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Abstract Conclusions on the development of delinquent behaviour during the life-course
can only be made with longitudinal data, which is regularly gained by repeated interviews
of the same respondents. Missing data are a problem for the analysis of delinquent behav-
iour during the life-course shown with data from an adolescents’ four-wave panel. In this
article two alternative techniques to cope with missing data are used: full information maxi-
mum likelihood estimation and multiple imputation. Both methods allow one to consider all
available data (including adolescents with missing information on some variables) in order
to estimate the development of delinquency. We demonstrate that self-reported delinquency
is systematically underestimated with listwise deletion (LD) of missing data. Further, LD
results in false conclusions on gender and school specific differences of the age–crime rela-
tionship. In the final discussion some hints are given for further methods to deal with bias in
panel data affected by the missing process.

Keywords Full information maximum likelihood estimation · Multiple imputation ·
Growth curve models · Development of delinquency · Age–crime relationship

1 Introduction

Several long-term criminological studies, such as the Cambridge Study (Farrington and West
1990), the Philadelphia Study (Tracy et al. 1990) or the Rochester Study (Thornberry et al.
2003), are used to investigate the development of delinquent behaviour (e.g. the reader of
Sampson and Laub 2005). One of the problems with the analysis of the development of delin-
quency is missing data: either the respondents could not participate or denied to cooperate in

J. Reinecke
Fakultät für Soziologie, Universität Bielefeld, 33501 Bielefeld, Germany
e-mail: jost.reinecke@uni-bielefeld.de

C. Weins (B)
Fakultät für Sozialwissenschaft, Ruhr-Universität Bochum, 44801 Bochum, Germany
e-mail: cornelia.weins@rub.de

123



3320 J. Reinecke, C. Weins

subsequent panel waves (panel attrition). There is a wide range of techniques to handle miss-
ing data. One of the most widespread methods is listwise deletion (LD), which excludes all
cases with missing values on the variables under study. However, LD has several drawbacks.
It discards a lot of information and results in biased parameter estimates if missingness is not
completely at random. Full information maximum likelihood (FIML) and multiple imputa-
tion (MI) are the two state-of-the-art techniques to analyse incomplete data (Little and Rubin
2002). In contrast to LD they do not require missing data to be completely at random since
they use all observed data to estimate parameters. FIML has been proposed as a method for
estimating means and covariance matrices from incomplete data (Schafer and Graham 2002;
Hofer and Hoffman 2007; Arbuckle 1996). As a second advanced strategy, MI of missing
values is applied.

In this article LD, FIML and MI are used to analyse the development of delinquency dur-
ing adolescence using a German panel study. Section 2 introduces the panel data and explores
the missing data pattern and the missing data mechanism. Section 3 will briefly explain MI
and FIML. To estimate the development of delinquency we use growth curve models. The
variables measuring delinquency are count data and highly skewed to zero. Therefore, growth
curve models are estimated under the assumption of a zero-inflated Poisson process (ZIP)
(Sect. 4.1). Section 4.2 discusses results of different growth curve models assuming linear
and quadratic growth of delinquency as well as the impact of sex and school type on the
age–crime association. Section 5 presents the plausibility of assumptions, limitations and
further research problems.

2 Data and missing data mechanism

2.1 Data

The empirical data for the analyses is taken from the longitudinal research project Crime in
the modern city.1 The main focus of the study is on the emergence and development of devi-
ant and delinquent behaviour of juveniles and the social control surrounding it, that is, both
formal, meaning the police and the judiciary, and informal, referring to school and family
(Boers and Reinecke 2007; Wittenberg 2004).

The data set contains self-administered classroom interviews with pupils from the town
of Münster, located north of Cologne in West Germany. The initial survey was conducted
in the year 2000 on pupils in the 7th, 9th and 11th grade, considering all levels of schools
in the community. The highest educational level in Germany is Gymnasium (‘high school’)
with 9 years of school attendance in total. Two other school types exist beside high school:
Hauptschule (‘basic school’) and Realschule (‘middle school’) with 6 years of school atten-
dance. Those educational levels will be labeled hereafter as high, medium and low. The target
population of this analysis includes pupils attending public schools in the Town of Münster.2

Random samples of classes were chosen from the 9th and 11th grade of schools (cluster
sampling). The survey among 7th graders includes all 7th grade classes. This cohort (7th
grade) was interviewed annually until the pupils reached the 10th grade in the year 2003.
We employ data from this cohort to analyse the development of delinquency. Response rates

1 This interdisciplinary research project is conducted by the Universities of Münster (Institute of Criminology)
and Bielefeld (Faculty of Sociology) and supported by the German National Science Foundation (DFG) under
grant numbers Bo1234/6 and Re832/4 www.crimoc.org.
2 Nearly all public schools participated over the whole time period.
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Table 1 Size of population and realised interviews, cross-sections 2000–2003

Year 2000 (7th grade) 2001 (8th grade) 2002 (9th grade) 2003 (10th grade)

