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Abstract In the context of multiple treatments for a particular problem or disorder, it is
important theoretically and clinically to investigate whether any one treatment is more effec-
tive than another. Typically researchers report the results of the comparison of two treatments,
and the meta-analytic problem is to synthesize the various comparisons of two treatments to
test the omnibus null hypothesis that the true differences of all particular pairs of treatments
are zero versus the alternative that there is at least one true nonzero difference. Two tests,
one proposed by Wampold et al. (Psychol. Bull. 122:203–215, 1997) based on the homo-
geneity of effects, and one proposed here based on the distribution of the absolute value
of the effects, were investigated. Based on a Monte Carlo simulation, both tests adequately
maintained nominal error rates, and both demonstrated adequate power, although the Wam-
pold test was slightly more powerful for non-uniform alternatives. The error rates and power
were essentially unchanged in the presence of random effects. The tests were illustrated
with a reanalysis of two published meta-analyses (psychotherapy and antidepressants). It is
concluded that both tests are viable for testing the omnibus null hypothesis of no treatment
differences.

Keywords Meta-analysis · Relative efficacy · Treatment effects

1 Introduction

Meta-analytic methods have become the standard procedures for synthesizing research find-
ings in medicine, education, psychology, and other fields (Cooper et al. 2009; Hunt 1997;
Mann 1994). As originally proposed, meta-analysis primarily addressed research questions
about the effectiveness of some treatment by aggregating effect sizes that indexed the degree
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to which the treatment was superior to some type of control group (Cooper and Hedges
1994; Glass 1976; Hedges and Olkin 1985). That is, an effect size that gauged the difference
between the treatment group and the control group is calculated for each study and aggre-
gated over the studies that compared the treatment to a control group. Typically, the effects
are scaled so that a positive effect indicates that the treatment is superior to the control group.
The characteristics of the distributions of the effects and their aggregate are well known
(Cooper and Hedges 1994; Cooper et al. 2009; Hedges and Olkin 1985), providing a variety
of tests, depending on the null hypothesis being tested.

Not infrequently, researchers in a particular area wish to identify the most effective treat-
ment among a set of treatments. For example, there are numerous psychological treatments
for depression, and it is important to know whether one of these treatments is more effec-
tive than any other (See, e.g., Cuijpers et al. 2008; Gloaguen et al. 1998; Robinson et al.
1990; Wampold et al. 2002). When there exists only two treatments for a particular disorder,
standard meta-analytic methods are easily adapted to compare the relative efficacy of two
treatments, say Treatment A and Treatment B, in which case an effect would be calculated
and scaled in such a way that a positive effect would indicate that Treatment A was superior
to Treatment B. Rejection of the null hypothesis of no differences between the two treat-
ments leads to a conclusion that one of the treatments is superior to the other. However, it is
often the case that the number of treatments for a disorder is relatively large and the number
of studies comparing any two particular treatments is relatively small. That is, researchers
choose to compare two treatments sampled from a larger set of treatments because they are
interested in these two treatments; other researchers choose other pairs of treatments. In this
instance, the null hypothesis is that all treatments are equally effective—the true difference
of any two treatments is zero. This is a critically important question, clinically as well as
theoretically. In psychotherapy research, there is much debate about the answer to this ques-
tion—are treatments, in general or for particular disorders, equally effective, or are some
treatments more effective than others (Benish et al. 2008; Crits-Christoph 1997; Howard et
al. 1997; Imel et al. 2008; Miller et al. 2008; Siev et al. 2009; Wampold 2001; Wampold
et al. 2009, 1997)? Similarly, there is a debate about the relative efficacy of new-generation
antidepressants (Cipriani et al. 2009).

