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Abstract China’s economic boom has brought about environmental dark sides, i.e., serious
air, water, and solid waste pollutions. As the largest developing countries in the world, China’s
road toward economic-environmental balance is even complicated since there are various
regions of diversified geographical and economic conditions. Using context-dependent-DEA
(data envelopment analysis) as performance evaluating technique, this study constructs the
regions’ benchmark-learning ladders for those inefficient regions to improve progressively;
and to identify real benchmark for those efficient regions to rank ascendant by incorporat-
ing the stratification DEA method, attractiveness measure, and progress measure. Decision
matrix covering attractiveness and progress scores is made to help the regions position them-
selves. Furthermore, we find that capital/employee ratio plays important role on forming
levels of regions, which can be interpreted that advanced technology is one of key factors
toward regional sustainable development.

Keywords Data envelopment analysis (DEA) · Attractiveness · Progress ·
Efficiency · Pollution · Sustainable development

1 Introduction

China’s economic boom has several dark sides behind the spectacular growth. The environ-
mental problem is one that is threatening to bite into the country’s newly-found prosperity.
People in China are suffering from the environmental degradation that takes many forms,
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including air, water, and solid waste pollution. As for air pollution, China has the world’s
highest emissions of sulphur dioxide and one fourth of the territory has to endure acid rain
(the Economist 2004). Air pollution can lead to the premature death of many thousands of
Chinese annually. In the case of water pollution, it is estimated that about 70% of the water
that flows through China’s urban areas is unsuitable for drinking and fishing (Nankivell 2005).
Furthermore, solid waste production in China is expected to more than double over the next
decade, which will push China far ahead of other countries as the largest producer in the
world. It is estimated that, in each year, only 20% of the solid waste is properly disposed of
(the Economist 2004). The environmental pollution and degradation in China, i.e., the dam-
age to crops caused by acid rain, related medical bills, floods, and resource depletion, etc.,
is estimated to annually account for 8–12% of its GDP (APCSS 2000). This environmental
degradation has threatened both the current and future generations and is undermining the
sustainability of national long-term growth. Although pollution is an invariable consequence
of development based on historical experience, the dilemma between growth and the environ-
ment in China is more complicated since there is a diversity of geographical and economic
conditions across regions.

Regions in China can be roughly divided into three major areas: the east, the central
region, and the west. Per capita GDP is highest in the urban/industrial centers of eastern
China, lower in the middle provinces, and lowest in China’s western hinterland. The east-
ern region stretches from the province of Liaoning to Guangxi, including Shandong, Hebei,
Jiangsu, Zhejiang, Fujian, Guandong, and Hainan, as well as the municipalities of Beijing,
Tianjin, and Shanghai. Of these three major regions, the eastern region has experienced the
most rapid economic growth. The central area consists of Heilongjiang, Jilin, Inner Mongolia,
Henan, Shaanxi, Anhui, Hubei, Hunan, and Jiangxi. There is not as much foreign investment
in this area as in the eastern coastal regions, and existing equipment relatively-speaking lags
somewhat behind. The western region covers more than half of China, and includes the prov-
inces of Gansu, Guizhou, Ningxia, Qinghai, Shaanxi, Tibet, Yunnan, Xinjiang, Sichuan, and
the municipality of Chongqing. Compared to the other two, this area in general has a low
population density and is the least developed (Fig. 1).

Sustainable development at the national level should start at the regional level since these
sub-national regions serve as key sites for the integration of economic and environmental pol-
icy (Gibbs 1998, 2000; Wallner et al. 1996, Dryzek 1997). From the perspective of regional
sustainable development, a region’s macroeconomic policy should be based on its ability
to maximize wealth as well as minimize the environmental impact of its inhabitants. This
study thus provides an in-depth analysis of China’s sustainable development that covers both
economic performance and environmental degradation, including air, water and solid waste
pollution at the regional level.