Populationa size 2,105 2,181 2,251 2,077
Realised interviews 1,850 1,915 1,947 1,819

a Pupils attending public schools

Table 2 Patterns of missing values

Pattern 2000 2001 2002 2003 N

1. t1 t2 t3 t4 813

2. ? t2 t3 t4 +262

3. t1 ? t3 t4 +38

4. t1 t2 ? t4 +10

5. t1 t2 t3 ? +184

6. ? ? t3 t4 +293

7. t1 ? ? t4 +49

8. t1 t2 ? ? +264

9. ? t2 ? t4 +20

10. ? t2 t3 ? +114

11. t1 ? t3 ? +17

(N ) (1,375) (1,667) (1,721) (1,485)
∑=2,064

2,064 students with longitudinal information. Sample sizes at each wave are given in brackets

range between 86 and 88 %. Table 1 shows population sizes and realised interviews (Pöge
2005a, p. 14).

Due to strong confidentiality restrictions, it was not possible to collect pupils’ home
addresses. Instead an individual code was used to identify pupils in different waves. To gen-
erate the code, a specific code sheet was administered prior to the questionnaire in each panel
wave. For example, the code sheet includes questions about specific letters corresponding to
respondents’ eye colour and hair colour and numbers of respondents’ birthday (Pöge 2005b,
2008). The use of personal codes had two main drawbacks. First, identical codes belonging
to different persons occurred. To deal with this problem additional information from the
questionnaires was used to uniquely identify pupils. Furthermore not all pupils were able to
exactly reproduce the code in subsequent waves. If the code was not useful to identify pupils
over time (in the panel), individual questionnaires were checked manually. Since it was not
possible to identify all students over time, we have cross-sectional data we cannot use in the
panel. Note that cross-sectional data from wave 1 (in the year 2000) contains 1,850 cases
(Table 1), but only 1,375 pupils could be identified across waves, that is we have longitudinal
information for 1,375 pupils from wave 1 (see Table 2, last row).

Table 2 summarises the different missing data patterns of all respondents with valid infor-
mation from at least two waves (N = 2,064). There are 813 pupils without missing values.
These respondents took part in each survey, did not move to an area outside of the town and
they were able to reproduce their encryption code in each wave. For 1,251 respondents, one
or two panel waves are missing; for example there are 262 students with data in 2001–2003
but missing information in 2000. Several reasons can account for missing values: For some
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pupils it was not possible to assign interviews of these waves due to the above-mentioned
problems with the encryption code, some pupils were not present in the school on the partic-
ular day of the survey, others refused to participate, and some relocated with their families
(outside of the town Münster).

Delinquency was measured with several questions to get the prevalence (and incidence)
of offenses3 in the 12 months prior to the interview. The annual prevalence of the different
offenses is provided in Table 8 in the Appendix.4 Prevalences of the 16 different offenses
are summed up to an index for each panel wave. The index has a range between zero and
16. Higher index values indicate more versatile criminal activity. On average, it is expected
that the mean offense rate increases up to the third panel wave (average age of 15) and
decreases thereafter. This curvilinear development (also called age–crime curve) is typical
for adolescents aged between 14 and 18 years and is described as an adolescent-limited type
of delinquent behaviour (e.g. Moffitt 1993).

With LD only cases without missing values (813 out of 2,064 cases) are analysed. 1,251
cases (and the available observations for these cases) would be discarded. LD inflates stan-
dard errors due to the loss of cases. Even worse LD produces biased parameters if the 813
cases with complete data are not a simple random sample of all 2,064 cases. To state the
advantages of FIML and MI it is necessary to consider different missing-data mechanisms.

2.2 Missing data mechanisms

Missing data mechanisms relate the probability of missing values to the data. Rubin (1976)
distinguished three different missing data mechanisms: missing completely at random
(MCAR), missing at random (MAR) and not missing at random (NMAR). Following the
notation of Little and Rubin (2002) the vector of observed data is Yobs ; the vector of missing
data is Ymis : Y = (Yobs, Ymis). A missing data matrix M(= Mi j ) provides the information if,
for a person i , the value of a variable j is missing (Mi j = 1) or not. ψ denotes the parameter
vector influencing the probability of missing data. θ contains the parameters of substantive
interest, that are the parameters without missing data.

The missing data mechanism is MCAR when the probability of missing values on a
variable does not depend either on the observed values Yobs or the missing values Ymis :
f (M |Y, ψ) = f (M |ψ). The assumption of MCAR is required with LD since observed values
for cases with missing values on variables under study are discarded. Under MCAR complete
cases are a simple random sample of all cases. The missing data mechanism is MAR when
the probability of missingness depend on the observed values, but is unrelated to the missing
values: f (M |Y, ψ) = f (M |Yobs, ψ).5 MAR is a weaker assumption than MCAR. If the
missing data mechanism is MAR (or MCAR) likelihood-based conclusions about the param-
eters of substantive interest (θ ) are possible without information about the parameters ψ that
govern the missing data process (Little and Rubin 2002, p. 119). Full information maximum
likelihood and MI produce unbiased parameters under MAR. In contrast to LD all available
data are employed. Finally, the process of missingness is NMAR when the process of miss-
ingness also depends on the missing values themselves: f (M |Y, ψ) = f (M |Ymis, Yobs, ψ).