Two meta-analytic strategies have been used to test the relative efficacy of many treat-
ments. The first strategy is to aggregate effects for studies comparing two particular treatments
(i.e., Tx A and Tx B), which creates m(m – 1)/2 tests, where m is the number of treatments
studied. This strategy is problematic, because most pairwise comparisons involve few stud-
ies (i.e., there are few comparisons of the particular Treatments A and B) and because this
strategy uses multiple tests to examine a single hypothesis. A variant of this strategy, aimed
at reducing the number of statistical tests, involves creating classes of treatments and exam-
ining pairwise comparisons of classes of treatments (e.g., Gloaguen et al. 1998; Shapiro
and Shapiro 1982a,b). This latter strategy addresses questions related to relative efficacy of
the classes of treatments but does not address directly the hypothesis that all treatments are
equally effective. Moreover, classification of treatments into classes typically is controversial
and unreliable (Wampold 2001; Wampold et al. 2010) and, as well, obviates examination of
treatments within classes, which are often the focus of the primary studies (Wampold et al.
1997).

A second strategy, which avoids multiple statistical tests and classification, tests the null
hypothesis directly. This strategy involves calculating the effect size for each comparison and
then examining the distribution of effects to test the omnibus null hypothesis of no differences
among pairs of treatments. Wampold et al. (1997) used a variant of this strategy to test the
null hypothesis of no differences among psychotherapies (See also Benish et al. 2008; Imel
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et al. 2008; Miller et al. 2008). Unfortunately, the statistical properties of the test proposed by
Wampold et al. (1997) have not been thoroughly investigated and, consequently, the validity
of the conclusions reached using this test is questionable.

The purpose of this article is to investigate the properties of the test proposed by Wampold
et al. (1997), as well as those of an alternative that will be proposed here. Both tests ultimately
involve the same null hypothesis but are based on different statistical models.

2 General problem

Suppose that there is a set, potentially infinite in size, of treatments for a particular disorder
or problem. Researchers typically choose to compare two particular treatments. The effect
size for each study is calculated in the usual fashion:

gi = (ȲAi − ȲBi )/Si

where, for the i th study, ȲAi is the sample mean for treatment A on the variable of interest, ȲBi

is the sample mean for treatment B, and Si is the sample pooled standard deviation (Hedges
and Olkin 1985). An arbitrariness issue becomes apparent, because designation of Treatment
Ai or Treatment Bi is ambiguous—which is Ai and which is Bi? The designation of one of
the two treatments as Treatment Ai will determine the sign of gi. As it turns out, the choice is
irrelevant, and the sign of gi can be determined randomly or even arbitrarily without affecting
the statistical tests proposed here.

We first consider a fixed effects model, in which gi = δi +ei , where δi = (μAi −μBi )/σi

is the true standardized mean difference and ei are the errors of estimation (Raudenbush
2009). The errors of estimation are assumed to be independent and normally distributed
with mean zero and variance νi [i.e., ei ∼ N (0, νi )]. The sample standardized mean

difference is biased, with expected value E(gi ) = δi/Cmi , whereCmi = �(
mi
2 )√

mi
2 �(

mi −1
2 )

, �(·)
is the gamma function, mi = Ni − 2 is the number of degrees of freedom associated with
the pooled within-group variance, and Ni is sum of sample sizes for Treatment Ai (n Ai ) and
Treatment Bi (nBi ). The bias in gi is corrected in the usual way (Hedges 1981; Hedges and
Olkin 1985), creating an unbiased estimator of δi, namely di = Cmi gi. The variance of diis

equal to σ 2(di ) = C2
mi

mi

(mi −2)ñi

[
1 + ñiδ

2
i

] − δ2
i , where ñi = n Ai nBi

Ni
.

Given k independent studies, the null hypothesis is H0 : [δ] = [0], where [δ] is a k × 1
vector of the k true standardized mean differences for the particular pairs of treatments, δi ,
[0] is a vector of zeros, and the alternative hypothesis states that there exists at least one
nonzero effect size. Under the Wampold model, it is assumed that the k sample effect sizes
have been sampled at random and independently from k populations of studies in which the
particular pairs of treatments are compared and whose parameters are μAi , μBi , and σi . The
aim is to utilize the dis and their distributions to test the null hypothesis.

