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Abstract In-depth interviewing is a promising method. Alas, traditional in-depth inter-
view sample designs prohibit generalizing. Yet, after acknowledging this limitation, in-depth
interview studies generalize anyway. Generalization appears unavoidable; thus, sample
design must be grounded in plausible ontological and epistemological assumptions that enable
generalization. Many in-depth interviewers reject such designs. The paper demonstrates that
traditional sampling for in-depth interview studies is indefensible given plausible ontolog-
ical conditions, and engages the epistemological claims that purportedly justify traditional
sampling. The paper finds that the promise of in-depth interviewing will go unrealized unless
interviewers adopt ontologically plausible sample designs. Otherwise, in-depth interviewing
can only provide existence proofs, at best.

Keywords Ontology · Epistemology · In-depth interviewing · Sampling ·
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What can we learn from in-depth interviewing? Surely, an interviewer can ask multiple
respondents myriad questions, but what justifies attending to the answers or analysis? This
question motivates the investigation. Because methodological justifications depend crucially
on the match between ontological conditions and epistemological assumptions, addressing
this question requires assessing the plausibility and coherence of key ontological and episte-
mological assumptions of in-depth interviewing.

Although multiple assumptions ground every method, the study focuses on case-selection
for in-depth interview (IDI) studies. Because all researchers must select cases for study, case
selection is of broad interest.
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To proceed, I first differentiate social science in-depth interviewing from other interview-
ing. Focusing thereafter on social science in-depth interviewing, I next convey a common
feature of IDI studies. Then a fundamental ontological condition that affects all respondent
selection strategies is offered. Afterwards, three case selection strategies are conveyed and
interrogated. After addressing key myths of case selection, I consider two justifications of
common IDI approaches—one claiming different generalization logics, the other claiming
unique research aims, justify traditional strategies. The penultimate section addresses imple-
mentation. Summary reflections close the analysis.

1 Social science in-depth interviewing

1.1 Social science interviewing versus non-social science interviewing

Doctors interview patients, constables interview witnesses, reporters interview sources, and
social scientists interview respondents. Doctors, constables, and reporters interview to learn
what happened in a case of intrinsic interest to some client, e.g., a patient, victim, or citizen.
If they investigate cause they seek causes of a specific incident, such as an illness, murder,
or bribe; they do not aim to generalize to a class of events, although they may use others’
generalizations (e.g., serial killers have an identifiable profile) in their investigation.

In contrast, social science interviewers look beyond “what happened?” Whereas a reporter
or detective may ask whether wealthy person A bribed politician B, social scientists ask
whether the wealthy unduly influence political decisions. From the social science perspec-
tive the bribed politician is perhaps one example, of so little specific interest that social
scientists’ reports can suppress the politician’s name. For the reporter or detective, however,
the politician’s name is central to the story or criminal case.

Thus, social scientists’ respondents are not necessarily intrinsically interesting or inter-
ested (Gomm et al. 2000, p. 102). And, owing to a focus on patterns about which respon-
dents may be unaware, social scientists avoid directly asking respondents their research
question (e.g., do wealthy people unduly influence your decisions?); instead, they probe
unobtrusively.

1.2 In-depth interviewing versus survey interviewing

In-depth interviewing differs from survey interviewing. Suchman and Jordan (1990), sur-
vey interview critics, show that interviews are interviewer/respondent co-productions.
This implies that respondents’ cognitive and affective access to information may depend
upon the co-constructed context. Consequently, different interviewers may elicit different
answers from the same respondent, a possibility that can destabilize confidence in interview
results.

Survey researchers address this challenge by standardizing training, questions, and
responses to respondent queries. Yet, many factors reduce such efforts’ success (e.g., Ander-
son et al. 1988). In-depth interviewers respond by tailoring questions to each respondent.
Hence, IDI epistemology differs from that of survey research.

I focus on social science IDI and attend not to the interview but, instead, to the selec-
tion of interviewees. To that end, I first relate the common IDI approach to respondent
selection.
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2 The common strategy of in-depth interviewing: described and assessed

2.1 The common strategy of in-depth interviewing

Most IDI studies include a statement that serves as introduction to, justification of, and
apology for the research design. For example, O’Brien (2008) writes:

…to fully investigate the color-blind ideology that facilitates the process of whitening,
however, and the color-conscious ideologies that would accompany the browning pro-
cess, qualitative methods need to be brought to bear on the topic. Although such methods
invariably yield a smaller sample, and one that cannot necessarily be generalized to a
wider population, they ask key questions that large-scale surveys cannot. (p. 17).

Or, as another example, Orrange (2003) first writes:

These data come from an in-depth study of forty-three advanced professional school
students in law and MBA programs at a major research university in the Southwestern
United States…. All respondents were recruited using snowball sampling techniques.
(p. 456),

a design justified by the claim that:

This study provides a rich contextual basis for an exploration into how these young
adults think about meaning in life…. The in-depth interviews help us to evaluate
whether their thoughts about the future, in general, and meaning in life, in particu-
lar, are merely whims and fancies or, on the other hand, are richly woven into the
vocabularies of motive through which they discuss their aspirations. (p. 457).

However, Orrange qualifies every claim with the observation that:

…some caution should be used in interpreting these findings, as the research sample
is not necessarily highly representative of some well-defined population in the broader
society; the analysis was based on research involving a purposive sample (p. 458).

This pattern of explicit description/justification of a design accompanied by admission
that one cannot generalize the findings is endemic to IDI studies. Yet, after articulation, the
qualification is apparently forgotten, for what invariably follows is a series of generalizations.
For example, Orrange maintains that:

These findings help us in clarifying the current state of affairs with respect to debates
regarding the new individualism in both the narrow and the broad sense, while they
also have implications for the postmodern challenge to the self. (p. 473),

and

Certainly, one emerging and gendered alternative or adaptation to the potential tensions
and conflicts some of the women face in forging careers and families is the “friends as
family” alternative described…. This pattern of response represents one alternative to
the dominant findings. (p. 474).

Sample design rendered respondents idiosyncratic subjects only, prohibiting using the
findings to address general claims (e.g., the postmodern challenge to the self). Yet, Orrange
suggests generalizing from them to larger societal patterns, abandoning the aforementioned
caution.
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Orrange’s (2003) second generalizing excerpt counterposes allegedly dominant and alter-
native family patterns. Yet, as I show below, there is no way to summarize within the sample
to determine a dominant pattern given the design.

As another example, O’Brien contends that:

While qualitative work such as the present study may not be able to provide general-
izable findings, it can suggest ways to better tailor surveys on this topic in the future.
For instance, questions that ask respondents’ racial and ethnic categories could be pre-
sented as a continuum (perhaps a scale of one to ten) that allows them to define for
themselves how closely they identify with any particular group. (pp. 59–60).

O’Brien claims an inability to generalize, but on the basis of the analysis advises census
takers and survey researchers how to pose questions to millions of future respondents, as if
this advice does not constitute a generalization from the reports and experiences of O’Brien’s
respondents to future strategies for ascertaining others’ experiences.