3 Vandalism: graffiti, damage to property. Violence: robbery, purse snatching, assault with and assault without
a weapon. Property: burglary, fencing, theft of and out of cars, out of a vending machine, of bicycles, other
theft, shoplifting. Drugs: Drug abuse, drug trafficking.
4 Item-nonresponse on offences is negligible. Therefore item-nonresponse is coded to 0 (no offense). This
coding does not influence the results presented below.
5 Additionally it is required that θ and ψ are distinct parameters. The process of missingness is then referred
to as nonignorable.
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Table 3 Gender and school type

Official statistics All respondents Respondents without
missing data

Respondents with
missing data

Male 52.1 % 51 % 43 % 55 %

Female 47.9 % 49 % 57 % 45 %

low 26.6 % 25 % 16 % 30 %

Middle 30.6 % 32 % 30 % 34 %

High 42.8 % 43 % 55 % 36 %

N = 2,105 N = 2,064 N = 813 N = 1,251

Official statistics refer to the population in 2000
The three educational levels represent the German school types

The missing data mechanism cannot be ignored because the missing data contains informa-
tion about the substantive parameters θ . If the process of missingness is NMAR it is necessary
to model missingness with pattern mixture models or selection models (Enders 2011).

Which assumption about the missing process holds in our data? MCAR includes that, for
instance, missingness on delinquency in the year 2000 in Pattern 2 of Table 2 is not related
to the observed variables under study (delinquency in 2001–2003, school level, and sex) and
not related to the missing values themselves (delinquency in 2000). MAR only requires, in
this pattern, that missingness on delinquency in 2000 is not related to the missing values on
delinquency in 2000. To establish whether missingness on delinquency is MCAR, adoles-
cents with missing data and those without missing data are compared according to school
type and sex (Table 3). Table 3 shows systematic differences in sex and educational level
for both groups. Note that school type and sex are completely observed.6 Of the variables
under study only delinquency (at the four time-points) has missing values. Adolescents with
missing data are overproportionally males. In addition, the percentage of students attending
the lowest school type is nearly twice as high among adolescents with missing data than
among adolescents without missing data. There is hardly any difference between official
school statistics and sample statistics for all respondents with data from a minimum of two
waves (N = 2,064).

Table 4 shows the means of the indices (x̄). In addition, the percentage of adolescents
who did not show delinquent behaviour in a particular year is included in the Table (% Zero).
Of the 1,251 adolescents with one or two missing values, 562 persons have a valid value
on delinquency in 2000, 854 in 2001 etc. It should be noted that the 813 adolescents with
complete data have lower delinquency rates than the 1,251 adolescents with missing data.
In addition, the percentage of non-delinquent adolescents is larger among students without
missing data. Missing values on delinquency depend on the observed values of school-type,
sex and delinquency. Obviously, the missing mechanism is not MCAR.

While it is simple to check the MCAR condition, this does not hold for MAR. MAR
implies that missingness does not depend on the missing values. It is not possible to verify
MAR because the missing values are not known. One exception is planned missing data,
where the missing data mechanism is under the control of the researcher. Nevertheless, in
our data it is plausible that the missing mechanism is MAR and not NMAR: The survey was

6 Since we have at minimum two waves for each student and sex is a time-invariant characteristic, sex is known.
Because changes between different school types are rare, we employ the first observed value to measure school
type.
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Table 4 Self-reported delinquency

All respondents Respondents without missing data Respondents with missing data

x̄ % Zero N x̄ % Zero N x̄ % Zero N

2000 0.6 72 1,375 0.5 77 813 0.8 65 562

2001 1.1 61 1,667 0.7 68 813 1.4 53 854

2002 1.3 55 1,721 0.9 64 813 1.7 47 908

2003 1.0 57 1,485 0.8 63 813 1.2 49 672

% Zero Percentage of persons without delinquent behaviour in the previous year

conducted in each class in 2000–2003. If an adolescent did not participate in 2000, than he or
she will be reinterviewed in the next year (classroom survey). Contrary to most panel studies,
this design did not result in a monotone pattern of panel attrition.7 At least two measure-
ments of delinquency are in the data for all 2,064 adolescents. Since these measurements are
strongly correlated, it is very plausible that missing information on self-reported delinquency,
e.g. in t1, can be explained by the observed delinquency at other time points, e.g. in t2, t3 or
t4 (Graham et al. 1997, 352 ff.).