3 Statistical tests of null hypothesis

Two statistical tests of the null hypothesis are described here: Wampold et al.’s (1997) test and
a new one based on a modification of Geary’s (1935) test of normality. We then investigate
the statistical properties of the two tests.
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3.1 Wampold et al’s homogeneity test

Consider the vector [d] containing the k dis . The distribution of [d] is well known, having
expected value [δ], a variance–covariance matrix �d whose diagonal elements are σ 2(di ) and
whose off-diagonal elements are zero, as the di are independent, and that is approximately
multivariate normal as the sample sizes increase. If the null hypothesis is true (i.e., δi = 0),
then the effects are said to be homogenously distributed, the expected value of [d] is [0], the

variance of di is equal to σ 2
0 (di ) = C2

mi
mi

(mi −2)ñi
, and the diagonal elements of �d are equal to

�d0 = σ 2
0 (di ). If the effects are not uniformly zero (i.e., at least one δi �= 0), then the sample

effects will appear to be heterogeneously distributed about zero. Hedges and Olkin (1985)
describe a test of the null hypothesis of homogeneity based on Cramér’s (1946) modified
minimum χ2 test. In the present case, and assuming that the null hypothesis is true and that
the normal approximation to the distribution of di is adequate, Pearson (1900) showed that
the form

W = [d]
′

−1∑

d0

[d] =
k∑

i=1

d2
i

σ 2
0 (di )

is distributed as a central χ2 variate with k degrees for freedom. If W is sufficiently large,
the null hypothesis is rejected.1

3.2 Geary’s test of normality

Geary (1935) derived the moments of the sample mean of absolute values, |y| = 1
k

∑k
i=1 |yi |

of observations drawn from a standard normal distribution. He proposed that the first and
second moments of |y| could be used as a test of normality and showed that the mean
and variance of |y| are equal to

√
2/π and (1 − 2/π)/k, respectively.2 In addition, he

showed that the convergence of |y| to normality is fairly rapid, with the skewness and kur-
tosis of |y| equal to 0.1 and 0.009, respectively, at k = 20. Therefore, Geary suggested that
ZG = (|y| − √

2/π)/
√

(1 − (2/π))/k could be used as a normally distributed test statis-
tic to examine the hypothesis that the yi were sampled from a standard normal population.
In the present meta-analytic context, under the null hypothesis of no treatment differences,
effects can be standardized given known variances, so that |yi | = |di |/σ0(di ) can serve as the
absolute values of k observations yi drawn from a standard normally distributed population,
and ZG can be used to test the null hypothesis regarding treatment effectiveness.

4 Monte Carlo study of Wampold et al. and absolute value tests: fixed effects

In both the Wampold et. al. test and the extension of Geary’s method based on absolute values
of the effects, the tests are one-tailed, in that treatment effectiveness would be revealed by the
di being further from zero than expected or by the |di| being larger than expected. The issue
is whether the Wampold et al. test and the extension of the Geary test, to be referred to as the
absolute value test, adequately protect Type I error rates and are reasonably powered for use

1 Wampold et al. (1997) performed the homogeneity test with k – 1 degrees of freedom rather than k, ignoring
the fact that the mean effect size was stipulated rather than estimated.
2 For the sake of historical accuracy, Geary denoted the mean of the absolute values as |y| whereas we denoted
it by |y|.
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in the typical meta-analytic context, and if so, to determine which of the tests is preferred. We
conducted a Monte Carlo study to make these determinations. When specifying conditions
for the Monte Carlo study, it would be informative to note that the Wampold test statistic

equals W = ∑k
i=1 |yi |2 = k|y|2 + ∑k

i=1(|yi | − |y|)2. The first term in the sum on the right
is proportional to the square of the difference from zero of the mean of the absolute standard-
ized effect sizes, whereas the second term in the sum reflects the heterogeneity among the
absolute standardized effect sizes. Therefore, if the effect sizes are about equally nonzero,
so that the rightmost term is small, we would expect that the Wampold and extended Geary
tests might perform about equally well, whereas for a given nonzero average, the Wampold
test may perform better when there is heterogeneity among the effect sizes. We will examine
conditions in which the effect sizes are equally nonzero and others in which there is some
heterogeneity among the effect sizes.

