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Abstract. The main goal of both Bayesian model selection and classical hypotheses testing
is to make inferences with respect to the state of affairs in a population of interest. The main
differences between both approaches are the explicit use of prior information by Bayesians,
and the explicit use of null distributions by the classicists. Formalization of prior information
in prior distributions is often difficult. In this paper two practical approaches (encompassing
priors and training data) to specify prior distributions will be presented. The computation of
null distributions is relatively easy. However, as will be illustrated, a straightforward interpre-
tation of the resulting p-values is not always easy. Bayesian model selection can be used to
compute posterior probabilities for each of a number of competing models. This provides an
alternative for the currently prevalent testing of hypotheses using p-values. Both approaches
will be compared and illustrated using case studies. Each case study fits in the framework of
the normal linear model, that is, analysis of variance and multiple regression.

Key words: Bayesian model selection, encompassing prior, posterior model probability,
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1. An Introduction to Hypothesis Testing and Bayesian Model Selection

Testing of hypotheses using p-values (see Bayarri and Berger, 2000, for a
comprehensive overview) is a statistical tool that is used quite often in psy-
chological research. The p-value can formally be defined as:

P(T (Y)≥ t (y) |H0), (1)

where y denotes the observed data, and t (y) a test statistic (e.g. the stu-
dent t-test or Pearson chi-square statistic) computed for the observed data.
Furthermore, Y denotes a data matrix from the null-population described
by the null-hypothesis H0, and T (Y) the test statistic computed for this
data matrix. The probability in Equation (1) is computed over the distri-
bution of T (Y) under H0. This implies that the p-value represents the pro-
portion of T (Y) resulting from H0 that is larger than t (y). According to
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a popular rule, a p-value smaller than 0.05 is a strong indication that H0

should be rejected. The motivation for the latter (although the choice of
the reference value 0.05 is arbitrary) is that small p-values imply that t (y)

is rarely observed if H0 is true. Usually, the specification of the alternative
hypothesis is rather vague, that is, not H0. However, as will be illustrated
later, H0 can also be tested against a specific H1. The latter is accomplished
using a test statistic that has power against the alternative hypothesis of
interest.

Developments in Bayesian statistics (see Kass and Raftery, 1995, for
a comprehensive overview and references) have rendered a framework for
model selection that can be used as an alternative for the testing of
hypotheses. Let Mm for m ∈ {0,1} denote the null and alternative model,
respectively. Bayes theorem states that

P(Mm|y)= P(y|Mm)P (Mm)

P (|y)
, (2)

where,

P(|y)=
∑

m

P (y|Mm)P (Mm), (3)

P(Mm|y) is the posterior probability, that is after observing the data, of
model m, P(Mm) is the prior probability, that is before observing the data,
of model m, and P(y|Mm) is the density of the data for model Mm.

Posterior model probabilities can be used to compare both nested and
non-nested models, and in doing so incorporate the complexity of a model
(Ockham’s razor). The posterior probabilities of the null and alternative
model constitute an alternative for the p-value resulting from testing a
hypothesis. A difference between p-values and posterior probabilities is that
the latter are computed for all models under consideration, and not only
the null-model. This leads to a straightforward interpretation of posterior
probabilities. Two models with (about) the same posterior probability, are
(after observing the data) about equally probable. However, if one model
has a posterior probability of 0.90 and the other of 0.10, the first is pre-
ferred to the latter.

‘Level alpha’ and ‘level beta’ are classical terms used to denote the
probability of an error of the first and second kind, respectively, that is,
the error probabilities before observing the data. Posterior probabilities can
be seen as conditional error probabilities (Cohen, 1994; Sellke et al., 2001),
that is, after observing the data. The conditional error of the first kind is
the probability that M0 is incorrectly rejected after observing the data. The
latter is equal to the probability of M0 after observing the data. Similarly
P(M1|y) can be interpreted as the conditional error of the second kind.
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The goal of this paper is to introduce Bayesian model selection, to
compare it to hypothesis testing, and to give illustrations of its use in
psychological research. In the next section two simple hypotheses and
models are used to provide a first comparison of hypothesis testing and
model selection. In the two sections that follow, both approaches will be
illustrated and compared in the context of one-way analysis of variance fol-
lowed by pairwise comparisons of means, and, selection of the best of a
number of non-nested regression models. The paper will be concluded with
a discussion.