3 MAR-methods

The impact of missing data on the development of delinquent behaviour will be evaluated by
the comparison of model results based either on LD, FIML or MI. The primary advantage
of MI and FIML is that both require less strict assumptions on the process of missingness
(MAR) compared to traditional techniques like LD of missing data (MCAR). Even if the
missing data mechanism is MCAR, MAR based methods should be favoured due to the loss
of cases in LD, thereby making LD inefficient.

3.1 Multiple imputation

Instead of discarding observed values on incomplete cases (LD), MI uses all available infor-
mation Yobs (of complete and incomplete cases) to generate multiple plausible values for
each missing value. A MI is a sequence of three steps: the imputation step, the analysis
step, and the pooling step. First, multiple (D > 1) plausible values are generated for each
missing value and then filled in. The imputation step results in D > 1 completed data sets
without missing values. The D filled-in data sets only differ in the imputed values. Standard
complete-data methods are then performed on each of the D imputed data sets separately.
Finally, the D analyses are pooled to obtain a single set of results.

The most challenging step is to generate ‘proper’ imputations. First, proper imputations
have to be stochastic to reproduce the variability of the data. For instance, regression impu-
tation is not proper since all imputed values fall straight on the regression line, thereby over-
estimating the correlation. In contrast, stochastic regression imputation adds a random draw
from the residual distribution to the predicted conditional mean to preserve the variability
of the data. Second, parameters used to generate imputed values have to be randomly drawn

7 If adolescents changed classes or schools within the city of Münster, they remained in the panel. Since
school attendance is compulsory until the age of 18, it is very unlikely that an adolescent did not participate
at all four panel waves, e.g. that we have no information at all.
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from their Bayesian posterior distribution to reflect uncertainty about the true parameter
values. The most widespread technique of realising imputations is data augmentation which
assumes multivariate normality of the data (Schafer 1997). The algorithm iteratively cycles
between the imputation (I) and the posterior (P) step. In the I-step, random draws for Ymis are
generated from the conditional distribution of the missing values, given the observed data and
parameters: Y (t+1)

mis ∼ p(Ymis |Yobs, θ
(t)). For the first I-step starting values of the parameters

θ are required. Usually starting values are calculated with the EM-algorithm, alternatively
listwise or pairwise deletion estimates may be used. The P-step randomly draws parameters
from the complete-data posterior: θ(t+1) ∼ p(θ |Yobs, Y (t+1)

mis ). To obtain the complete-data
posterior, Yobs is augmented with values of Ymis from the preceding I-Step (Schafer 1997,
p. 72). Repetitions of both steps result in a Markov chain Y 1

mis; θ1; Y 2
mis; θ2; . . . ; Y t

mis, θ
t

with t as the number of repetitions. After convergence (for large t), Y (t)mis and θ(t) are random
draws of P(θ, Ymis |Yobs) (Schafer 1997, 80). The algorithm converges if θ(t+k) is indepen-
dent of θ(t), where k is the number of iterations. Convergence in a single chain can be assessed
by time series or autocorrelation plots of parameters (Schafer 1997, Chap. 4.4). Because the
imputed values in adjacent I-steps are correlated with one another, a sufficient number of
I-steps have to be carried out between each imputation.8 In many cases, a small number of
three to five imputations yield standard errors that are not much larger than standard errors
from an infinite number of imputations (Schafer 1997, pp. 106–107). However, such a small
number of imputations may diminish statistical power for small effect sizes considerably
(Graham et al. 2007).

Simulation studies show that data augmentation is robust to violations of the assumption
of multivariate normality (Demirtas et al. 2008). Non-normal continuous variables may be
normalised with appropriate transformations. It is also possible to impute dummy variables
with data augmentation (Allison 2002). For mixed (continuous and categorical) data special
algorithms are available (Schafer 1997; Raghunathan et al. 2001; Van Buuren 2007). Sequen-
tial regression imputation is implemented in SAS, Stata, and R. With sequential regression
the imputation model depends on the distribution of a variable, e.g. continuous variables are
imputed using a linear regression model, dichotomous variables using a logistic regression
model and count data using a Poisson regression model. Since our variables measuring delin-
quency are count data with a large amount of zeros (see Table 4), we use a different approach
(Schafer and Olsen 1999) explained below.

After imputing plausible values, each of the D completed data sets are analysed. Parame-
ter estimates (e.g. coefficients from structural equation models) of these analyses are simply
averaged to produce a single set of results: θ̄D = 1

D

∑D
d=1 θ̂d (Little and Rubin 2002, p. 86).

To obtain correct standard errors, the average variance within the imputed data sets and the
variance between estimates of these data sets are considered (Little and Rubin 2002, p. 86f.).9

The program NORM (Schafer 1997) implements data augmentation. We used NORM for
Windows to impute missing values.10 The imputation model includes delinquency rates at

8 It is also possible to generate MIs with independent chains (parallel data augmentation).
9 The within-imputation variance is the average of the D squared standard errors: W̄D = 1

D
∑D

d=1 se2
d .