Although generalizing after admitting one cannot justifiably generalize is not the only
challenge facing in-depth interviewing, it is perhaps the most visible sign that something is
awry with IDI as commonly practiced.

2.2 Assessing the common in-depth interview strategy

I contend that in-depth interviewers generalize because realizing the social science value
of IDI requires generalization. Caught in contradiction between sample design limitations
and social science imperatives, interviewers, perhaps inadvertently, deploy synonyms for
generalizing. Alas, a large supply of synonymic constructions is available.

For example, O’Brien (2008, p. 18) aims to “identify the particular experiences that are
unique” to Latino/as and Asians as “middle” racial categories. Identifying unique experiences
of a racial/ethnic group involves generalizing from sampled to nonsampled coethnic peers.
How, after all, can one identify “unique Asian experience” without generalizing? Thus, the
study aim could not be realized without generalizing.

Other synonyms include reference to more likely occurrences (e.g., Brunson 2010, p. 231),
policy implications (e.g., Brunson 2010, p. 232), and theoretical implications (Wrigley 2002,
pp. 48–49). To predict future occurrences is to offer conclusions for cases/instances one has
not observed, i.e., to generalize, and policy- and theory-construction are generalizing activi-
ties by definition. These and hundreds of other published examples suggest there is no escape
from generalizing; social science in-depth interviewers, like all other social scientists, are
engaged in a process that requires one to generalize.1

Social scientists generalize from the sample and within the sample (Gomm et al. 2000,
pp. 108–111). Unless they have intrinsically interesting cases (e.g., the 9 US Supreme Court
justices), which might obviate out-of-sample generalization for some questions, social sci-
entists generalize in both ways.

Accordingly, one may ask, of what value is a method practitioners admit prohibits gen-
eralization? Absent generalization, may IDI studies only help us understand the specific
individuals interviewed? Most readers have no interest in O’Brien’s, Orrange’s, or most
other respondents specifically. Thus, some way to generalize seems imperative.

As practiced, IDI studies actually have some limited value. Orrange noted some respon-
dents referenced friends as fictive family, and O’Brien found some respondents both adopted

1 Lincoln and Guba (1979,2000) claim generalization requires one to assume determinism. As Gomm et al.
(2000, pp. 100–101) show, this claim is incorrect.
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and abhorred racial prejudice. To the extent other study aspects are solid, both provide exis-
tence proofs; we learn that at least one person in the world held the described constellation of
positions. But, given that human imagination permits infinite arrangements, is the ability to
show that someone somewhere holds some position sufficient justification for frequent use
of a method? If not, can IDI be arranged to provide more than existence proofs?

Because in-depth interviewing is difficult, interviewers can easily fail to produce even
an existence proof. Still, I believe interviewers can go beyond existence proofs to general-
ization, a key possibility because fundamental aspects of the social render non-generalizing
social science virtually impossible (Gomm et al. 2000, pp. 98–102). To generalize interview-
ers must adopt a coherent basis for generalizing, and resist claims that evade the inherent
challenges of social research. The quintessential example of (likely unwitting) evasion is the
claim that quantitative research generalizes to populations but qualitative research general-
izes theoretically (e.g., Oberfield 2010), a claim that indicates the ontological impediments
to and epistemological foundations of systematic knowledge production are insufficiently
appreciated.

The tough challenges of research stem from the nature of reality. Although the nature
of reality is contested, the feature of reality that concerns us is virtually uncontested. Thus,
before considering the available design strategies, we need first delineate a key ontological
condition all successful respondent selection strategies must address.

3 A fundamental ontological condition: social world lumpiness

The social world is ubiquitous; consequently, there is no asocial space within which social
scientists can work or upon which they may stand and thereby avoid the inferential challenges
inherent in the social world.2 These unavoidable challenges are posed by, at minimum, the
lumpiness and complexity of the social world. Strategies exist for addressing both features.
Lumpiness is the primary culprit for case selection, so I focus on lumpiness.

All analysts confront a social world that is lumpy. By “lumpy” I mean that in the large-
dimensioned social space there are concentrations of entities, and sparse locales; some con-
stellations of characteristics are common, others rare; hills and mountains rise from some
spots on the social terrain, valleys and ravines mark others. As Ragin (2008) rightly indi-
cates:

Naturally occurring social phenomena are profoundly limited in their diversity…. It is
no accident that social hierarchies such as occupational prestige, education, and income
coincide, just as it is not happenstance that high scores on virtually all nation-level
indicators of wealth and well-being are clustered in the advanced industrial countries.
Social diversity is limited not only by overlapping inequities of wealth and power but
also by history. For example, colonization of almost all of South and Central America
by Spain and Portugal is a historical and cultural “given” … (p. 147).

Though hundreds of permutations of conditions are logically possible, lumpiness drasti-
cally reduces the realized number. The feature also bedevils statistical research. Quantitative
researchers’ covariates are correlated, facilitating inadvertent generalization “off the support”
(Neter et al. 1989, p. 262). For example, although some may earn $300,000, and some may

2 The metaphorical social space may have far more than 3, 4, or 11 dimensions. Indeed, identifying and
mapping its possibly changing dimensions is an on-going task of social science.
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have 6 years of schooling, the combination of characteristics may not exist, problematizing
all predictions for such logically possible cases.

Even as social world lumpiness justifies interest in existence proofs, it obscures both the
living beings scattered in clusters across the social terrain and the social forces that cluster,
scatter, enable, and constrain them. If an analyst seeks to either count entities or apprehend
(or interrogate) social relationships, social world lumpiness will prevent their success unless
the study design addresses the threat social world lumpiness poses.

Interviewers use respondents as entry points into or vantage points on this social world,
seeking to discern respondents’ statuses (e.g., predicaments, interpretations, trajectories, con-
tradictions) and/or the social forces that partly pattern and produce these statuses. However,
owing to social world lumpiness, observation of and from any vantage point (i.e., any respon-
dent) will allow discernment “around” that point on the multidimensioned social terrain only.
By implication, there is no vantage point of unassailably penetrating knowledge; the view
from every location is partial, its horizon blocked by some feature(s) emerging out of or into
the social plain. Consequently, every location is unable to reveal some aspects or force of the
social world that would have been visible from elsewhere.

Further, a heretofore partially inscrutable mix of stochasticity and systematicity shape the
social world and determine each specific location and the social forces and patterns visible
therefrom. That the social world is partly determined by systematicity, and we incompletely
understand it, means that if we (purposely or mistakenly) use any systematic social factor
to select respondents, such as, for example, their membership in an accessible network, we
likely bring a distorted set of social world patterns and force into view, because cases will
be partly selected by social world lumpiness itself, which alone can distort our vision of the
social world.

IDI studies usually report distributions of sample characteristics (e.g., two-thirds of the
sample are women, 40% live in cities), but this information is insufficient. Because we lack
knowledge of both the infinite factors underlying social world lumpiness and the connec-
tion between those factors and characteristics of sample members, it will remain impossible
to include what would have been visible from relevant vantage points beyond our reach,
such that we can neither assess nor eliminate the possibility that the inaccessible vantage
points might be such that the power of the social forces they would reveal were they acces-
sible would completely overturn our findings. Hence, our view of the social world may be
horribly distorted, even as all to which we have access may appear sharp, coherent, “reason-
able.”