When it comes to measuring the sustainability performance for the above-mentioned 31
regions in China, the actual task of ranking these regions from the highest to the lowest is
quite basic. However, a region’s ‘attractiveness’ or ‘progress’ compared to its peers is another
interesting issue that is worth investigating. The performance of regions is influenced by the
‘context.’ A region may appear attractive against a background formed by other less attractive
peers, or else unattractive when compared to other more attractive peers. For example, the
relative attractiveness of region X compared to region Y depends on the presence or absence
of a third party, say, region Z. Therefore, the context for region X changes with/without
the existence of region Z. Against this background (or what we refer to as ‘context’ in this
study), a region’s ‘attractiveness’ can be interpreted, when found to be outperforming its
competitors, as being how close it is to its competitors, while a region’s ‘progress’ can, when
found to be underperforming when compared with its competitors, be regarded as what it
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Eastern Area Central Area Western Area 
01 Beijing* 25,523  04 Shanxi 5,460  22 Chongqing* 5,654 

02 Tianjin* 20,154  05 Inner Mongolia 6,463  23 Sichuan 5,250 

03 Hebei 8,362  07 Jilin 7,640  24 Guizhou 2,895 

06 Liaoning 12,041  08 Heilongjiang 9,349  25 Yunnan 4,866 

09 Shanghai* 37,382  12 Anhui 5,221  26 Tibet 5,307 

10 Jiangsu 12,922  14 Jiangxi 5,221  27 Shaanxi 5,024 

11 Zhejiang 14,655  16 Henan 5,924  28 Gansu 4,163 

13 Fujian 12,362  17 Hubei 7,813  29 Qinghai 5,735 
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Fig. 1 Regions of China and average per capita GDP 2001 (RMB)

needs to do to improve its outputs. When faced with the diversity in terms of the economic-
environmental conditions for the 31 regions in China, we would like to ask “what is the
relative attractiveness or progress of a particular region when compared to its context that
varies?” For policy-makers, it should be more important to identify the ‘real’ benchmark for
those underperformers. While a poor performing region may be trying to improve itself by
benchmarking the best performing one, it may be very difficult to do so, because of the huge
gap between them. It is therefore necessary to provide an attainable benchmark target via a
stepwise improvement for those inefficient regions.
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The data envelopment analysis (DEA) approach and its extensions have recently been
widely applied to regional studies. For example, DEA has been used to measure the efficiency
and productivity specialization of Spanish and Turkey regions (Maudos et al. 2000; Armagan
et al. 2008), the total factor productivity growth of Spanish regions (Boscá et al. 2004), the
growth of factor productivity in Turkish manufacturing industry (Karadağ et al. 2005), and
local government spending efficiency in the Lisbon region (Afonso and Fernandes 2006;
Uri 2006), etc. By focusing on an application to regional sustainable development in China,
this study presents a context-dependent DEA model that measures the relative attractiveness
and progress of regions at a specific performance level. DEA, which was first introduced by
Charnes et al. (1978), is a methodology used to identify the efficient frontier of a decision
making unit (DMU). In referring to the DEA approach, context-dependent DEA evaluates
DMUs against a specific context, or a specific performance level (Seiford and Zhu 2003). The
basic idea of context-dependent DEA is that DMUs can be divided into different levels of
efficient frontiers. Once the original efficient frontier is removed, a new second-level efficient
frontier made up of the remaining DMUs will be formed. While the above process keeps
operating, a series of frontiers is constructed as a scaling ladder that groups the DMUs into
several stratifications. Context-dependent DEA is developed to measure the attractiveness
and progress of DMUs with respect to a given evaluation context. The attractiveness measure
estimates the competitiveness a DMU possesses, and the progress measure in turn estimates
the extent to which a DMU needs to improve. Different strata of efficient frontiers rather than
the traditional only-one-first-level efficient frontier are used as evaluation contexts. Due to its
generating finer results, the context-dependent DEA is favored in this study, and also enables
us to discriminate among the respective performances of the 31 regions in China with their
diversified geographical and environmental characteristics.

The remainder of this paper is organized as follows: Following this section, Sect. 2 intro-
duces an estimation methodology including the techniques used to cope with undesirable
outputs and context-dependent DEA. Section 3 presents the empirical results. Section 4
concludes the paper.

2 Estimation methodology

This section employs DEA to measure the technical efficiency (TE) of DMUs, or regions in
China in this case. We first describe the process for handling the undesirable factors in DEA
in Sect. 2.1. In Sect. 2.2, the context-dependent-DEA is introduced to construct the regions’
benchmark-learning ladder to enable the inefficient regions to improve progressively, and to
identify real benchmarks for the more efficient regions to further improve their rank by incor-
porating the stratification DEA method, attractiveness measure, and progress measure, etc.