Within standard errors are calculated without missing values (too large n), thereby underestimating sampling
error. The between-imputation variance quantifies the variability of the parameter estimates of different filled
in data sets: BD = 1

D−1
∑D

d=1 (θ̂d − θ̄D)
2. The between-imputation variance reflects the uncertainty on the

parameters due to missing data since the imputed data sets only differ in the imputed values. The total variance
is: TD = W̄D + D+1

D BD . The MI standard error is the square root of the total variance: se = √
TD .

10 The program NORM can be downloaded free of charge from the webpage http://www.stat.psu.edu/˜jls.
Data augmentation is also available in SAS, Stata (since version 11, see Stata 2011), and R.
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t1, t2, t3, t4, sex and school type. Sex and school-type are completely observed. An
imputation model may also contain variables which are highly correlated with missing-
ness or with variables with missing values (Collins et al. 2001) even if these variables are
not part of the substantive analysis. Such ‘auxiliary’ variables make MAR more realistic and
thereby improve the estimation of plausible values. It is also possible (but more difficult) to
incorporate auxiliary variables with FIML. To utilise delinquency measures of different time
points for imputation, the data set is arranged in wide format (see Table 2), that is we have
one record for each adolescent (Allison 2002, p. 74 ff.). Delinquency rates are zero-inflated:
between 55 % (in the year 2002) and 72 % (in the year 2000) of the interviewees reported no
offense at all. To take zero-inflation into account, we represent each delinquency rate with
two variables in the imputation model (Schafer and Olsen 1999).11 Sex is a dichotomous
variable and school type (low, middle, high) is replaced by a set of two dummy variables
(middle, high) in the imputation model.12 For each missing value 10 values were imputed,
i.e. we have 10 completed data sets, each with 2,064 students.13

3.2 Maximum likelihood estimation with missing data

ML estimation with incomplete data is well discussed (for example Dempster et al. 1977;
Little and Rubin 2002). Allison (1987) and Muthén et al. (1987) have shown how the method
applies to structural equation modelling by using multiple groups to separate missing data
patterns. However, the multiple-group approach works only with a few distinct missing data
patterns. Direct ML methods, also referred to as FIML, overcome those limitations. FIML
is implemented in structural equation programs like AMOS, LISREL and Mplus. The main
difference between FIML and MI is that with FIML estimation of substantive parameters (e.g.
coefficients in a growth curve model) and missing data handling are proceeded in one step.
Like MI FIML uses all available data to estimate substantive parameters. With FIML, each
case’s contribution to the sample log likelihood is computed using all observed values for
that case. Standard errors are obtained from the second derivatives of the FIML function via
the so-called information matrix. With missing data the observed information matrix yields
unbiased parameters under MAR and MCAR, whereas the expected information matrix can
yield biased standard errors (Enders 2010, p. 102f.).

Several simulation studies confirm the feasibility of FIML estimation with incomplete
data (Enders and Bandalos 2001; Enders 2001a,b). It has also been shown that FIML pro-
duces unbiased parameter estimates and standard errors when the missing process is MAR
(Arbuckle 1996; Enders and Bandalos 2001; Enders 2001c). Using the same set of cases and
variables, MI and FIML should produce similar parameter estimates (Schafer and Graham
2002; Schafer 1997). However, as mentioned above, the use of auxiliary variables is easier
with MI. Using FIML therefore leads to a more restrictive use of auxiliary variables than
using MI (Collins et al. 2001).

11 Each delinquency rate Yt was split into two variables, i.e. the imputation model included eight variables to
capture delinquency. Wt measures if an adolescent reported no offence at time point t (Wt = 0) or at least one
offence (Wt = 1). Zt counts the number of offences greater zero and is missing for non-offenders. Integer
values between 1 and 16 were imputed on Zt . Imputations on Wt were rounded to zero or one. After the
imputation Wt and Zt were recoded to Yt , where Yt = Zt if Wt = 1 and Yt = 0 if Wt = 0.
12 Multivariate normality does not hold for these variables. Since both variables have no missing values this
poses no problem (Schafer 1997, p. 203).
13 We generated a single chain of 10,000 iterations, with 1,000 burn-in iterations and 1,000 between-imputa-
tion iterations.
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4 Juvenile delinquency: results of LD, MI and FIML

The development of delinquent behaviour is analysed with latent growth curve models.
Growth curve models are estimated first with full-information maximum likelihood, sec-
ondly using the 10 multiple imputed data sets (Sect. 3.1), and thirdly using solely complete
cases (N = 813 adolescents, see Table 2).

4.1 Growth curve models

The growth curve model is specified for Poisson distributed variables because delinquent
behaviour is measured as a count variable. Let Y = 0, 1, 2 . . . be a random variable for a
given time interval and y be the number of observed occurrences.