This result is not a matter of mathematics; it follows, instead, from social world lump-
iness and our incomplete understanding of it. Thus, all research must address social world
lumpiness.

4 Responses to lumpiness

Respondent selection is the key site where social world lumpiness is addressed. Setting aside
experiments momentarily, in-depth interviewers may adopt one of three strategies: select
everyone (i.e., census-taking), select respondents using a process independent of social world
lumpiness (probability sampling), or recruit respondents in ways rife with social world lump-
iness (non-probability sampling).
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4.1 Census-taking

One response to social world lumpiness is to study the entire population, in which case any-
thing one learns about the data perfectly generalizes to that population. Yet, censuses do not
resolve the out-of-sample generalization challenge. To generalize to the population between
censuses requires justification. Few analysts study a census because they are interested in
that moment specifically. Different times can be different; thus, “I have a census” does not,
by itself, justify generalization from census data. A basis for generalizing from censuses in
such situations is described below (see Sect. 6.3).

4.2 Probability sampling: principles and implementation

Before probability sampling was developed many believed censuses were the only way to
study social phenomena (Kruskal and Mosteller 1980; Desrosières 2004, pp. 210–235). The
breakthrough of probability sampling allowed generalizing from study of comparatively few
entities, if they are selected using probability sampling principles.

Probability sampling principles assume social world lumpiness, liberating research find-
ings from its threat by giving every member of the target population a non-zero and knowable
probability of selection into the sample. Assigned probabilities are independent of any causes
of social world lumpiness not explicitly part of the probability assignment process. Sampling
using those probabilities produces samples that collectively have no distorting relationship
to social world lumpiness.

Identifying the target population—the set of entities to which the sample most directly
generalizes—is not objective. Researchers must use their judgment, and reasonable analysts
may disagree. For example, to study U.S. husbands some analysts might treat all males in
same-sex marriages as husbands, others might exclude them, others might take one husband
per male-male marriage, others might allow the couple or individual to decide, and there may
be other options, too (e.g., including women in same-sex marriages who view themselves as
husbands, whatever “being a husband” may mean). Operational definitions are not objective;
still, an explicit, systematically-defined target population is necessary. One might chafe at
this requirement, but inferences require some scope for their first-order applicability.

Because target population members’ selection probability must be non-zero, it must be
possible to determine or estimate every target population members’ inclusion probability,
else sampling statisticians could not confirm satisfaction of the non-zero probability require-
ment. All else equal, the more target population members with zero chance of inclusion, the
more biased the sample.

Although all selection probabilities must exceed zero, selection probabilities may differ.
Indeed, unequal selection probabilities are common. Often analysts want to increase repre-
sentation of rare categories. For example, if a 20 husband sample contained only 1–2 husbands
in interracial marriages, within-sample comparisons would be imprecise. If comparing hus-
bands in same-race and interracial marriages were a research aim, analysts might oversample
husbands in interracial marriages to facilitate within-sample comparisons, perhaps sampling
10 husbands of each type. This oversampling roughly equates the precision of inferences
about each kind of husband. However, to generalize to all US husbands one must down-
weight the responses of husbands of interracial marriages, else findings will be based on an
assumption that 50% of US marriages are interracial. Yet, given a sample with knowable non-
zero probabilities of inclusion for target population members, one may easily weigh responses
differently when estimating overall incidences versus when comparing some within-sample
groups.
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4.3 Non-probability sampling

An alternative, non-probability sampling, does not require identification of a target popu-
lation, members of what would have been the target population may have zero chance of
inclusion, and it may be impossible to calculate inclusion probabilities. It is well-known
that such samples prohibit out-of-sample generalization. What is less commonly known is
that such samples prohibit generalization within the sample, i.e., no comparison within or
summary of the sample (e.g., identifying the dominant experience) is justifiable.

Non-probability sampling necessitates adopting implausible ontological or epistemolog-
ical assumptions. Assuming social world homogeneity—a smooth as opposed to a lumpy
social world—would justify non-probability sampling. In a smooth social world every van-
tage point allows unhindered access to all social forces and patterns. The social world homo-
geneity assumption seems most coherent if all persons are understood to behave, react, feel,
respond exactly the same such that the connections amongst phenomena are unvarying.

Regardless, social world homogeneity is implausible. Indeed, many draw inspiration from
those who first rejected this assumption (e.g., Boas 1896, especially 904–905) and look back
in sadness or even horror at those who journeyed to foreign shores brazenly clutching their
homogeneity assumption (of, for example, a universal sequence of societal development).
Using an ontological assumption of social world homogeneity to justify non-probability
sampling is to commit the same error.

Another way to justify non-probability sampling is to assert its invulnerability to social
world lumpiness. Examples below document, however, that this assertion is false.

Snowball sampling. Snowball samplers recruit and interview some volunteers, afterward
asking for referrals to other potential respondents, perhaps even requesting referrals to per-
sons with specific characteristics. In this way the sample may cumulate, like a snowball.3

Berg (2006) notes that snowball sampling gives more socially connected people higher
selection chances and assigns some target population members zero inclusion probability
because they do not share networks with the type of people from which the snowball starts.
Further, all inclusion chances are unknowable because unsampled persons’ network charac-
teristics are unknowable. These factors undermine all generalization.

IDI analysts acknowledge the prohibition on out-of-sample generalization, but snow-
ball samples also prohibit within-sample summarization. To learn what is dominant within
the sample it must be defensible to count or cumulate respondents’ responses. In order to
sum(marize) respondents’ responses all respondents must have a knowable probability of
inclusion, because the reciprocal of this probability determines the weight each respondent’s
responses should receive.

For example, in the imagined probability study of husbands above, assume the population
has 900 same-race couple husbands (SRCHs) and 100 interracial couple husbands (IRCHs).
Because of IRCH oversampling, each SRCH has a 10/900 = 1/90 chance of sample inclusion;
each IRCH has a 10/100 = 1/10 chance of inclusion. Thus, each sampled SRCH represents 90
others and each sampled IRCH represents only 10 others. When comparing these groups we
may ignore this difference. However, to determine “What common orientations to marriage
do husbands strike?”, à la O’Brien’s analysis of the racial middle, we need weigh each SRCH
response as if it was reported 90 times and each IRCH response as if it was ascertained 10

3 Respondent-driven sampling, a proposal to repair snowball sampling (Salganik and Heckathorn 2004),
requires larger samples than usual for IDI, making the solution’s feasibility for IDI unclear. Further, questions
about the success of the method remain (e.g., Goel and Salganik 2010). Also, snowball samples are not how
one should sample networks. Instead, probability sample persons (or nodes) and extend outward.
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Table 1 Hypothetical interviewees, marriage orientations, and typical and selected possibly appropriate
weights

Respondent Orientations Typical weights Selected possibly appropriate weights

Column # 1 # 2 # 3 # 4 # 5 # 6

1 � 100 ⇒ 1 52 150 180

2 �� 100 ⇒ 1 52 150 180

3 © • 100 ⇒ 1 250 150 180

4 © 100 ⇒ 1 14 150 20

5 � 100 ⇒ 1 52 150 180

6 • © � 100 ⇒ 1 250 50 180

7 100 ⇒ 1 14 50 20

8 © 100 ⇒ 1 52 50 20

9 �• 100 ⇒ 1 250 50 20

10 �� • 100 ⇒ 1 14 50 20

Dominant Orientation • © & � �
Sum of the Weights 1000a 1000 1000 1000

aWith equal weights, the implied (⇒) effective “comparative” weight is 1

times. Otherwise we may misidentify the dominant orientation. The example is simple, but
all complexities (e.g., weighting for nonresponse) reach the same conclusion.