2.1 Undesirable factors in DEA

DEA measures the relative efficiency of DMUs with multiple performance factors that are
grouped into outputs and inputs. Once the efficient frontier is determined, the inefficient
DMUs can improve their performance to reach the efficient frontier by either increasing their
current output levels or decreasing their current input levels. While conducting efficiency
analysis, it is often assumed that all outputs are ‘good’ or ‘desirable,’ as in the case of GDP
for a country. However, such an assumption cannot always be justified in the real world,
because outputs may be ‘bad.’ For example, if inefficiency exists in production processes
where final products are manufactured along with waste and pollutants, then the outputs of
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such waste and pollutants are undesirable (bad) and should hence be reduced to improve
performance.

There are several alternatives for dealing with undesirable outputs in the DEA framework.
The first is simply to ignore the undesirable outputs. The second is either to treat the undesir-
able outputs in terms of a non-linear DEA model or to treat the undesirable outputs simply
as outputs and adjust the distance measurement in order to restrict the expansion of these
undesirable outputs (Färe et al. 1989). The third is either to treat the undesirable outputs as
inputs or to apply a monotone decreasing transformation (e.g., 1/yb, where yb represents the
bad output proposed by Lovell et al. (1995)). However, these methods cannot truly reflect
the real production process or else remove the invariance to the data transformation. To over-
come the shortcomings mentioned above, Seiford and Zhu (2002) propose a way that deals
with undesirable outputs in the DEA framework. This approach can truly reflect the real
production process and is invariant to the data transformation within the DEA model. We
therefore apply this method to treat the undesirable output factors in this study.

Let yg
r j and yb

r j denote the desirable (good) and undesirable (bad) output, respectively.

Obviously, we wish to increase yg
r j and to decrease yb

r j to improve the performance. How-
ever, in the output-oriented constant returns to scale (CRS) model (Charnes et al. 1978), both
yg

r j and yb
r j are supposed to increase to improve the performance. To increase the desirable

outputs and decrease the undesirable outputs, we proceed using the approach outlined in the
following paragraphs.

First, we multiply each undesirable output by ‘−1’ and then find a proper value v to let all
negative undesirable outputs be positive. That is, yr j = −yb

r j + v > 0. This can be achieved

by v = max
{

yb
r j

}
+ 1. The TE of the target DMU (o = 1, . . . , n) can be computed as a

solution to the following linear programming (LP) problem:

Max ηo

s.t.
n∑

j=1

λ j xi j ≤ xio, i = 1, . . . , m,

n∑
j=1

λ j yg
r j ≥ ηo yg

ro, r = 1, . . . , s,

n∑
j=1

λ j yr j ≥ ηo yro,

ηo, λ j ≥ 0; ∀ i and r; j = 1, . . . , n,

(1)

where n is the number of DMUs; and m and s are the numbers of inputs and outputs, respec-
tively. Let xi j and yr j be the amount of the i th input consumed and the amount of the r th output
produced by the DMU j , respectively. The TE of the target DMU is defined as TE = 1/ηo.
By varying the index ‘o’ over all DMUs, we arrive at the TE in each DMU. If TE=one,
then the target DMU is technically efficient. If TE is smaller than one, then the target DMU
is technically inefficient. The solution value of λ j indicates whether the DMU j serves as a
role model or a peer for the target DMU. If λ j = 0, then DMU j is not a peer. However, if
λ j > 0, say, λ j = 0.4, then DMU j is a peer DMU with a 40% weight placed on deriving
the target efficient output and input level for target DMU.

123



1812 W.-M. Lu, S.-F. Lo

2.2 Context-dependent DEA

The context-dependent DEA (Seiford and Zhu 2003) is introduced to construct the regions’
benchmark-learning ladder for those inefficient regions to progressively improve, and to
identify real benchmarks for those efficient regions to improve their rank by incorporating
the stratification DEA method, attractiveness measure, and progress measure. The stratifica-
tion DEA method, attractiveness measure and progress measure are now described in what
follows.

2.2.1 Stratification DEA method

The basic idea behind the stratification DEA method is that DMUs can be divided into
different levels of efficient frontier. Once the original efficient frontier is removed, a new
second-level efficient frontier made up of the remaining DMUs will be formed. While the
above process keeps operating, a series of frontiers is constructed as a scaling ladder group-
ing the DMUs into several stratifications. The stratification DEA with undesirable outputs is
introduced as follows:

Let J 1 = {
DMU j , j = 1, . . . , n

}
(the set of all n DMUs). Interactively define J l+1 =

J l − El , where El = {
DMUk ∈ J l |φ (l, k)

}
, and φ (l, k) is the optimal value for the

following LP when DMUk is under evaluation.