The number of events in that interval is Poisson distributed with the following probability
density function:

Pr(Y = y) = e−μ
[
μy

y!
]

(1)

The expected value of the Poisson distribution is E(y) = μwith V ar(y) = μ. The parameter
μ is referred to as the mean rate of occurrences of events. Small values ofμ yield high proba-
bility for zero occurrences of the random variable y. The higher the value of μ, the lower the
skewness of the distribution. Here, a growth curve model will be used to explain the Poisson
distributed count data14:

ln(μt ) = λ1tη1 + λ2tη2 + εt (2)

μt is the expected number of occurrences at time t . η1 is the intercept, i.e. the mean rate of y
at the starting point of a given time interval. η2 is the linear slope describing the development
of y, e.g. the linear increase or decrease of delinquent behaviour. εt is the error term of the
measurements which can be held constant over time.

Empirical evidence in criminological research as well as our descriptive results for the
cross sections with missing data (see Table 4) suggest that with increasing age delinquency
during adolescence first rises and then declines. To capture a nonlinear relationship, Eq. (3)
includes a quadratic term η3:

ln(μt ) = λ1tη1 + λ2tη2 + λ3tη3 + εt (3)

If the number of zeros in the count variables is large, i.e. there is a high percentage of non-
offenders, the ZIP originally proposed by Lambert (1992) is more appropriate (see Reinecke
2006). The ZIP model combines the Poisson model with a logit model to cover the zero
inflation in the count variable y:

yt ∼
{

0 with probability p
ln(μt ) with probability 1 − p

(4)

Two parallel growth curve models are estimated simultaneously when zero inflation of the
data is assumed. The first model in the upper panel of Fig. 1 contains the Poisson part of
the variable yt (variables y1 to y4). The means of the growth curve variables (η1, η2, η3)
are estimated. The second model in the lower panel of Fig. 1 refers to the Logit part of the
variable yt (Variables yi

1 to yi
4). The mean of the intercept (ηi

1) is fixed to zero while the

14 The growth curve model can also be formalised as a random effects model with the notation of multilevel
equations (see Hox 2002).
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yi
1 yi

2 yi
3 yi

4

η i
1 η i

2 η i
3

y1 y2 y3 y4

η1 η2 η3

Fig. 1 Growth curve models for zero-inflated count data. Variables of the inflation part (logit model) are
indicated by the suffix i

means of the linear and quadratic slope (ηi
2 and ηi

3) are estimated. Logit and Poisson part of
the growth curve model can be estimated simultaneously using Mplus (Muthén and Muthén
2010).

Equations (2) and (3) will be applied in our analyses. Model restrictions are used in a
conventional way: The factor loadings of the intercept η1 are fixed to 1 over all four panel
waves; factor loadings of the linear slope η2 are fixed to the values 0 (t1), 1 (t2), 2 (t3) and 3
(t4); and factor loadings of the quadratic slope η3 are fixed to the values 0 (t1), 1 (t2), 4 (t3),
and 9 (t4). The same restrictions are used for the inflation part of the model. If the age–crime
relationship is bell-shaped (age–crime curve), then the mean of the intercept and the mean of
linear slope in the Poisson part of the model should be positive and the mean of the quadratic
slope in the Poisson part should be negative.

4.2 Results

All Models are estimated with Mplus. Mplus allows a simultaneous analysis of several
imputed data sets and provides combined point estimates and standard errors (see foot-
note 11). First, models without exogenous variables are estimated (unconditional models).
Additionally, the impact of gender and school types (high, medium) on the development of
delinquency is considered (conditional models). The fit measures of the different models are
displayed in Table 5. With FIML and MI, the quadratic model specifications have superior
fit measures, i.e. lower AIC and BIC values, than the linear ones. In contrast, with LD of
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Table 5 Goodness of fit measures of the growth curve zero-inflated Poisson models

Linear Quadratic

Unconditional Conditional Unconditional Conditional

FIML (N = 2, 064)

Log likelihood −8997 −8637 −8934 −8578

N of parameter 4 16 6 24

AIC 18,002 17,305 17,881 17,204

BIC 18,025 17,395 17,914 17,339

Adj. BIC 18,012 17,345 17,895 17,263

MI (N = 2, 064)

Log likelihood −12323 −11896 −12271 −11864

N of parameter 4 16 6 24

AIC 24,654 23,824 24,553 23,721

BIC 24,677 23,914 24,587 23,857

Adj. BIC 24,664 23,863 24,568 23,780

LD (N = 813)

Log likelihood −3793 −3670 −3787 −3660

N of parameter 4 16 6 24

AIC 7,594 7,372 7,585 7,368

BIC 7,613 7,448 7,613 7,480

Adj. BIC 7,601 7,397 7,594 7,404

missing data the fit measures for the linear and quadratic models differ only slightly. Including
exogenous variables improves the model fit with FIML, MI, and LD.