One must know selection probabilities in order to produce many within-sample claims,
from exact numerical counts (e.g., 74%) to rough approximations (e.g., the dominant view).
Indeed, one even must know the selection probabilities to determine whether one needs to
know the selection probabilities. Absent this knowledge one cannot justify any weighting,
including equal weighting, of respondents’ responses.

Table 1 illustrates these principles’ consequences. In 10 interviews seven distinct marital
orientations are expressed, symbolized by •,©, �, �, , , and �. Column 3 contains
typical, equal, weights, a pattern that requires all target population members have equal
selection chances. Because snowball sampling violates this criterion (Berg 2006), we know
equal weighting is incorrect, even though most in-depth interviewers implicitly use equal
weighting.

In Table 1 the dominant orientation under the typical weighting is . Yet, if the cor-
rect weights are in column 4, then the dominant orientation is •. Other weightings produce
other dominant orientations.4 Findings are sensitive to weighting, yet—and this is the prob-
lem—non-probability sampling provides no basis for selecting any one of the infinite number
of possible weighting patterns. Thus, the validity of any summary of respondents’ orienta-
tions cannot be established. All one can validly do is state these orientations exist. One cannot
even conclude that unobserved orientations are uncommon for, with non-probability designs,
absence offers absolutely no evidence of incidence. Thus, when Orrange (2003) claims to
find dominant and alternative perspectives, neither designation is defensible.

It may seem counterintuitive that one needs information dependent upon the target popu-
lation—the selection probabilities—to make within-sample claims. But, this necessity is not
really odd. If one taste-tested several liquids to evaluate an establishment, one’s evaluation

4 I treat each orientation separately; using combinations would also show weights matter.
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would depend, in part, on knowing whether a liquid was coffee, tea, beer, chardonnay, viog-
nier, or zinfandel. Two conclusions follow. First, at the beverage level, a good coffee would
be a terrible viognier—understanding a case depends on knowing what the case represents.
Second, the summary would depend on what each sampled liquid represented and how much
each beverage “represented” the establishment. A bad viognier might not lower our evalu-
ation of a coffeehouse much, but it might lower our evaluation of a wine bar significantly.
Hence, to understand each sampled case and to summarize the full sample one must know
each unit’s representativeness. Selection probabilities, only available for probability samples,
provide that information.

Other Non-Probability Sample Designs. Such problems hound all non-probability designs,
including two other IDI mainstays—purposive sampling and “theoretical” sampling. For
Marshall (1996), in purposive sampling the “researcher actively selects the most productive
sample to answer the research question (p. 523),” picking and choosing respondents based
on their view of who will aid their research. This might require the researcher to develop:

a framework of the variables that might influence an individual’s contribution…based
on the researcher’s practical knowledge of the research area, the available literature,
and evidence from the study itself. This is a more intellectual strategy than the simple
demographic stratification of epidemiological studies, though age, gender, and social
class might be important variables…. It may be advantageous to study a broad range
of subjects (maximum variation sample), outliers (deviant sample), subjects who have
specific experiences (critical case sample) or subjects with special expertise (key infor-
mant sample)…. During interpretation of the data it is important to consider subjects
who support emerging explanations and, perhaps more importantly, subjects who dis-
agree (confirming and disconfirming samples) (p. 523).

In theoretical sampling, a kind of purposive sampling, interviewers build theories dur-
ing data collection, selecting new respondents in order to interrogate emerging theoretical
positions.

Purposive sampling sounds valuable. After all, who can oppose drawing a sample that will
allow the researcher to answer their question? At issue, however, is what procedure will most
likely satisfy this aim. The problem with purposive sampling is that social world lumpiness
and its basis in infinite factors of unknown power mean that no matter how much information
interviewers have, distortion is likely because they still lack sufficient knowledge and power
(i.e., omniscience and omnipotence) to render impotent the infinite, unknown determinants
of social world lumpiness. Thus, purposive sampling almost assures they will not be able to
validly answer their research questions, even as the design may instill undue confidence in
the unknowably distorted picture the research produces.

Yet, for example, there is a difference between asking what people feel about car disrepair
and asking what mechanics feel about car disrepair. To generalize to mechanics’ views one
need not purposively sample; instead, define a target population (mechanics) and probability
sample within it. This is a perhaps subtle but crucial distinction. With this target population
one would be as mistaken to include non-mechanics as to exclude novice mechanics. Con-
cerning the latter, expecting expert mechanics to know all mechanics’ answers, or worse,
giving novice mechanics’ views zero weight, is unjustifiable. One cannot purposively select
which target population members to interview, for doing so reinforces vulnerability to social
world lumpiness.

All ostensibly sensible purposive sample designs have probability sampling analogs. For
example, Marshall (1996, p. 523) and Small (2009, p. 13) advocate purposively sampling
for range by recruiting subjects at variables’ extreme values. Stratified sampling is the prob-
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ability sampling analog; sampling at different rates depending on a stratifying variable’s
values provides the range sought and generalizabilty. Or, Small (2009, pp. 24–25), incor-
rectly claiming probability sampling requires setting sample size a priori, prefers sampling
non-probabilistically until a conclusion emerges. Sequential sampling, a time-tested design
(Wald 1945), is the probability sampling analog. Accordingly, analysts need not purposively
sample to accomplish their purpose.

Basically, non-probability sampling rejects the zen of probability sampling—an openness
to obtaining information from any target population member—in favor of a controlling,
restrictive, possibly even arrogant5 search for the “best” respondents, as if that designation
itself is not driven by social world lumpiness, and as if the allegedly “less-than-best” have
no information or experience analysts need access, consider, or respect.

5 Myths of probability sampling

Non-probability sampling is of extremely limited utility, providing grounds, at best, only
for existence proofs. Yet, many interviewers continue to use such samples for more. Several
myths about probability sampling seem to justify acceptance of non-probability sampling.

One myth is that small samples of any kind prohibit generalization (e.g., Marshall 1996,
p. 523; Byrne 2001, p. 494; Small 2009, pp. 11–13), such that one may as well draw a non-
probability sample. In reality, however, sample size has nothing to do with generalization.
As has been known since the infamous “Dewey Defeats Truman” headline, generalizability
is determined by the sampling process, not the sample size. Even a probability sample of
1 allows defensible, though perhaps imprecise, generalization; after all, one may generalize
to a bottle or even a vintage with one sip. Further, while large sample size is one route to
precision, there are other routes to this goal. For example, with effective probes in-depth
interviewers can often attain greater precision than surveys might (Suchman and Jordan
1990). Such possibilities mean that small probability samples can provide precise evidence.
Thus, in-depth interviewers need not apologize for small sample sizes—for precision, sample
size is not necessarily determinative, and for generalization, size does not matter.

