)

r (r − 1)
.

Hence, we can calculate the proportion of concordant pairs for the i th subject for all the
r(r − 1) possible pairs of assignments:

Pi =
q∑

j=1

pi j =
q∑

j=1

(ri j
2

)

(r
2

) = 1

r − 1

⎛

⎝1

r

q∑

j=1

r2
i j − 1

⎞

⎠ .

The overall agreement can be measured referring to Fleiss (1971) and Fleiss et al. (2003):

P̄ = 1

n

n∑

j=1

Pi = 1

r − 1

⎛

⎝ 1

nr

∑

i, j

r2
i j − 1

⎞

⎠. (1)

In general, a subject is considerate deterministically assigned to a category when, repeating
several times the judgment, none of the raters changes its categorization. On the other hand,
the categorization of a subject is defined as random, in case it does not depend on a shared
evaluation, but is only due to chance.

The overall agreement of two or more raters has indeed to be interpreted as the observable
effect of the combination of two non-observable factors: a deterministic factor and a random
factor. In order to isolate the deterministic component (the object of our study), we have
firstly to define the chance-agreement probability.

According to Scott (1955) and Fleiss (1971), the probability of agreement due to chance
is given by the following proportion:

p j = r· j

nr
= 1

nr

n∑

i=1

ri j

and the random expected agreement is given by:

P̄e =
q∑

j=1

p2
j ∈

[
1

q
, 1

]

. (2)

If we correct the overall agreement probability (1) for the agreement probability due to chance
(2) and normalize, we obtain the statistic:

K Fleiss = P̄ − P̄e

1 − P̄e
∈

[

− 1

r − 1
, 1

]

, (3)

proposed by Fleiss (1971) as a generalization of Cohen’s kappa (1960).
With respect to this point, it should be noted that Fleiss’ kappa is the multiple-raters

extension of Scott’s π index (Scott 1955; Gwet 2008) and not of Cohen’s kappa. Fleiss’
kappa is one of the most common indices to quantify multiple-raters agreement (Fleiss et al.
2003), but in practice it could return inconsistent results.

3 Paradoxical behaviour of Fleiss’ kappa

In Table 2 we describe a particular case of poor performance of Fleiss’ kappa. All subjects are
distributed in the first two categories, in equal proportion. Let M be an integer between 0 and
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Table 2 Distribution of raters by
subject and response category
leading to the paradoxical
behaviour of Fleiss’ kappa

Subject Category Tot

1 2 3 · · · q

1 M r − M 0 · · · 0 r

.

.

. · · · · · · · · · · · · · · ·
.
.
.

i M r − M 0 · · · 0 r

.

.

. · · · · · · · · · · · · · · ·
.
.
.

n M r − M 0 · · · 0 r

Tot. nM n(r − M) 0 · · · 0 rn

r . When M varies, we change from a situation of complete agreement among the examiners
(produced by the extreme values M = 0 and M = r ) to a situation of minor agreement (in
correspondence of the intermediate values of M).

Expression (3), applied to Table 2, returns:

K Fleiss = − 1

r − 1
, for 0 < M < r

and

K Fleiss → − 1

r − 1
, for M → 0 or M → n

These results show the inadequacy of Fleiss’ kappa in interpreting high level of agreement,
because this index assumes a constant and negative value even when it would be expected a
very high inter-rater agreement.

Fleiss’ kappa does not allow to recognize different degrees of agreement when M varies.
Moreover, it does not allow to discriminate the situations of perfect agreement from other
situations. For instance, setting M = 5 and r = 6 in Table 2, it is obtained:

K Fleiss = −0.2,

even if five out of six raters totally agree in their judgement.
Another example of Fleiss’ kappa inconsistent behaviour can be showed using Table 4

(Fleiss 1971). This table shows the classification of 30 patients into 5 diagnostic categories
by six psychiatrists. When we calculate Fleiss’ kappa on these data, we obtain:

K Fleiss = 0.430.

Merging the last three categories in a new category, we expect an increased agreement, instead
the value of kappa decreases:

K Fleiss = 0.205.

4 Calculating Fleiss’ kappa without paradoxical behaviour

In Sect. 3 we noted some particular configurations of category assignments and we analysed
the cases in which the kappa statistic underestimated the agreement. The basic idea of our
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work consists in the use of permutation techniques (Mielke and Berry 2007) to solve the prob-
lem of paradoxical behaviour. Permutations do not lead to loss of information on agreement
since we only consider categorical data.

Referring to Table 1, we propose, in correspondence of each row i , to randomly choose a
permutation of the q frequencies ri j and to substitute this new vector instead of the original
vector. Finally, it is possible to calculate the Fleiss’ kappa index on the permuted frequency
table.

Repeating this procedure C times and synthesizing the C values of kappa by means of a
robust index, we better quantify the inter-raters agreement. In particular, we propose the use
of the median to synthesize the repeated permutation results.