Max
λ j ,φ(l,k)

φ (l, k)

s.t.
∑

j∈F(J l)

λ j xi j ≤ xik,

∑

j∈F(J l)

λ j yg
r j ≥ φ (l, k) yg

rk,

∑

j∈F(J l)

λ j yr j ≥ φ (l, k) yrk,

φ (l, k) , λ j ≥ 0; ∀ i and r, j ∈ F
(

J l
)

, (2)

where j ∈ F
(
J l

)
means DMU j ∈ J l , i.e., F(.) represents the correspondence from a

DMU set to the corresponding subscript index set. When l = 1, Eq. 2 becomes the original
output-oriented CRS model, Eq. 1, and E1 consists of all the frontier DMUs. These DMUs
in set E1 define the first-level best-practice frontier. When l = 2, Eq. 2 gives the second-
level best-practice frontier after the exclusion of the first-level frontier DMUs, and so on. In
this manner, several levels of best-practice frontiers are identified. We call El the lth-level
best practice frontier. The following algorithm accomplishes the identification of these best-
practice frontiers using Eq. 2.

• Step 1: Set l = 1. Evaluate the entire set of DMUs, J 1, using Eq. 2 to obtain the first-level
frontier DMUs, set E1 (the first-level best-practice frontier).

• Step 2: Exclude the frontier DMUs from future DEA runs. J l+1 = J l −El . (If J l+1 = ∅,
then stop).

• Step 3: Evaluate the new subset of ‘inefficient’ DMUs, J l+1, using Eq. 2 to obtain a new
set of efficient DMUs, El+1 (the new best-practice frontier).

• Step 4: Let l = l + 1. Go to step 2.
• Stopping rule: J l+1 = ∅, the algorithm stops.
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2.2.2 Attractiveness measure

The attractiveness measure is developed to measure the attractiveness of DMUs with respect
to a given evaluation context. The attractiveness measure estimates the competitiveness that
a DMU possesses. The attractiveness measure with undesirable outputs is introduced as fol-
lows. Based upon these evaluation contexts El(l = 1, . . . , L − 1), we can obtain the relative
attractiveness measure with undesirable outputs by means of the following LP:

H∗
q (d) = Max

λ j ,Hq (d)
Hq(d), d = 1, . . . , L − lo,

s.t.
∑

j∈F(Elo+d)

λ j xi j ≤ xiq , i = 1, . . . , m,

∑

j∈F(Elo+d)

λ j yg
r j ≥ Hq(d)yg

rq , r = 1, . . . , s,

∑

j∈F(Elo+d)

λ j yr j ≥ Hq(d)yrq ,

Hq(d), λ j ≥ 0; ∀ i and r, j ∈ F
(

Elo+d
)

, (3)

where DMUq = (
xiq , yrq

)
is from a specific level Elo , lo ∈ {1, . . . , L − 1}. In Eq. 3, each

best-practice frontier of Elo+d represents an evaluation context for measuring the relative
attractiveness of DMUs in Elo . The larger the value of 1/H∗

q (d), the more attractive the
DMUq , since it is outstanding within the level compared to others. Because this DMUq

makes itself more distinctive from the evaluation context Elo+d , we can therefore rank the
DMUs in Elo based on their attractiveness scores and identify the best one in that stratification.

2.2.3 Progress measure

The progress measure is developed to measure the progress of DMUs with respect to a
given evaluation context. The progress measure estimates to what extent a DMU needs to
improve. The progress measure with undesirable outputs is introduced as follows. To obtain
the progress measure with undesirable outputs for a specific DMUq = (

xiq , yrq
) ∈ Elo , lo ∈

{2, . . . , L}, we use the following LP:

G∗
q (g) = Max

λ j ,Gq (g)
Gq (g) , g = 1, . . . , lo − 1,

s.t.
∑

j∈F(Elo−g)

λ j xi j ≤ xiq , i = 1, . . . , m,

∑

j∈F(Elo−g)

λ j yg
r j ≥ Gq (g) yg

rq , r = 1, . . . , s,

∑

j∈F(Elo−g)

λ j yr j ≥ Gq (g) yrq ,

Gq (g) , λ j ≥ 0; ∀ i and r, j ∈ F
(

Elo−g
)

. (4)

In Eq. 4, each efficient frontier, Elo−g , contains a possible target for a specific DMU in Elo

to improve its performance. The progress measure here is a level-by-level improvement. For
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Table 1 Summary statistics of inputs and outputs in 2001