The two tests were examined in simulations whose conditions were intended to cover a
reasonable range of likely sample sizes, numbers of studies included in meta-analyses, and
effect sizes. Specifically, the sizes of the treatment groups were chosen to be nA = nB = 10,
20, 40, and 80, and the numbers of studies were set equal to k = 10, 20, 50, and 100.

To examine Type I error rates, all standardized mean differences δi were set equal to zero.
The examination of power involved a number of non-null scenarios. First, the δi were set
uniformly to 0.1, 0.2, 0.3, 0.4 or 0.5. Second, various non-uniform differences were modeled
by considering three scenarios. In Scenario A, 25 % of the δi were set to 0.0, 25 % of the δi

were set to 0.1, 25 % of the δi were set to 0.2, and 25 % of the δi were set to 0.3. In Scenario
B, 25 % of the δi were set to 0.0 and 75 % of the δi were set to 0.2. Finally, in Scenario C,
50 % of the δi were set to 0.0 and 50 % of the δi were set to 0.3. In all three scenarios the
mean δ was 0.15.

In each replication, uniform random numbers were generated using RAN2 (Press et al.
1992) and transformed to random standard normal deviates using the method of Box and
Muller (1958). To provide a set of treatment means sampled at random from a population
whose variance was unity, k of the random deviates were divided by

√
n A and another k

were divided by
√

nB . A particular value of δ was then added to each simulated Treatment
mean. Similarly, uniform random numbers were used as percentiles to generate χ2-distributed
variates using the inverse cdf method. To simulate the treatment variances, k of these values

Table 1 Simulated
meta-analyses error rates for W
and ZG under null hypothesis and
nominal α = 0.05

k n A = nB W ZG

10 10 0.0669 0.0610
20 0.0564 0.0551
40 0.0520 0.0613
80 0.0520 0.0588

20 10 0.0652 0.0525
20 0.0574 0.0539
40 0.0574 0.0601
80 0.0507 0.0539

50 10 0.0721 0.0484
20 0.0547 0.0491
40 0.0546 0.0512
80 0.0488 0.0516

100 10 0.0701 0.0399
20 0.0552 0.0455
40 0.0569 0.0485
80 0.0501 0.0496
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were divided by (nA − 1) and k were divided by (nB − 1). These variances were pooled an
“experiment” at a time, and for each the mean difference was divided by the pooled within-
group standard deviation to yield k effect sizes, the absolute values of which were then taken.
Finally, the k effect sizes were used to yield W and ZG , and this process was repeated 10,000
times for each condition.

The Type I error rates for the 80 conditions are shown in Table 1. Examination of the error
rates suggests that both tests perform adequately, maintaining Type I error rates within the
range of 0.0455 and 0.0613 when the sample sizes of the treatment groups are greater than
20. When the samples sizes are equal to 10, W appears to be more liberal than ZG , with error
rates ranging up to 0.0721.

The results of the power analyses are shown in Table 2 and do not include the conditions
for which δ = 0.4 or 0.5 because the power is so high for these cases as to be uninformative.
Given the small effects modeled in Table 2, these analyses demonstrate that the power of both
tests is adequate in most instances in which meta-analyses are applied. In several instances,
particularly the non-uniform alternative hypothesis, W is slightly more powerful than ZG , as
was suspected.