Another myth is that probability sample designs rarely produce sufficient numbers of
uncommon groups (e.g., Small 2009, p. 13); such claims imply probability sampling must
offer everyone equal selection chances. As noted above, probability sampling selection
chances can vary by persons’ characteristics, perhaps to boost the sample incidence of rare
populations.

Although many use non-probability sampling although a list is accessible (e.g., Orrange
2003), another myth is that unless one can list all population members one cannot draw
a probability sample (e.g., Marshall 1996, p. 523; Montemurro and McClure 2005). This
myth is not entirely false, but because a list of lists is itself a list of the primary elements, the
opportunity for probability sampling is legion despite this seemingly demanding requirement.
So, for example, O’Brien (2008) could have first sampled jurisdictions, then neighborhoods
within those jurisdictions, residences within those neighborhoods, and then persons within
those residences. Those failing to meet the study’s racial inclusion criteria would be omitted
at the last stage. By varying selection probabilities O’Brien could have oversampled neigh-

5 Despite the obvious intransigence of social world lumpiness and its power to obscure social forces and
relations the purposive sampler asserts, “I as interviewer know who can help me answer my research questions
and who I can ignore,” thus producing bias because the interviewer is biased against studying (would be) target
population members the interviewer believes will not contribute to the research.

123



398 S. R. Lucas

borhoods with more Asians and Latino/as to increase the design’s logistical efficiency. Such
multistage sampling can be straightforward, and allows one to generalize findings.

Another myth is that “for a true random sample to be selected, the characteristics under
study of the whole population should be known (Marshall 1996, p. 523).” Actually, to draw
a random sample of any entity one need only be able to identify the entity in the sampled
context. Thus, one might think probability sampling gays and lesbians in a city is impossible.
Yet, stratifying neighborhoods by an estimated density of gays and lesbians, and screening
upon first contact, could secure a probability sample.6

Obviously, success with this strategy depends crucially on interviewer ability to secure
cooperation. Fear of the slammed door may underlie some analysts’ resistance to probability
sampling, for with non-probability sampling one can approach acquaintances, volunteers,
and other “approachable” subjects only. It should be obvious that such operations guarantee
bias. Further, survey interviewers, facing the prospect of slammed doors for decades, have
successfully secured subjects’ cooperation for even sensitive topics (e.g., Das and Laumann
2010), and I doubt in-depth interviewers are less creative or socially adept. Regardless,
securing cooperation is an unavoidable part of interviewing. Though the prospect of securing
cooperation for probability sampled subjects may be intimidating, all research has its difficult
moments; interviewer fear or discomfort offer no justification for non-probability sampling,
a design whose comparative ease of accumulating interviews is irrelevant owing to its nearly
wholesale analytic ineffectiveness.

An especially pernicious myth claims that probability sampling “is likely to produce a
representative sample only if the research characteristics are normally distributed in the pop-
ulation (Marshall 1996, p. 523).” This is untrue. For example, votes in a two-candidate race
are not normally distributed because dichotomous variables cannot be normally distributed
(Kokoska and Nevison 1989, pp. 1, 6). But, probability sampling will produce samples that
accurately estimate each candidate’s vote proportion, thus effectively representing the voting
population.

Finally, another myth is that probability samples are unnecessary unless one seeks to find
the “average” experience (Wright and Copestake 2004, p. 360). This myth may originate
in social science statistics classes that teach sampling using means. Using means, which
students understand, should help students grasp the new information, the implications of
sampling. With this pedagogically reasonable strategy, however, students may never real-
ize that the conclusions apply to assessments of any and every characteristic of the social
world—univariate distributions, trends, linear and nonlinear relationships between variables,
patterns of clustering, and more.

To consider this issue I constructed a population of 1,000,000 cases with measures on
four variables, setting their exact linear intercorrelations. The linear correlation coefficient,
R, measures the relationship between two variables, and ranges from -1 to 1. Positive (nega-
tive) values mean that higher (lower) levels of Xj go with higher (higher) levels of Xk; zero
signifies no linear relation. Statistical relations reflect substantive (e.g., in 2010 children of
the wealthy were more likely to enter college than were children of the poor) and theoretical
(e.g., cultural capital aids educational success) claims and thus are of broad interest.

Few in-depth interviewers aim to estimate R. Still, the exercise addresses two key issues.
First, if nonprobability samples fail to capture relations between variables, it suggests one

6 Novice analysts often severely narrow their study population, defining it via specific values of several vari-
ables of interest (e.g., education, race, age, sex, sexual orientation, number of children, and birth order). While
not wrong, the approach complicates sampling, reduces study relevance, and undermines inferences about
each dimension that defines their target population.
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needs probability samples to assess relationships, however identified, not simply to estimate
“averages.”

Second, IDI studies often aim to interrogate the processes that underlie social rela-
tions. The implicit epistemological claim of non-probability sampling advocates is that non-
probability samples will mirror those relations and processes. I contend, however, that
because non-probability samples are unlikely to reflect social relations accurately, they are
unlikely to reflect the processes beneath those relations, either. If I am correct, non-probability
samples are unsatisfactory. So, for example, if in the population members of Group A tend
to be hostile to immigrants, then, I contend, one should avoid methods that produce samples
biased such that Group A members welcome immigrants, because in such samples the pro-
cesses one observes are likely to be “off” as well, leading one to mischaracterize processes
producing attitudes toward immigrants. Thus, even interviewers uninterested in estimating R
should care whether a sample design is unlikely to match the real-world relations they seek
to interrogate.

I drew 10 different probability samples of 40 cases each from the population of 1,000,000,
obtaining the Rs for each. I then repeated the exercise for 10 different snowball samples of 40
cases each.7 Table 2 contains the results obtained for each sample, with the actual population
results arrayed across the top.

Probability sample estimates bracket the population values but the range is large, aver-
aging .4047. With only 40 cases, a large range—low precision—is expected, just as some
qualitative researchers rejecting probability sampling maintain (e.g., Small 2009).

Despite the imprecision, however, probability sample results match the population rela-
tions; 59 out of the 60 coefficients correctly estimate the direction of the correlation, an error
rate of less than 2%. Thus, the probability samples, although small, reproduce the population
relations in-depth interviewers seek to interrogate.