Variables Mean Min Max Standard deviation

Inputs

Capital stock (100 million RMB) 15017.5 1235.4 49078 12091.5

Number of employed persons
(10,000 persons)

2019.7 124.6 5517 1443.8

Desirable output

Regional GDP (100 million RMB) 3444.0 137.7 10648 2762.6

Undesirable outputs

Total volume of industrial sulphur
dioxide (SO2) emissions (tons)

484979.4 734.0 1408716 356230.7

Total volume of waste water
discharged (10,000 tons)

65355.0 1114.0 271029 57204.4

Total volume of industrial solid waste
produced (10,000 tons)

2865.8 18.0 8847 2271.2

a larger G∗
q (g), more progress is expected for DMUq . Thus, a smaller value of G∗

q (g) is
preferred, which implies that the DMU is closer to an upper level.

2.3 Data selection

A dataset for 31 regions in China (27 provinces and 4 municipalities) is established from the
China Statistical Yearbook for the year 2001. Two inputs, one desirable output, and three
undesirable outputs are considered into our analysis. The two inputs are the capital stock and
the number of employed persons. The one desirable output is regional GDP. The values of
the monetary units, e.g., GDP and the capital stock, are in current prices. Three undesirable
outputs of the emissions are: the total volume of sulfur dioxide emissions (a proxy for air
pollution), the total volume of waste water discharged (a proxy for water pollution), and total
volume of industrial solid waste produced (a proxy for solid waste). These variables are also
reported in the China Statistical Yearbook. The data for the capital stock cannot be retrieved
directly from the China Statistical Yearbook. The regional capital stock is therefore calcu-
lated by summing the capital stock in the previous year and capital formation in the current
year less depreciation in the current year. We obtain the initial capital stock (the previous
year’s data or the year 2000) from a study by Li (2003). All the figures are based on 2001
prices. Summary statistics of these inputs and outputs for the regions are shown in Table 1.

3 Empirical results and analysis

In this section the results of context-dependent DEA for evaluating regional sustainable devel-
opment in China are presented by incorporating stratification DEA, as well as the attractive-
ness measure and progress measure. Section 3.1 introduces previous studies related to the
identification of a bunch of efficient DMUs and the process for constructing stratifications
with context-dependent DEA. Section 3.2 then reports the results of estimating the attractive-
ness/progress measures for the 31 regions in China, respectively. More detailed discussions
from the perspectives of regional position and national resource distribution problems that
correspond to the results are also provided.
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3.1 Constructing stratifications for regions

After identifying the efficient DMU, the role it plays in being benchmarked by other inef-
ficient DMUs is also important. Previously, various efforts have been devoted to develop-
ing methods without a priori information to identify the benchmarks in DEA. One way of
accomplishing such a task is to count the number of times a particular efficient DMU acts
as a reference DMU (Smith and Mayston 1987). Andersen and Petersen (1993) presented
a procedure referred to as the super-efficiency CCR model for ranking efficient units. Their
basic idea is to compare the DMU under evaluation with all other DMUs in the sample, i.e.,
the DMU itself is excluded. Seiford and Zhu (1999) offered a super-efficiency BCC model in
which increasing, constant, and decreasing returns to scale are allowed. The model is based
on a reference technology constructed from all other DMUs.

Li and Reeves (1999) proposed a multiple criteria approach that is referred to as Multiple
Criteria DEA and which focuses on solving two key problems associated with a lack of dis-
crimination and inappropriate weighting schemes. Tone (2002) described a super-efficiency
model that used the slacks-based measure of efficiency. To summarize the above previous
studies, the benchmarks derived from the proposed methods above can possibly become
inimitable or unattainable goals for the inefficient DMUs, at least immediately. A series of
step-by-step learning benchmarks for an inefficient DMU to learn and gradually improve its
operating efficiency seem to be more realistic and reasonable. Context-dependent DEA just
seems to fit this research interest.