5 Extension to random effects model

In the meta-analytic context, the random effects model considers the random sampling of
studies from a population of studies and the random sample of subjects in each study from
a population of subjects. Accordingly, gi = δi + ui + ei , where the error ui is the random
effect of study i and represents the deviation of study ifrom the expected value (Raudenbush
2009). In this model, ui + ei ∼ N (0, v∗

i ) where v∗
i = σ 2

ui + vi and is the total variance in the
observed effects gi . We extended the random effects meta-analysis by considering different
values of the intraclass correlation coefficient ρ, where ρ is defined as σ 2

μi/(σ
2
ui + vi ).

Simulations were run for models in which ρ was equal to 0.05, 0.10, and 0.20 and δ was
equal to 0.0, 0.10, and 0.20, and replicated 10,000 times. The proportion of rejections for
these various values are presented in Table 3. The simulation clearly shows that the nomi-
nal error rates are maintained in the random effects models and that the power of the two
tests in the random model was similar to the power of the fixed effects model across various
combination of ρ and δ

6 Examples

We illustrate the two procedures by applying to them to existing data sets, one that examined
the relative efficacy of new-generation antidepressants (Cipriani et al. 2009) and one that
examined the relative efficacy of various psychological treatments (Wampold et al. 1997).

6.1 Comparative efficacy of new-generation antidepressants.

Cipriani et al. (2009) were interested in identifying which of 12 new-generation antide-
pressants were more effective than others. There were 117 randomized clinical trials that
compared two or more of these antidepressants. Clearly, not all antidepressants were com-
pared to each of the other. A Bayesian analysis using Markov chain Monte Carlo methods
were used to estimate direct and indirect paths from each of the nodes in a network analysis.

123



Meta-analytic methods to test relative efficacy 761

Ta
bl

e
2

Pr
op

or
tio

n
of

re
je

ct
io

ns
in

si
m

ul
at

ed
m

et
a-

an
al

ys
es

(i
.e

.,
po

w
er

)
fo

r
va

ri
ou

s
no

n-
nu

ll
sc

en
ar

io
s

(α
=

0.
05

)
fo

r
W

an
d

Z
G

δ
=

0.
1

δ
=

0.
2

δ
=

0.
3

Sc
en

ar
io

A
Sc

en
ar

io
B

Sc
en

ar
io

C

k
n

A
=

n
B

W
Z

G
W

Z
G

W
Z

G
W

Z
G

W
Z

G
W

Z
G

10
10

0.
07

75
0.

06
91

0.
12

93
0.

11
78

0.
24

53
0.

24
44

0.
12

64
0.

11
54

0.
11

43
0.

10
48

0.
14

10
0.

13
09

20
0.

09
14

0.
09

30
0.

22
15

0.
22

84
0.

48
29

0.
50

42
0.

20
17

0.
19

83
0.

17
33

0.
17

52
0.

24
01

0.
23

93
40

0.
12

07
0.

13
03

0.
43

74
0.

45
84

0.
84

91
0.

86
82

0.
38

42
0.

37
82

0.
32

22
0.

33
90

0.
47

67
0.

47
01

80
0.

21
56

0.
22

87
0.

79
54

0.
81

89
0.

99
49

0.
99

68
0.

69
03

0.
68

46
0.

63
32

0.
64

22
0.

80
11

0.
78

35
20

10
0.

08
74

0.
07

24
0.

17
47

0.
15

25
0.

35
68

0.
33

72
0.

15
54

0.
12

95
0.

14
21

0.
12

07
0.

18
27

0.
16

01
20

0.
10

28
0.

09
43

0.
31

29
0.

31
18

0.
71

16
0.

72
12

0.
27

61
0.

25
92

0.
23

27
0.

22
72

0.
35

53
0.

33
79

40
0.

16
51

0.
16

56
0.

63
96

0.
65

10
0.

97
63

0.
98

17
0.

56
30

0.
54

41
0.

48
25

0.
48

73
0.

70
21

0.
68

65
80

0.
31

19
0.

32
12

0.
95

97
0.

96
56

1.
00

00
1.

00
00

0.
89

39
0.

88
24

0.
85

54
0.

85
66

0.
96

03
0.