Half the non-probability sample Rs have larger ranges than their probability sample coun-
terparts, suggesting that snowball sampling is not consistently more precise. More trou-
bling, however, is that the non-probability samples are horribly biased, as high and low
estimates never bracket the population value. In fact, the most precise estimates are extremely
biased. The bias is consequential in that 29 of the 60 snowball sample estimates are wrongly
signed (e.g., negative when in the population it is positive). Indeed, every snowball sam-
ple had multiple wrongly-signed coefficients, suggesting that IDI snowball sampling may
commonly mis-estimate population relations (e.g., children of the wealthy are less likely
to enter college than were children of the poor, cultural capital impedes educational suc-
cess). It is unlikely that processes excavated through study of such samples would provide
leads analysts should further interrogate. Indeed, using findings from such horribly biased
samples to guide research could easily send analysts off on multiple, literally misleading
investigations.8

Probability sampling succeeds because in a population of one million there are 9.99×10239

probability samples of 40, which is the number 999 followed by 237 zeros. Amidst this
vast sea of samples any obtained sample is likely to be typical. In contrast, each of the
incalculably fewer non-probability samples is necessarily atypical, for networks concretize
social world lumpiness. The only snowball samples possible are those that networks can pro-

7 The probability sample weights are equal by design. As correct weights for snowball samples are unknow-
able, to match standard practice I weight each such respondent equally. Further simulation details, data, and
files are available at http://www.SamuelRoundfieldLucas.com/LucasQandQBEP.php.
8 One might try salvaging non-probability sampling by focusing on the atypical, such as immigrant-welcoming
Group A persons, but the findings imply the sample will not represent immigrant-welcoming Group A persons,
either.
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Table 2 Correlation coefficients, 4 different variables, repeated sampling

Population value → .20 .45 .55 -.20 .60 .65 1,000,000
X1 X2 X1 X3 X1 X4 X2 X3 X2 X4 X3 X4 n

Probability samples

1 .2771 .2853 .5065 −.2867 .6782 .5001 40

2 .5225 .1502 .5532 −.0954 .7104 .6205 40

3 .4723 .3310 .6428 −.1580 .6821 .6060 40

4 .0528 .4342 .5406 −.4301 .4163 .6259 40

5 .2909 .3162 .5624 −.2560 .5787 .6251 40

6 .0591 .7565 .6619 −.1482 .5889 .7046 40

7 .0587 .6347 .6175 −.2340 .5340 .6862 40

8 .2528 .5546 .6959 −.3368 .6547 .4832 40

9 .1453 .3043 .4416 −.2657 .5440 .6489 40

10 −.1178 .5752 .4926 −.1806 .4568 .7817 40

Range of estimates .6403 .6063 .2543 .3347 .2941 .2985 �|Parameterjk
− Mean Estjk |/6

Mean of estimates .2014 .4342 .5715 −.2392 .5844 .6282 .0192

Snowball samples

1 −.1833 .0084 −.0692 −.9423 .0474 −.0543 40

2 −.1298 .0474 −.0871 −.9658 −.0512 .0057 40

3 −.0807 −.0097 .0741 −.9646 .2298 −.2376 40

4 −.1470 .0790 −.1191 −.9709 .0561 −.0023 40

5 −.3015 .2192 −.1597 −.9742 .1451 −.0955 40

6 −.2882 .2884 .2280 −.9727 .0236 −.0938 40

7 .0390 −.1077 −.0484 −.9601 −.0142 .0376 40

8 −.1891 .1352 −.0011 −.9732 .0594 −.0590 40

9 −.1206 .0913 −.1082 −.9697 −.2733 .2741 40

10 −.0452 .0300 −.2251 −.9842 .0751 −.0593 40

Range of estimates .3405 .3961 .4531 .0419 .5031 .5117 �|Parameterjk
− MeanEstjk |/6

Mean of estimates −.1446 .0782 −.0692 −.9697 .0474 −.0543 .5558

duce. Thus, snowball sampling processes are suffused with social world lumpiness-produced
distortions.

Lastly, one way to increase the value of small sample-size studies is to combine the
samples with others as they accumulate. Alas, each non-probability sample stands alone;
one cannot justify combining them. Were one to combine them anyway results are still
biased, as the Table 2 row of non-probability sample means indicates—all are far from
the population parameter, and three are wrongly-signed. However, one can combine prob-
ability samples; when one does so here, all means are correctly signed, and all fall within
.0392 of the population parameter. Thus, non-probability samples not only misallocate the
primary analysts’ time, but also they do not constitute an investment future scholars may
exploit.

The main aim of the exercise was to address whether probability samples are useful only
for estimating “averages.” The answer is no. Probability samples are essential for study-
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ing social relations. Thus, even if one is uninterested in calculating Rs, if one seeks to
probe social relations, non-probability samples fail to reproduce the relations one seeks
to study, sabotaging the effort to understand the processes/mechanisms behind social rela-
tions.9

6 Generalization logics10

Some analysts claim that certain generalization logics justify non-probability sampling. Can
logics resolve the challenges social world lumpiness poses? Yin (2009) identifies 3 general-
ization logics: sample to population extrapolation (SPE), analytic generalization (AG), and
case-to-case transfer (C2CT). We consider each as well as another proposal.

6.1 Sample to population extrapolation

Probability sampling and random assignment in experiments differ, but they have similarities.
Considering those similarities will pay dividends.

Despite popular usage of the term “experiment” (e.g., the politician who admits “experi-
menting” with drugs in college), every exploration is not an experiment. Two definitive fea-
tures of behavioral experiments are: (1) random assignment of research subjects to groups,
and, (2) manipulation which exposes groups to different treatments (Campbell and Stanley
1963, pp. 6–42).

Experiments allow generalization because the experimenter randomly allocates entities to
treatments, thereby canceling out distortions social world lumpiness produces. After treat-
ment the experimenter obtains the difference in groups’ outcomes, which the experimenter
views as reflecting the treatment’s causal power—a theoretical claim—and may posit as
applicable outside the laboratory—an extrapolation to a population.

Consequently, repeating an experiment with slight adjustments (e.g., different subject
pools (sophomores, managers)) maps the findings’ extensiveness, just as probability sampling
different populations (e.g., Californians, Czechs) can map the extensiveness of probability-
sample based findings. Undistorted mapping is possible because both random assignment
and probability sampling tame distortions produced by social world lumpiness. Henceforth,
therefore, we can regard probability sampling, random allocation, and censuses (which assign
everyone a known, nonzero (i.e., 100 %) selection probability) as probability methods.

6.2 Analytic generalization

Yin (2009) contends that AG logic is fundamentally distinct from SPE. Small (2009,
pp. 24–27) agrees, and argues this “case study logic” applies to IDI. Our question does
not concern AG in general but, instead, AG as an epistemological justification for non-prob-
ability sampling for IDI, as Small (2009) claims. Yin (2009) states:

Critics typically state that single cases offer a poor basis for generalizing. However,
such critics are implicitly contrasting the situation to survey research, in which a sample
is intended to generalize to a larger universe. This analogy to samples and universes is

9 One cannot salvage non-probability samples by confirming sample correlations are correctly-signed because
Table 2 also implies unobserved correlations may be compromised.
10 Arguably, logics of generalization precede case selection principles. Yet, confusion about the impact of
social world lumpiness and how probability sampling addresses it required treating case selection first, for
this discussion requires an accurate understanding of sampling.
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incorrect when dealing with case studies. Survey research relies on statistical general-
ization, wheras [sic] case studies (as with experiments) rely on analytic generalization.
In analytic generalization, the investigator is striving to generalize a particular set of
results to some broader theory. (44, emphasis in original)

Seeing an SPE/AG distinction as justifying non-probability sampling implies probability
sampling renders units asocial, as if the act of probability sampling someone separates them
from the social processes and forces that animate their experience. In reality sampled persons
remain socially embedded, and collectively re-present to analysts the social world’s complex
patterns and relations. Thus, one may draw valid inferences about the social forces that move
sampled persons, and extrapolate the substantive and theoretical findings to the population
and society.