By using the stratification DEA model as shown in Eq. 2, the five levels of efficient frontiers
are constructed as shown in Table 2. Shanghai, Hunan, Guangdong, and Tibet are revealed
to be efficient while running the 1st-Stratification DEA, and these four regions are marked
as ‘level 1’ regions. After eliminating the level 1 regions, we run the DEA again, and select
6 regions (Beijing, Tianjin, Hebei, Fujian, Guangxi, and Qinghai), revealing the TE of 1 as
level 2 regions. This process continues until we get to the level 5 regions. Frontiers with five
levels are therefore constructed. Based on Morita et al. (2005) suggestion, the benchmark
targets of the inefficient level 5 regions should take the level 4 regions as initial targets to
improve efficiency in the first stage. In the second stage, after the level 5 regions achieve the
fourth-level efficient frontier, those at level 5 can use the third-level efficient frontier as a
secondary benchmark for improvement and so on in order to proceed stage by stage. We refer
to this composition of learning tracks for regions at different levels as ‘benchmark-learning
contours,’ where it is recommended that underperforming regions set their current learning
target as those who are one-step higher than their own stratification.

3.2 Attractiveness and progress measures for regions

We now turn to the attractiveness and progress measures (Eqs. 3 and 4) for the 31 regions when
different efficient frontiers are chosen as evaluation contexts. Table 3 gives the results. The
number to the right of each score indicates the ranking position based on the attractiveness
measure and the progress measure. For instance, the symbol ‘ 1©’ represents the top-ranked
position with distinguished performance in the case of the attractiveness measure. In regard to
the progress measure, the symbol ‘ 1©’ indicates that the DMU is the closest to the uppermost
frontier within the same level.

The attractiveness measure for each region from level 1 to level 4 is the italics data. The
attractiveness measure can be used to identify DMUs that have outstanding performance and
can differentiate the performances of efficient DMUs at certain frontier levels. Each region
is measured based on levels that are worse than where it is located. In other words, regions
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Table 3 Attractiveness and progress scores for the regions at the different evaluation contexts

Level Region Background (efficient frontier)

Second-level Third-level Fourth-level Fifth-level

1st-degreea 2nd-degreea 3rd-degreea 4th-degreea

Level 1 Shanghai 1.582 2© 2.752 1© 3.551 2© 5.038 2©
Hunan 1.158 3© 1.230 3© 1.332 3© 1.401 4©
Guangdong 1.140 4© 1.219 4© 1.331 4© 1.893 3©
Tibet 2.008 1© 2.534 2© 9.974 1© 18.241 1©
Region First-level Third-level Fourth-level Fifth-level

1st-degreeb 1st-degreea 2nd-degreea 3rd-degreea

Level 2 Beijing 1.170 5© 1.831 2© 2.253 3© 3.478 3©
Tianjin 1.024 1© 1.946 1© 2.837 2© 4.955 2©
Hebei 1.118 4© 1.064 6© 1.153 6© 1.232 6©
Fujian 1.046 2© 1.121 4© 1.260 4© 1.786 4©
Guangxi 1.112 3© 1.108 5© 1.166 5© 1.510 5©
Qinghai 1.178 6© 1.292 3© 4.967 1© 9.203 1©
Region First-level Second-level Fourth-level Fifth-level

1st-degreeb 2nd-degreeb 1st-degreea 2nd-degreea

Level 3 Liaoning 1.764 7© 1.588 8© 1.362 4© 1.934 4©
Heilongjiang 1.131 1© 1.022 1© 1.112 7© 1.538 7©
Jiangsu 1.195 2© 1.092 5© 1.322 5© 1.880 5©
Zhejiang 1.196 3© 1.108 6© 1.208 6© 1.715 6©
Hainan 1.268 5© 1.057 3© 3.635 2© 6.623 2©
Sichuan 1.196 3© 1.038 2© 1.108 8© 1.137 8©
Ningxia 1.287 6© 1.080 4© 4.306 1© 7.471 1©
Xinjiang 1.250 4© 1.137 7© 1.656 3© 2.944 3©
Region First-level Second-level Third-level Fifth-level

1st-degreeb 2nd-degreeb 3rd-degreeb 1st-degreea

Level 4 Inner Mongolia 1.400 7© 1.249 7© 1.193 7© 1.785 4©
Jilin 1.245 1© 1.109 2© 1.049 2© 1.887 3©
Anhui 1.287 5© 1.139 5© 1.076 5© 1.056 8©
Shandong 1.283 4© 1.128 4© 1.071 4© 1.424 5©
Hubei 1.256 3© 1.119 3© 1.079 6© 1.340 6©
Guizhou 1.313 6© 1.155 6© 1.061 3© 2.243 1©
Yunnan 1.246 2© 1.105 1© 1.024 1© 1.311 7©
Gansu 1.543 8© 1.356 8© 1.265 8© 2.217 2©
Region First-level Second-level Third-level Fourth-level