94
97

50
10

0.
09

81
0.

07
19

0.
26

17
0.

21
35

0.
60

11
0.

55
98

0.
23

65
0.

18
41

0.
19

88
0.

15
62

0.
29

17
0.

23
10

20
0.

12
96

0.
11

60
0.

54
28

0.
52

23
0.

95
82

0.
95

78
0.

46
56

0.
42

44
0.

40
62

0.
37

58
0.

60
94

0.
57

18
40

0.
24

69
0.

23
32

0.
92

10
0.

92
18

1.
00

00
1.

00
00

0.
86

01
0.

84
02

0.
78

30
0.

77
34

0.
94

97
0.

93
34

80
0.

54
72

0.
53

59
1.

00
00

1.
00

00
1.

00
00

1.
00

00
0.

99
68

0.
99

57
0.

99
26

0.
99

24
0.

99
97

0.
99

98
10

0
10

0.
12

32
0.

07
89

0.
38

51
0.

29
87

0.
82

80
0.

78
50

0.
33

12
0.

25
25

0.
28

72
0.

21
03

0.
43

81
0.

34
40

20
0.

18
26

0.
15

04
0.

77
63

0.
74

46
0.

99
88

0.
99

83
0.

68
33

0.
63

35
0.

60
83

0.
55

88
0.

83
77

0.
79

85
40

0.
39

07
0.

36
23

0.
99

58
0.

99
58

1.
00

00
1.

00
00

0.
98

30
0.

97
47

0.
95

91
0.

95
39

1.
00

00
1.

00
00

80
0.

79
49

0.
77

77
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00
1.

00
00

1.
00

00

Sc
en

ar
io

A
:2

5
%

of
δ

=
0.

0,
25

%
of

δ
=

0.
1,

25
%

of
δ

=
0.

2,
25

%
of

δ
=

0.
3;

Sc
en

ar
io

B
:2

5
%

of
δ

=
0.

0,
75

%
of

δ
=

0.
2;

Sc
en

ar
io

C
:5

0
%

of
δ

=
0.

0,
50

%
of

δ
=

0.
3

123



762 B. E. Wampold, R. C. Serlin

Table 3 Proportion of rejections in simulated meta-analyses for W and ZG for random-effects model.

k n A = nB δ = 0 δ = 0.10 δ = 0.20 δ = 0.30

W ZG W ZG W ZG W ZG

ρ = 0.05
10 10 0.0607 0.0578 0.0799 0.0720 0.1286 0.1243 0.2498 0.2475

20 0.0561 0.0597 0.0916 0.0954 0.2202 0.2221 0.4799 0.5031
40 0.0520 0.0566 0.1222 0.1309 0.4311 0.4472 0.8381 0.8664
80 0.0558 0.0636 0.2193 0.2283 0.7898 0.8199 0.9959 0.9969

20 10 0.0652 0.0509 0.0851 0.0720 0.1797 0.1588 0.3586 0.3385
20 0.0575 0.0534 0.1050 0.0984 0.3206 0.3150 0.7070 0.7151
40 0.0539 0.0580 0.1602 0.1563 0.6367 0.6563 0.9794 0.9834
80 0.0505 0.0571 0.3177 0.3216 0.9573 0.9634 1.0000 1.0000

50 10 0.0666 0.0456 0.0948 0.0645 0.2627 0.2121 0.5979 0.5500
20 0.0559 0.0484 0.1397 0.1266 0.5455 0.5234 0.9548 0.9543
40 0.0541 0.0527 0.2493 0.2396 0.9221 0.9185 1.0000 1.0000
80 0.0493 0.0513 0.5469 0.5410 0.9999 0.9998 1.0000 1.0000

100 10 0.0646 0.0390 0.1168 0.0727 0.3863 0.3045 0.8373 0.8373
20 0.0587 0.0457 0.1834 0.1546 0.7831 0.7514 0.9984 0.9982
40 0.0530 0.0511 0.3862 0.3603 0.9943 0.9952 1.0000 1.0000
80 0.0540 0.0490 0.7952 0.7829 1.0000 1.0000 1.0000 1.0000