Estimates of the unconditional quadratic growth curve models are presented in Table 6.
As stated before, the ZIP model estimates two parts of the growth curve: The Logit part mod-
els the odds of not being delinquent (structural zeros), the Poisson part models the number
of different offences (versatility). FIML, MI and LD results show the expected bell-shaped
relationship between age and delinquency in adolescence: In the Poisson part (upper panel
of Table 6) the mean of the intercept and the mean of the linear slope have positive signs
and the mean of the quadratic slope has a negative sign. The effect sizes differ; with LD the
mean rate of versatility is underestimated and LD estimates indicate a more flat age–crime
curve in adolescence. Due to the loss of cases, standard errors are larger with LD.

Detailed results of the conditional quadratic growth curve models are presented in Table 7.
Note that point estimates and standard errors of FIML and MI are quite similar. Firstly, we
look at the influence of sex and school type on the prevalence of delinquency (Logit Part,
lower panel of Table 7). The results of FIML and MI are more plausible, i.e. in accordance
with criminological evidence, in comparison to the results of LD. According to FIML and
MI, the estimated odds of not being delinquent at the beginning of the survey are about 50 %
higher for girls than for boys.15 In contrast, LD shows a non-significant effect of sex since
delinquent boys are underrepresented with LD of missing data.16 The odds of not being

15 Using the coefficient estimated with the multiply imputed data sets: (e.409 − 1) ∗ 100.
16 Additional analyses using the multiple imputed data sets show that LD overestimates the percentage of
non-delinquent boys, thereby obscuring sex differences.
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Table 6 Parameter estimates of the unconditional growth curve ZIP-model

FIML MI LD

Poisson part

Intercept (I) .573∗∗ (.064) .681∗∗ (.069) .439∗∗ (.101)

Slope (S) .499∗∗ (.075) .374∗∗ (.081) .263∗ (.112)

QSlope (Q) −.151∗∗ (.022) −.113∗∗ (.025) −.066∗ (.032)

Logit part

Intercept (Ii) – – – – – –

Slope (Si) −.482∗∗ (.089) −.397∗∗ (.086) −.430∗ (.136)

QSlope (Qi) .087∗∗ (.027) .064∗ (.027) .074 (.040)

N 2,064 2,064 813

delinquent are also higher for students attending ‘high schools’ than for students attending
‘basic schools’. Attending a ‘high school’ has no significant impact on the intercept with LD
of data.

Secondly, in the Poisson part of the model (upper panel of Table 7) gender and educational
level influences the intercept (I). At the beginning of the observation period, girls have a lower
versatility in comparison to boys, and students attending a high or medium level school type
have a lower versatility than students attending ‘basic schools’, although the coefficient for
‘medium schools’ is not significant with MI. Gender and school type have no significant
impact on the linear and quadratic slope (columns FIML and MI), i.e. on the curvature of the
age–crime relationship.

To sum up, FIML and MI lead to the same results concerning the development of delin-
quency. Point estimates and standard errors of the conditional models differ only slightly.
Although both methods—FIML and MI—are ceteris paribus asymptotically equivalent, one
should note that the imputation model employed here was designed for continuous data with
a large amount of zeros (Schafer and Olsen 1999) and not for zero-inflated count data. How-
ever, the violation of the distributional assumptions of the imputation model does not distort
substantive results of the growth curve models.

5 Discussion

Criminological research has scrutinised the necessity of panel studies in order to analyse
the development of delinquency (Sampson and Laub 2005). When self-reports of delinquent
behaviour are analysed over time, the amount of missing data increases with the number
of panel waves. The most widespread method used to cope with missing data is LD. With
longitudinal data, LD results in a considerably high loss of cases. In our data, only 813 out of
2,064 adolescents have valid information at all four time points and therefore remain in the
panel with LD. For substantive conclusions about the development of delinquency one has
to assume that the remaining 813 respondents are a simple random subsample of the original
sample. This assumption does not hold here. Descriptive results have shown that missing
values on delinquency depend on sex, school type, and also (observed) delinquency at other
time points. Females, adolescents attending a high school, and non-delinquent adolescents
are overrepresented if one only analyses cases with complete longitudinal information.
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Table 7 Parameter estimates of the conditional growth curve ZIP-model

FIML MI LD

Poisson part

Intercept (I) .957∗∗ (.120) .999∗∗ (.110) 1.217∗∗ (.192)

Slope (S) .419∗∗ (.142) .339∗ (.135) −.203 (.232)

QSlope (Q) −.119∗∗ (.040) −.096∗ (.040) .056 (.061)

Predictors

Female → I −.415∗∗ (.146) −.374∗∗ (.134) −.744∗∗ (.209)

Medium → I −.314∗ (.152) −.202 (.125) −.608∗∗ (.232)

High → I −.356∗ (.154) −.373∗∗ (.135) −.676∗∗ (.248)

Female → S −.168 (.166) −.167 (.165) .316 (.234)

Medium → S .189 (.182) .111 (.153) .437 (.282)

High → S .090 (.182) .118 (.171) .479 (.274)