1st-degreeb 2nd-degreeb 3rd-degreeb 4th-degreeb

Level 5 Shaanxi 1.693 3© 1.515 3© 1.450 3© 1.302 3©
Jiangxi 1.279 1© 1.146 1© 1.092 1© 1.021 1©
Henan 1.344 2© 1.175 2© 1.123 2© 1.022 2©
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Table 3 Continued

Region First-level Second-level Third-level Fourth-level
1st-degreeb 2nd-degreeb 3rd-degreeb 4th-degreeb

Chongqing 2.165 5© 1.890 5© 1.829 5© 1.504 5©
Shaanxi 1.812 4© 1.618 4© 1.542 4© 1.422 4©

Ranks are given in the circle on the right
a This represents the attractiveness measure
b This represents the progress measure

are evaluated several times as the background to which they refer is changed. For example,
when the second level is chosen as the relevant evaluation context, Tibet at level 1 is the
best region owing to its receiving the greatest attractiveness score of 2.008. The regions at
level 1 are ranked in the order of Tibet, Shanghai, Hunan, and Guangdong. This implies that
Tibet performs the best in terms of handling economic growth and environmental awareness.
Furthermore, we find that Tibet also ranks consistently in first position under different evalu-
ation contexts, except that it ranks in second position at the third-level. The results also show
that Shanghai at the first level is one of four municipalities, indicating that this city is more
competitive than the other municipalities in terms of balancing economic and environmental
development. When the third level is chosen as the evaluation context, Shanghai is the best
region of all other regions, followed by Tibet. This result also reinforces the view that the
performance of regions is dependent on their respective evaluation backgrounds (Zhu 2003).

The progress measures for each region from level 2 to level 5 are presented in the cells
that are not italics in Table 3. A region’s ‘progress’ is regarded in terms of how substantially
it needs to improve its outputs, compared to an upper ladder frontier. For an inefficient DMU,
the larger the value of the progress measure that is evaluated, the more effort is needed for
it to improve. In regard to the progress measure, when the first level is chosen as the eval-
uation context, Chongqing performs the worst among the regions in level 5 because it has
the largest progress score of 2.165. The regions at the fifth level can be ranked using such
a progress measure. When the second level is chosen as the evaluation context, Chongqing
is still the worst region at the fifth level. Chongqing consistently ranks the worst, regardless
of the evaluation context chosen. This implies that Chongqing urgently needs to improve its
performance both in terms of economic development and environmental healthiness among
the 31 regions in China.

3.3 Regional position in stratification

According to Seiford and Zhu (2003), for regions that are not located on the first or last level
of an efficient frontier, we can characterize their performances based on their attractiveness
and progress scores by means of a decision matrix that is used pervasively in management
studies. By taking the regions listed at the second level, for example, each region is clas-
sified into a zone consisting of a 2×2 matrix by examining (1) whether the attractiveness
score is greater than or less than 1.50, and (2) whether the progress score is greater than or
smaller than 1.10. The cutting edge is quite arbitrary, but the goal is to group regions into
zones of equal numbers as shown in Fig. 2. Within the same stratification, a good performer
exhibits relatively high attractiveness and low progress, and an underperforming one shows
relatively low attractiveness and high progress. High progress indicates that the region needs
to improve its outputs substantially, and high attractiveness indicates that the region has more
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Fig. 2 Attractiveness/progress scores for the regions at ‘Level 2’

of a competitive advantage than the other regions. Regions are split into four groups plotted
respectively in the zones HH, HL, LL, and LH. The regions in each zone are summarized as
follows:

Zone LH (Low-Progress/High-Attractiveness): The Tianjin region enjoys low progress and
high attractiveness scores. The findings show that the Tianjin region located in Zone LH
has more of a competitive advantage than the other ones at the second level. In regard to
sustainable development, Tianjin has attained a better position in this stratification.

Zone HH (High-Progress/High-Attractiveness): The region here experiences higher progress
and attractiveness scores, which is the region why the Beijing region is included. This implies
that Beijing is now competitive in terms of balancing economic and environmental develop-
ment. However, this region still needs to place more emphasis on activities that are geared
toward improving its outputs substantially.

Zone LL (Low-Progress/Low-Attractiveness): Fujian has lower progress and lower attrac-
tiveness scores. This suggests that Fujian does well in terms of allocating its resources toward
sustainable development. However, this region still needs to formulate a short-term or mid-
dle-term plan to enhance its competitive advantage in order to move up to Zone LH.