ρ = 0.10
10 10 0.0646 0.0581 0.0797 0.0753 0.1305 0.1242 0.2460 0.2381

20 0.0544 0.0561 0.0914 0.0954 0.2193 0.2300 0.4882 0.5056
40 0.0507 0.0568 0.1220 0.1286 0.4301 0.4536 0.8402 0.8637
80 0.0521 0.0598 0.2160 0.2295 0.7843 0.8156 0.9962 0.9983

20 10 0.0679 0.0501 0.0901 0.0714 0.1727 0.1482 0.3562 0.3401
20 0.0524 0.0535 0.1090 0.1018 0.3189 0.3134 0.6978 0.7122
40 0.0493 0.0523 0.1498 0.1517 0.6429 0.6585 0.9767 0.9829
80 0.0534 0.0597 0.3234 0.3249 0.9586 0.9662 1.0000 1.0000

50 10 0.0672 0.0478 0.1018 0.0762 0.2551 0.2062 0.6022 0.5584
20 0.0551 0.0480 0.1396 0.1247 0.5327 0.5121 0.9549 0.9546
40 0.0542 0.0498 0.2460 0.2361 0.9249 0.9254 0.9998 0.9999
80 0.0521 0.0522 0.5435 0.5356 0.9999 1.0000 1.0000 1.0000

100 10 0.0705 0.0408 0.1212 0.0795 0.3812 0.3004 0.8280 0.7838
20 0.0593 0.0483 0.1770 0.1497 0.7832 0.7531 0.9991 0.9987
40 0.0513 0.0487 0.3844 0.3564 0.9965 0.9957 1.0000 1.0000
80 0.0507 0.0502 0.7942 0.7760 1.0000 1.0000 1.0000 1.0000

ρ = 0.20
10 10 0.0637 0.0589 0.0810 0.0755 0.1243 0.1210 0.2440 0.2403

20 0.0599 0.0597 0.0864 0.0865 0.2147 0.2227 0.4871 0.5033
40 0.0526 0.0565 0.1238 0.1314 0.4376 0.4575 0.8367 0.8643
80 0.0478 0.0560 0.2116 0.2239 0.7946 0.8227 0.9962 0.9970

20 10 0.0634 0.0500 0.0835 0.0686 0.1727 0.1527 0.3576 0.3389
20 0.0551 0.0569 0.1026 0.0974 0.3107 0.3072 0.7047 0.7181
40 0.0497 0.0533 0.1599 0.1606 0.6439 0.6573 0.9772 0.9827
80 0.0504 0.0537 0.3099 0.3151 0.9565 0.9637 0.9999 0.9999

50 10 0.0658 0.0444 0.0970 0.0705 0.2551 0.2123 0.6054 0.5650
20 0.0568 0.0498 0.1376 0.1177 0.5467 0.5249 0.9522 0.9537
40 0.0500 0.0525 0.2516 0.2377 0.9305 0.9298 1.0000 1.0000
80 0.0545 0.0547 0.5416 0.5339 1.0000 1.0000 1.0000 1.0000

100 10 0.0678 0.0391 0.1170 0.0747 0.3827 0.2941 0.8359 0.7934
20 0.0560 0.0474 0.1875 0.1611 0.7826 0.7537 0.9981 0.9981
40 0.0558 0.0535 0.3797 0.3592 0.9961 0.9948 1.0000 1.0000
80 0.0536 0.0522 0.7913 0.7844 1.0000 1.0000 1.0000 1.0000
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Outcomes were expressed as odds ratios from the proportion of subjects who responded to
treatment. Based on their analysis, the authors concluded that some of the antidepressants
were more effective than others.