The suggestion that AG is so fundamentally different from SPE that it justifies non-
probability sampling therefore collapses. When shorn of probability sampling, census-taking,
or random assignment, the use of AG for IDI falls prey to the problems already demonstrated
with non-probability sampling. Yin (2009), noting that generalization is not automatic, con-
tends that:

A theory must be tested by replicating the findings in a second or even a third [case]….
Once such direct replications have been made, the results might be accepted as pro-
viding strong support for the theory, even though further replications had not been
performed. This replication logic is the same that underlies the use of experiments
(and allows scientists to cumulate knowledge across experiments). (p. 44, emphasis in
original).

Although some embrace Yin’s analogy with experiments (e.g., Small 2009, pp. 25–27), the
analogy is mistaken. As noted above, what makes replication for experiments work is random
allocation. Thus, replicating non-probability sample studies (or interviews) is to engage in
“cargo cult” ritualism (Small 2009; Feynman 1985, pp. 308–317), using a method’s form
while failing to grasp and satisfy its essentials. Repeatedly using non-probability sampling
only replicates the same biases produced by the same inaccessibility of certain aspects of the
social world that hampered the original study owing to social world lumpiness.

This result was visible in Table 2; in at least seven of ten non-probability samples X1 and
X2, X1 and X4, and X3 and X4, are negatively related. However, the true relations are positive;
the replications certify falsehoods, indicating that replicating non-probability sample studies
is easily misleading.11 To use AG logic interviewers must use probability methods.

6.3 Case-to-case transfer

A third generalization logic, C2CT, entails comparing a sample’s characteristics with those
of a new case (Gomm et al. 2000, pp. 105–106). If the characteristics match, one generalizes
study findings to the new case. With C2CT one may extrapolate findings from census data
to a proximal year.

This is a solid generalization logic. However, to use it study findings must be solid. Because
we have already shown that Orrange has no basis for summarizing the non-probability sam-
ple (see Sect. 4.3), to extrapolate from Orrange (2003), for example, one must decide which
of the 43 idiosyncratic narratives to apply. This impediment to C2CT will haunt every non-
probability sample IDI study. Yet, if one uses probability methods C2CT differs little from

11 Varying the replication also does not work.
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SPE. Both entail generalizing from studied to unstudied cases. One must always justify such
extrapolation.

Even quantitative studies do not probability sample for every level; few researchers ran-
domly select a country for study, for example. One cannot use SPE logic to generalize research
on US residents to other countries if the US case was selected non-probabilistically, even if
US residents were probability sampled. To extrapolate findings to another nation one may
use C2CT logic; to do so one must establish that the nations are similar enough to justify
extrapolation. Such assessments require researcher judgment. Yet, judgment is useful only
if the original study produced solid summaries and evidence, and only probability methods
do so.

6.4 Natural science logic

One might contend that natural scientists do not use random assignment in their experi-
ments; thus random assignment is not definitive of experiments; consequently, an analogue—
probability sampling—is unnecessary for non-experimental research.

This view forgets that both natural and social scientists encounter legitimation challenges
in a context of contestation. The trappings of scientific legitimacy are limited and include a
language of experimentation. Thus, for example, astronomers claiming to experiment with
rather than observe the sun (e.g., Price 1995) may be positioning their research for max-
imum legitimacy, making the language a legitimation strategy, not necessarily a coherent
epistemological position.

However, where it is a coherent epistemological position, the ontological basis for natural
scientists’ rejection of probability methods conflicts with social science ontologies. Natural
scientists presume their material is homogenous; for example, they assume all neutrinos are
the same. Assuming away heterogeneity leaves natural scientists with no distorting lump-
iness to address. To use this natural science epistemology social scientists must make the
same ontological move, which would entail assuming away the heterogeniety—social world
lumpiness—that partly justifies distinguishing social and natural science. Indeed, accepting
this natural science logic for social analyses seriously weakens the ground for interpretive
social science.

One could affirm both physical world homogeneity and social world heterogeneity. For
example, in non-experimental early drug development studies (1) interchangeable rats (2)
substitute for humans; both moves assume physical world homogeneity. In later drug trials,
however, natural scientists randomly assign treatments, thereby addressing (social world)
heterogeneity. These superficially contradictory research operations are reconciled if natural
scientists assert physical world homogeneity, affirm social world lumpiness, and deny a social
realm amongst non-human animals. Of course, this means that natural scientists accept the
necessity of probability methods in social research.

6.5 Generalization logics

One could construct countless defenses of non-probability sampling by extracting a claim
from an epistemology within which it coheres to insert into a domain constituted by incom-
patible ontological conditions,12 an error similar to that some statistical researchers commit
when they deploy quantitative research practice to dismiss all qualitative research. The sim-
ilar structure of the approaches reflects that there is no end to the claims that, standing alone,

12 For example, one could claim non-probability sampling works for Mill’s methods; this claim falsely ana-
logizes comparative historical and IDI research.
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could appear to justify a method. But research is complex—no one claim, standing alone,
can justify anything.

Accordingly, analysts must forge chains of reasoning to craft coherent epistemolo-
gies well-matched to ontological conditions. Proceeding otherwise can create ontology-
epistemology mismatches that, ultimately, may undermine social science or, at least,
interpretive social science. Defending non-probability sampling for IDI in this way will
provide, at best, a pyrrhic victory.

7 Different research aims

A final way to justify non-probability sampling is to contend that IDI research questions differ
fundamentally from those for which probability sampling is used. Upon closer inspection,
however, these claims are unsustainable.

7.1 Interpretation of reality

Some interviewers seek to interpret reality, where reality is seen as “constructed, multi-
dimensional, ever-changing; [such that] there is no such thing as a single, immutable reality
waiting to be observed and measured (Merriam 1995, p. 54).” Interestingly, quantitative
analyses of probability samples often reveal persons’ interpretations and prospects system-
atically and consequentially differ (e.g., Schuman and Rieger 1992; Lucas 2008, pp. 23–52),
suggesting that constructivist ontology and probability sampling are compatible.

Indeed, a constructivist must resolve whether the multiple interpretations they excavate
evidence a multiplex social world or, instead, appear only because social world lumpiness
has distorted the researcher’s data. Social world lumpiness offers a competing explanation
for constructivists’ findings, reinterpreting them as error. Thus, to solidify findings of mul-
tiplicity, methods that address rather than ignore social world lumpiness seem imperative.
Consequently, even if the aim of interpreting reality differs from the aims other analysts
pursue, probability methods seem essential.

7.2 Understanding

Another claim is that in qualitative research “improved understanding of complex human
issues is more important than generalizability of results (Marshall 1996, p. 524),” that “study-
ing a random sample provides the best opportunity to generalize the results to the population
but it is not the most effective way of developing an understanding of complex issues relating
to human behavior (Marshall 1996, p. 523).”