As far as the choice of C is concerned, the number of all possible permuted tables, starting
from Table 1, is equal to (q!)n . This number can be too large for a comprehensive examination,
hence, we approximate the result with a smaller number C .

We calculate the value of robust kappa, Kr , applying this technique to diagnostic data in
Table 4. We now show how the proposed permutation method solves Fleiss’ kappa paradoxes.

From the original dataset, we calculate the value:

Kr = 0.436

and from the merged dataset:

Kr = 0.454.

This result shows that Kr , differently from Fleiss’ kappa, detects the increase of inter-rater
agreement. The suggested procedure involves a high computational effort. When the size of
the table and the number of iterations increase, the required computational time increases
dramatically.

From the proposed method to calculate Fleiss’ kappa, it also follows a new method to cal-
culate confidence intervals not affected by paradoxes. In the following Section, we show how
to construct an interval estimator based on Bootstrap techniques, according to the procedure
proposed for robust kappa.

5 Bootstrap confidence intervals for robust kappa

In this Section we propose the joint use of permutation techniques and resampling methods
to construct confidence intervals. The proposed Bootstrap intervals, differently from the
standard one (Fleiss et al. 2003), avoid paradoxes and perform well even in case of a small
number of subjects (n).

Let’s indicate with pi j = ri j
r (where i = 1, . . . , n and j = 1, . . . , q) the proportion of

categorization. The resampling of the i th row has a multinomial distribution with parameters

Table 3 Confidence intervals (at
level of 95 %) for Fleiss’ kappa

Original dataset Merged dataset

Inf Sup Inf Sup

Asymptotic 0.382 0.478 0.135 0.274

Percentile 0.338 0.550 0.340 0.583

Bootstrap-t 0.298 0.606 0.337 0.588

Bca 0.340 0.551 0.336 0.573
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Table 4 Frequency of
assignment of patients to
diagnostic categories (source:
Fleiss 1971)

Subject Diagnostic category

Depression Personality
disorders

Schizophrenia Neurosis Other

1 0 0 0 6 0

2 0 3 0 0 3

3 0 1 4 0 1

4 0 0 0 0 6

5 0 3 0 3 0

6 2 0 4 0 0

7 0 0 4 0 2

8 2 0 3 1 0

9 2 0 0 4 0

10 0 0 0 0 6

11 1 0 0 5 0

12 1 1 0 4 0

13 0 3 3 0 0

14 1 0 0 5 0

15 0 2 0 3 1

16 0 0 5 0 1

17 3 0 0 1 2

18 5 1 0 0 0

19 0 2 0 4 0

20 1 0 2 0 3

21 0 0 0 0 6

22 0 1 0 5 0

23 0 2 0 1 3

24 2 0 0 4 0

25 1 0 0 4 1

26 0 5 0 1 0

27 4 0 0 0 2

28 0 2 0 4 0

29 1 0 5 0 0

30 0 0 0 0 6

Tot. 26 26 30 55 43

r and pi j . . . piq (with i = 1, ..., n). We can apply to each resampled table the algorithm
described in Sect. 4. In case we repeat this procedure B times, we obtain B values of robust
Fleiss’ kappa. Considering the resulting distributions, we can calculate the quantiles of order
α and 1−α, respectively representing the lower and upper bounds of the Bootstrap percentile
interval at confidence level of 1 − 2α (Shao and Tu 1995).

Because of the computational effort of permutations, we prefer to use Bootstrap percen-
tile with respect to Bootstrap accelerated bias-corrected percentile (Bca) and Bootstrap-t,
that are more accurate (i.e. second order accurate Shao and Tu 1995) but also computation-
ally expensive. In order to assess the results obtained in constructing Bootstrap percentile
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confidence intervals (which are first order accurate Shao and Tu 1995) at level of 95 %, we
compare them to intervals obtained by Bca, Bootstrap-t and Fleiss–Levin–Paik asymptotic
method (Fleiss et al. 2003).

According to Fleiss et al. (2003), for n large enough, Fleiss’ kappa has a Normal distrib-
ution and the estimated standard error is:

sk =
√

2
∑q

j=1 p j
(
1 − p j

)√
nr (r − 1)

√
√
√
√
√

⎡

⎣
q∑

j=1

p j
(
1 − p j

)
⎤

⎦

2

−
q∑

j=1

p j
(
1 − p j

) (
1 − 2p j

)

From original dataset (Table 4) and merged dataset we obtain the confidence intervals reported
in Table 3 (where C = 100 and B = 1000).

The bootstrap intervals constructed with the proposed method do not lead to the paradox
of Fleiss’ kappa and they do not need large sample size, although they require a certain
computational effort.

In particular, we can observe that the humble number of subjects is the typical case in the
psychometric field and it prevents from the use of the asymptotic approximations.

6 Concluding remarks

In this work we investigated the problem of the underestimation of agreement of Fleiss’ kappa
statistic in assessing high levels of inter-raters agreement. Since in case of nominal variables
the order of the categories is not relevant, we proposed a solution based on permutation
techniques.