We sought to test the omnibus hypothesis that there were differences among treatments.
To accomplish that goal, we converted the odds ratios to an equivalent d (Borenstein 2009)
and applied the Wampold homogeneity test and Geary’s test of normality. Both tests yielded
particularly small test statistics (Q = 9.43, df = 112, p = .99 for the former and z = −11.46, p
= 0.99 for the latter), indicating that there is no evidence that the 12 antidepressants differed
in terms of their effectiveness and therefore, without planned comparisons, it seems to make
little sense to examine the data set for particular differences among particular treatments.

6.2 Reanalysis and re-interpretation of Wampold et al. (1997)

In 1997, Wampold et al. (1997) conducted a meta-analysis to test whether legitimate psycho-
therapeutic treatments were equally effective or not, thus testing the hypothesis that the δi

found in studies comparing two such treatments are equal to zero. Wampold et al. searched
the literature and found 277 such studies. To test that null hypothesis, Wampold et al. used
the W statistic discussed above and found that W = 241.18, which when compared to the
distribution of a variate that is χ2 with 277 degrees of freedom, is found not to be statistically
significant (p = 0.94), and the null hypothesis was retained. It was concluded that there is
no evidence in these 277 studies to suggest that the any one treatment is more effective than
another.

Wampold et al. (1997) then went on calculate the weighted aggregate of the absolute
value of the effects, which was found to be equal to 0.19, and concluded that “this estimate
of the true effect is an overestimate [of the true difference between treatments] and provides
an upper bound only” (Wampold et al. 1997, p. 209). However, the absolute value of the
effects was interpreted by many as an estimate of the true differences among treatments.
For example, Howard et al. (1997) stated, “The .19 mean absolute value effect size reported
by Wampold et al. would thus seem to be the value we want, so there is, on the average, a
significant difference (according to their data) in outcome in trials of various pairs of psy-
chotherapies” (Wampold et al. 1997, p. 221). An examination of ZG will clarify the situation.
In these data, |y| = 1

k

∑k
i=1 |di | /σ(di ), (i.e., the average of the standardized absolute values

of the effects) was equal to 0.7109, which is less than the expected value
√

2/π = 0.7979.
In this case ZG = −2.40, which is in the opposite direction of what is needed to reject
the null hypothesis that all true effect sizes are equal to zero (p = 0.99). Given that there
was adequate power in this meta-analysis (See Table 2), it is now clear that Wampold et
al.’s statement about the upper bound of the differences among effects was misleading, as
the absolute values of the effects provides no evidence whatsoever that the true differences
among treatments were anything other than zero.

7 Conclusions

Determining the relative efficacy of multiple treatments is critical theoretically and clinically
in any service provision context, such as education, applied psychology, and medicine. When
there are multiple treatments, the first question is whether any one treatment is more effec-
tive than any other. In this presentation, two tests, based on different statistical models, of
the omnibus null hypothesis that there are no treatment differences were investigated. The
first one, proposed by Wampold et al. (1997), is based on the homogeneity test discussed
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first discussed by Pearson (1900) and adapted to the meta-analytic context by Hedges and
Olkin (1985). Although this test has been used to test the relative efficacy of treatments, the
statistical properties of the test had not been investigated. The second test, proposed here,
was adapted from Geary’s test of normality using the distribution of the absolute value of the
effects.

Although the statistical models were different, both tests adequately maintained nominal
alpha levels in a variety of conditions and in a fixed and random effects contexts. Power of the
tests depends on the sample sizes of the primary studies, as well as the number of studies in
the meta-analysis. Both tests were reasonably powered for relatively moderate effects in most
instances in typical situations in which meta-analysis might be applied. Under non-uniform
alternative hypotheses, the Wampold test is slightly more powerful than Geary’s.

The present analysis yields two viable meta-analytic tests for the null hypothesis that
the differences among treatments are zero. Failure to reject the null hypothesis, in instances
where power is adequate, suggests that there is insufficient evidence to conclude that any one
treatment is superior to another, a particularly informative conclusion.
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