Female → Q .061 (.046) .053 (.046) −.055 (.066)

Medium → Q −.052 (.051) −.034 (.047) −.112 (.078)

High → Q −.067 (.053) −.058 (.052) −.156∗ (.076)

Logit part

Intercept (Ii) − − − − − −
Slope (Si) −.885∗∗ (.199) −.845∗∗ (.182) −1.405∗∗ (.337)

QSlope (Qi) .222∗∗ (.060) .210∗∗ (.054) .325∗∗ (.102)

Predictors

Female → Ii .399∗ (.161) .409∗∗ (.145) −.120 (.256)

Medium → Ii .056 (.195) .018 (.168) −.362 (.307)

High → Ii .372∗ (.182) .322∗ (.157) .168 (.283)

Female → Si .149 (.201) .123 (.197) .577 (.311)

Medium → Si .391 (.247) .421∗ (.215) .945∗ (.404)

High → Si .540∗ (.239) .578∗ (.204) .933∗ (.377)

Female → Qi −.016 (.060) −.010 (.059) −.094 (.091)

Medium → Qi −.154∗ (.073) −.159∗ (.062) −.253∗ (.119)

High → Qi −.212∗∗ (.074) −.221∗∗ (.064) −.296∗∗ (.114)

N 2,064 2,064 813

The mean of the intercept (Ii) in the logit-part of the ZIP-model has to be fixed to zero
∗ p < 0.05, ∗∗ p < 0.01 (two-sided)

FIML and MI are the two state of the art techniques of handling missing data. Both meth-
ods use all observed information to estimate substantive parameters, thereby eliminating bias
due to missing data which may be explained with observed data. Results of FIML and MI
show a higher level of delinquent behaviour during adolescence, and a more pronounced
curvilinear association between age and crime. In addition, FIML and MI estimates show
a higher prevalence of delinquent behaviour of boys and of adolescents attending ‘basic
schools’. FIML and MI will generally produce similar parameter estimates given identical
variables under study and consistency between the imputation and analysis model (Collins
et al. 2001; Enders 2006). So far imputation routines for zero-inflated count data are not
available in statistical software. Therefore FIML may be the method of choice for Poisson
distributed variables with a high amount of zeros. However, with our data even an imputation
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routine not designed for count data (but accounting for a large amount of zeros) results in
similar point estimates and standard errors as FIML. MI requires additional effort (imputation
step) before substantive analyses, but it means that virtually any statistical analysis can be
performed after the imputation.

FIML and MI are prone to bias when the MAR assumption is violated. We argued that
MAR is plausible in the data under study due to the design (longitudinal data, no monotone
pattern of dropout, see Sect. 2.2). MAR is violated if the dropout of respondents depends on
the topic of the investigation. Under NMAR, selection models or pattern mixture models for
growth curve models may be used (Enders 2011). However, these methods rely on untestable
assumptions and are not robust against violations of these assumptions (Enders 2011, p. 15).

Appendix

Table 8 Annual prevalence of self-reported delinquency

7th grade 8th grade 9th grade 10th grade
13 yearsa 14 yearsa 15 yearsa 16 yearsa

2000 2001 2002 2003

Freq. % Freq. % Freq. % Freq. %

Damage to property 126 (9.2) 193 (11.6) 216 (12.6) 130 (8.8)
Graffiti 57 (4.1) 187 (11.2) 213 (12.4) 96 (6.5)
Robbery 32 (2.3) 49 (2.9) 55 (3.2) 27 (1.8)
Purse snatching 1 (0.1) 14 (0.8) 15 (0.9) 5 (0.3)
Assault without weapon 100 (7.3) 179 (10.7) 195 (11.3) 138 (9.3)
Assault with weapon 8 (0.6) 40 (2.4) 33 (1.9) 15 (1.0)
Burglary 18 (1.3) 52 (3.1) 60 (3.5) 34 (2.3)
Fencing 70 (5.1) 111 (6.7) 135 (7.8) 93 (6.3)
Theft out of cars 6 (0.4) 27 (1.6) 30 (1.7) 17 (1.1)
Theft of cars 5 (0.4) 24 (1.4) 37 (2.1) 14 (0.9)
Theft out of a vending machine 32 (2.3) 49 (2.9) 55 (3.2) 21 (1.4)
Theft of bicycles 34 (2.5) 104 (6.2) 164 (9.5) 143 (9.6)
Shop-lifting 206 (15.0) 332 (19.9) 337 (19.6) 190 (12.8)
Other theft 28 (2.0) 55 (3.3) 68 (4.0) 38 (2.6)
Drug abuse 96 (7.0) 283 (17.0) 490 (28.5) 450 (30.3)
Drug trafficking 11 (0.8) 71 (4.3) 120 (7.0) 81 (5.5)
No offense 990 (72.0) 1011 (60.6) 946 (55.0) 846 (57.0)

a Mean age at the time of survey
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