The question to pose to these assertions is: How can one understand a complex human
issue without generalizing from finite observations to a broader human condition? Seen in
this way, “understanding of complex human issues” is just another phrase for “generalization
about complex human issues.” If we cannot distinguish between these two phrases we must
reject the supposition that researchers who seek the former are liberated from the constraints
entailed in generating the latter.
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7.3 Different research aims revisited

This final aim returns us to our beginnings, the ineluctability of generalizing in social science.
Once we realize generalization is unavoidable, we must respond to the threat social world
lumpiness poses. Claiming to possess different aims is an unsuccessful response.

Rejection of non-probability sampling raises a final question—how may interviewers
probability sample for IDI?

8 Implementing probability sampling for in-depth interviewing

Few social scientists draw their own probability samples. Secondary data analysts do not
draw samples; many others delegate sampling to sampling statisticians, because an error in
sampling is financially, temporally, and analytically costly. For those who draw their own
probability samples, many universities have inexpensive consulting services to help. To use
these services effectively one must understand basic principles of probability sampling and
be able to communicate one’s research aims.

Small (2009, p. 14), claiming low percentages of probability sampled contactees partici-
pate, accuses probability sampling interviewers of burying or omitting their response rates.
Small claims that because low response rates undermine generalizing from probability sam-
ples interviewers should reject probability sampling. Curiously, however, Small implicitly,
inexplicably exempts non-probability samples from concern. The chain of reasoning that
secures the preference for high response rates, however, makes this exemption untenable.

The motivating links in the reasoning chain are that high response rates mean lower pro-
portions of acquiescent respondents, hence reduced biasing power of volunteers who, owing
to social world lumpiness, likely differ in unknown ways from non-volunteers. What ana-
lysts seek, therefore, are not high response rates; analysts seek to reduce volunteer bias.
Response rates are one diagnostic signal on this issue analysts monitor. Thus, Small’s (2009,
p. 14) denouncement of low probability sample response rates equates to denouncing volun-
teer-biased samples. Non-probability samples, almost always composed only of volunteers,
should therefore be rejected. Yet Small accepts non-probability sampling.

Further, contradicting Small’s (2009, p. 11) claim that an IDI response rate of 35 % is
“highly optimistic,” some in-depth interviewers have probability sampled effectively. For
example, Mullen (2010) interviewed 50 Yale and 50 Southern Connecticut State University
students, obtaining response rates of 81 and 68 %, respectively.

Others claim hidden populations prohibit probability sampling (e.g., Eland-Goossensen
et al. 1997). Yet, Rossi et al. (1987) probability sampled sheltered and unsheltered homeless
persons in Chicago, reporting response rates of 81 and 94 % respectively; and Kanouse et al.
(1999) probability sampled street prostitutes in Los Angeles County, with a 61–89% response
rate range.

Surely probability sampling poses challenges, and sometimes it may not be immediately
apparent how to proceed. As these exemplars demonstrate, however, early challenge can
yield to innovative strategy. Once interviewers accept the challenge, many ostensibly prohib-
itive situations will, through their creativity and skill, be rendered accessible to probability
sampling for IDI.
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9 Conclusions

In-depth interviewing is a promising method. Alas, the undeniable ontological condition
of social world lumpiness makes respondent selection a serious challenge for any ana-
lyst, and in-depth interviewers have almost universally adopted a strategy—non-probability
sampling—that ignores the challenge. Thus hobbled by designs that preclude generalizing
even as interviewers inevitably generalize, most IDI studies probably betray rather than fulfill
the promise of IDI.

Notably, most in-depth interviewers admit one cannot generalize from non-probability
samples. Yet, many still maintain such samples provide theoretical insight. Others embrace
generalization logics that allegedly justify non-probability sampling. Still others pursue
research aims for which non-probability sampling is purportedly sufficient. Underlying each
claim is the belief that one’s conceptions render research strategies effective.

However, for any conception to validate research operations the conception and its oper-
ationalization must align with a plausible ontology, and such alignment cannot occur absent
a response to the inescapable partiality of every vantage point owing to social world lumpi-
ness. Social world lumpiness does not smooth to homogeneity simply because a researcher
conceives of matters in a particular way; regardless of one’s ontological commitments, social
world lumpiness invariably destroys the utility of non-probability sampling, whether one’s
findings are produced through mathematical calculation or otherwise, whether one’s gener-
alizations concern substantive or theoretical claims, and whether one’s comfort approaching
strangers is high or nonexistent. Hence, one must address the threat lumpiness poses.

Current common IDI practice does not address the threat, and most in-depth interviewers
have resisted doing so. In his critique of fundamental problems with many statistical analyses,
Manski (1995) observed that:

Empirical researchers usually enjoy learning of positive methodological findings. Par-
ticularly pleasing are results showing that conventional assumptions, when combined
with available data, imply stronger conclusions than previously recognized. Negative
findings are less welcome. Researchers are especially reluctant to learn that, given the
available data, some conclusions of interest cannot be drawn unless strong assumptions
are invoked. Be that as it may, both positive and negative findings are important to the
advancement of science. (p. 3).

We encounter a similar dynamic here, for this paper’s message is that an accepted procedure
produces almost no knowledge. These negative findings may elicit resistance.

Dismissiveness is unfortunate, but resistance that engages the problems, and perhaps
motivates efforts to salvage non-probability sampling, is not unwelcomed. A salvage oper-
ation, however, is daunting. In-depth interviewers who sample non-probabilistically cannot
simply assert non-probability samples are fine. Instead, they must deploy multiple non-
contradictory, ontologically plausible statements to establish that the social world is not
lumpy, thus implying analysts may study social interaction or meaning-making in one nation
(the U.S., say) or community (e.g., suburban mothers) and pronounce with substantive and
theoretical specificity about social interaction and meaning-making everywhere. Thus, the
social world homogeneity assumption seems untenable.

Non-probability sampling interviewers have two other options. They can establish, with
evidence rather than assertion, why the findings above (e.g., the indeterminance of all sum-
mary claims when sampling probabilities are unknown, the failure of non-probability samples
to reproduce social relations which undercuts excavation of social processes) do not apply to
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their study or are generally mistaken. Decades of research validating probability sampling,
however, suggest such efforts will fail.

Alternatively, interviewers may avoid any and all summary claims, limiting their contri-
bution to separately analyzing each respondent as a distinct idiosyncratic instance, only. In
other words, if in-depth interviewers hew to the limits non-probability sampling imposes,
there is no problem.

Existing studies, however, indicate this third counsel is extremely difficult to honor, per-
haps because it contradicts in-depth interviewers’ aim as social scientists to summarize
respondents’ reports and draw broader conclusions. A non-contradictory response, therefore,
is for in-depth interviewers to reject non-probability sampling. Rejecting non-probability
sampling, and embracing probability sampling, will empower in-depth interviewers to go
beyond the existence proof, to reap for all social science the tantalizing bounty of nuanced
generalization only in-depth interview studies may possibly provide.
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