Zone HL (High-Progress/Low-Attractiveness): The regions here have experienced higher
progress scores but lower attractiveness scores, for which the Qinghai, Hebei, and Guangxi
regions are included. It is suggested that the Qinghai, Hebei and Guangxi regions should
step up their efforts to upgrade their learning capabilities for effective outcomes such as
enhancing the activities of operational management and relocating the resources between
inputs and outputs. Furthermore, these regions need to draw up a short-term or middle-term
plan to enhance their competitive advantage.

3.4 Relating stratifications to the K/L ratio

After constructing various levels for regional sustainable development in China, one may
feel curious about the extent to which the stratification reflects the capital/employment ratio
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Fig. 3 Average K/L ratios with level of regions

of each region, since the capital stock per worker plays a major role in increasing GDP as
well as pollution. The capital/employment ratio (abbreviated as the K/L ratio hereafter) is
computed by dividing the total capital stock by the total number of employed persons. We
find an obvious relationship between the K/L ratio with various levels of regions as shown
in Fig. 3. For regions in level 1, the average K/L ratio is the highest among the five. Those
regions in level 4 and 5 have the smallest K/L ratios, implying their straitened circumstances
in terms of achieving sustainable development.

The empirical results shown above reflect one of the important issues for the disparities in
China, namely, the unequally distributed capital across regions, and the gap increases around
three times from the largest to the smallest. The K/L ratio, to some extent, can be deemed
to be a proxy for technological development. While regions classified in level 1 are those
that create wealth with less pollution by using advanced technology and equipment, those
regions in levels 4 and 5 cannot afford to engage in production with cleaner techniques. The
pollution that these regions emit thus increases at a faster rate than GDP growth. However, a
system that allocates the costs to the polluter will be hard to introduce and enforce in those
regions with a low K/L ratio.

4 Conclusions

As the largest developing country in the world, China has been sacrificing its environment to
develop its economy. People in China are suffering from various forms of environmental deg-
radation, including air, water, and solid waste pollution. China’s economy is also affected by
such environmental pollution and degradation. A balance between sustainable development
and all-out economic growth has to be continuously achieved. However, the dilemma in terms
of striking a balance between economic growth and the environment in China is more com-
plicated since there is a diversity of geographical and economic conditions among its regions.
This study thus attempts to provide an in-depth analysis of China’s sustainable development
that covers economic performance as well as environmental degradation, including air, water
and solid waste, from a regional perspective.

This study presents a context-dependent DEA model which measures the relative attrac-
tiveness and progress of China’s various regions with applications to regional sustainable
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development. The attractiveness measure estimates the competitiveness a region possesses,
while the progress measure estimates to what extent a region needs to improve. Thirty-one
regions in China are stratified into different levels of efficient frontiers. Our main conclu-
sions may be summarized as follows. First, five levels of efficient frontiers are constructed by
means of a DEA context-dependent technique. The series ladders formed by the regions are
referred to as ‘benchmark-learning contours,’ where it is recommended that underperform-
ing regions set their current learning target at a level that is one step higher than their own
stratification. Secondly, the attractiveness measures and progress measures for each region
are computed for different stratifications. Each region’s performance changes depending on
the evaluation context considered. Thirdly, the decision matrix covering the attractiveness
and progress scores is constructed to help the regions position themselves at the same level.
Fourthly, we find an obvious relationship between the K/L ratio with various levels of regions.
For regions in level 1, the average K/L ratio is the highest among the five. Those regions in
levels 4 and 5 have the smallest K/L ratios. This is interpreted as meaning that regions with a
higher K/L ratio are generating wealth with less pollution by using advanced technology and
equipment. However, regions with a lower K/L ratio cannot afford to engage in production
with a cleaner technique.

In investigating the causes of the differences between the stratifications constructed by
this study, we have pointed out one reason, which is that the amount of capital per worker
matters. Other reasons may have to do with the economic or geographical conditions, such
as industry background, the distance to major markets, transportation costs, domestic and
international assistance in financing, local environmental policy reforms, and education, etc.
We leave these interesting issues to future studies. In regard to its development over the
longer term, China indeed needs to ‘grow and be green,’ especially at the regional level. The
context-dependent DEA used in this research can provide new direction while evaluating
a region’s performance in other cases by focusing on the changes in performance as the
reference context varies.
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