In order to avoid the paradoxes of this index (exposed in Sect. 3), we suggest to permute
any row of the original dataset. The new permuted matrix has a level of agreement quite
similar to the original one, in spite of a different configuration. If we repeat this operation
C times, the “new” datasets, and the corresponding values of Fleiss’ kappa can be used to
assess the level of agreement of the original dataset. In order to summarize the C values of
Fleiss’ kappa, we have proposed the use of a robust statistic (the median), less affected by
extreme values, that cause the unexpected performance of Fleiss’ kappa.

The problems of this statistic involve the corresponding confidence interval proposed by
Fleiss et al. (2003); this interval is affected by the same paradoxes of Fleiss’ kappa and it
is based on an asymptotic Normal approximation (so it is valid only for n large enough).
Therefore, we proposed a Bootstrap interval not affected by paradoxes and applicable even
when n is too small for Normal approximation.

References

Cicchetti, D.V., Feinstein, A.R.: High agreement but low kappa: II. Resolving the paradoxes. J. Clin. Epidemiol.
43(6), 551–558 (1990). doi:10.1016/0895-4356(90)90158-L

Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960). doi:10.
1177/001316446002000104

Dijkstra, L., van Eijnatten, F.M.: Agreement and consensus in a q-mode research design: an empirical compari-
son of measures, and an application. Qual. Quant. 43(5), 757–771 (2009). doi:10.1007/s11135-009-9249-4

Feinstein, A.R., Cicchetti, D.V.: High agreement but low kappa: I. the problems of two paradoxes. J. Clin.
Epidemiol. 43(6), 543–549 (1990). doi:10.1016/0895-4356(90)90159-M

Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76(5), 378 (1971). doi:10.
1037/h0031619

Fleiss, J.L., Levin, B., Paik, M.C.: Statistical methods for rates and proportions. Wiley, Hoboken (2003)

123

http://dx.doi.org/10.1016/0895-4356(90)90158-L
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1177/001316446002000104
http://dx.doi.org/10.1007/s11135-009-9249-4
http://dx.doi.org/10.1016/0895-4356(90)90159-M
http://dx.doi.org/10.1037/h0031619
http://dx.doi.org/10.1037/h0031619


470 R. Falotico, P. Quatto

Gwet, K.L.: Computing inter-rater reliability and its variance in the presence of high agreement. Br. J. Math.
Stat. Psychol. 61(1), 29–48 (2008). doi:10.1348/000711006X126600

Harvey, A.G., Tang, N.K.: (Mis)perception of sleep in insomnia: a puzzle and a resolution. Psychol. Bull.
138(1), 77 (2012). doi:10.1037/a0025730

Lantz, C.A., Nebenzahl, E.: Behavior and interpretation of the k statistic: resolution of the two paradoxes. J.
Clin. Epidemiol. 49(4), 431–434 (1996). doi:10.1016/0895-4356(95)00571-4

Markon, K.E., Chmielewski, M., Miller, C.J.: The reliability and validity of discrete and continuous measures
of psychopathology: a quantitative review. Psychol. Bull. 137(5), 856 (2011). doi:10.1037/a0023678

Mielke, P.J.W., Berry, K.J.: Permutation methods: a distance function approach. Springer, New York (2007)
Östlin, P., Wärneryd, B., Thorslund, M.: Should occupational codes be obtained from census data or from

retrospective survey data in studies on occupational health? Soc. Indic. Res. 23(3), 231–246 (1990)
Scott, W.A.: Reliability of content analysis: the case of nominal scale coding. Pub. Opin. Q. (1955). doi:10.

1086/266577
Shao, J., Tu, D.: The jackknife and bootstrap. Springer, New York (1995)
Shoukri, M.M.: Measures of interobserver agreement and reliability. Chapman & Hall, Boca Raton (2004)
Uttal, D.H., Meadow, N.G., Tipton, E., Hand, L.L., Alden, A.R., Warren, C., Newcombe, N.S.: The malleabil-

ity of spatial skills: a meta-analysis of training studies. Psychol. Bull. 139(2), 352 (2013). doi:10.1037/
a0028446

123

http://dx.doi.org/10.1348/000711006X126600
http://dx.doi.org/10.1037/a0025730
http://dx.doi.org/10.1016/0895-4356(95)00571-4
http://dx.doi.org/10.1037/a0023678
http://dx.doi.org/10.1086/266577
http://dx.doi.org/10.1086/266577
http://dx.doi.org/10.1037/a0028446
http://dx.doi.org/10.1037/a0028446

	Fleiss' kappa statistic without paradoxes
	Abstract
	1 Introduction
	2 Fleiss' kappa statistic
	3 Paradoxical behaviour of Fleiss' kappa
	4 Calculating Fleiss' kappa without paradoxical behaviour
	5 Bootstrap confidence intervals for robust kappa
	6 Concluding remarks
	References