2. A First Comparison of Hypothesis Testing and Bayesian Model Selection

Consider the data y = [0,0.5,1.5,2] i.e. the sample size N is four. Assume
that the data come from a normal population with variance σ 2 = 1 and
unknown mean µ. The common null hypothesis is H0 : µ0 = 0 the corre-
sponding alternative hypothesis is H1 :µ1 �=0. The null and alternative mod-
els are M0 :µ0 =0 and M1 :µ1 �=0. The null hypothesis can be tested using
the Z-test with t (y)= y−µ0

σ/
√

N
, where y denotes the sample average of y. The

resulting (two-sided) p-value is 0.048, and indicates that the observed value
of the test statistic is not very common if H0 is true. Frick (1996) and
Wainer (1999) present examples where it is sufficient to determine whether
data are consistent with H0 or not, and, where the specification of H1

beyond ‘not H0’ is irrelevant. If this is all a researcher wants to know,
p-values are an excellent tool to provide answers to the research questions.
In fact, in this situation posterior probabilities are not an alternative for
the use of p-values, because specification of H1 beyond ‘not H0’ is neces-
sary. Stated otherwise, the (prior) distribution of µ1 under H1 has to be
specified in order to be able to compute posterior probabilities (this topic
will return in Sections 3 and 4).

Often researchers are not satisfied with the p-value based conclusion
that the observed data are not in agreement with the null-population. They
also want to know which of the many alternatives for which µ1 �=0 are in
the ball park. Implicitly, they want to know whether the distance between
µ1 and µ0 is so large that it is relevant, that is, interesting from a prac-
tical or scientific point of view. Since p-values only indicate whether data
are likely given H0 or not (an illustration follows below), effect size mea-
sures are usually used as a tool to translate the p-value based conclusion
‘not H0’ into the research conclusion relevant H1. This can be seen as an
informal (it involves a subjective evaluation of the effect size) attempt to
quantify the evidence that the data come from a relevant H1. In Section 3.4
it will be shown that the set of models can contain formal counterparts of
the informal relevant H1.
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The following situation illustrates that p-values only indicate whether or
not data are likely given H0, and that posterior probabilities consider both
M0 and M1. The data and the null model and hypothesis are the same as
before. However, H1 :µ1 =2 and M1 :µ1 =2. A test statistic that has power
against the alternative hypothesis is the likelihood ratio statistic

t (y)=−2 log
P(y|H0)

P (y|H1)
, (4)

where P(y |Hm)=P(y |Mm) as given in Equation (5). Under H0, T (Y ) has
a N(−16,64) null distribution. For the data at hand t (y) = 0, the corre-
sponding one-sided p-value (1) is 0.024. The choice for a one-sided test
is motivated by the specification of the alternative hypothesis: it would be
awkward to choose the alternative if y is, for example, −2, which in a
two-sided setup would lead to a small p-value.

Using (2) the posterior model probabilities can be computed. For the
setup at hand

P(y |Mm)=
4∏

i=1

1√
2π

exp−1
2
(yi −µm)2. (5)

The necessity to specify prior model probabilities is a step typical for
Bayesian model selection. One option is to use a non-informative prior:
P(M1)=P(M2)=0.5. The implication is that differences in posterior model
probabilities are caused by differences in the degree to which the data sup-
port the model, that is, P(y | Mm) for m ∈ {0,1}. The resulting posterior
probabilities are 0.5 for both the null and the alternative model i.e. after
observing the data both models are equally likely.

The conclusions obtained using p-values and posterior probabilities are
strikingly different. Loosely speaking the first rejects H0, while the latter
does not prefer M0 over M1. Since y =1 is nicely centered between the pop-
ulation means of the null and alternative hypothesis, the conclusion based
on the posterior probabilities is correct. This simple example illustrates a
drawback of p-values: the size of a p-value may point to H1, not because
the data are likely given H1, but because the data are unlikely given H0.
This pitfall can to some extend be avoided if the evaluation of a p-value
includes an evaluation of the effect size (here y = 1) in relation to what is
specified by H0 and H1. However, although the resulting approach is useful
and valuable, it is not longer a formal testing procedure since it includes
a subjective evaluation of the effect size. Posterior probabilities are com-
puted for each model in the set of models under consideration. Using pos-
terior probabilities the pitfall that ‘not H0’ does not necessarily imply H1

is avoided.
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The computation of posterior probabilities is not completely unpro-
blematic. The bottle-neck is the specification of prior distributions (for
each model) for the parameters that are not fixed at a specific value. The
main criticism is that these specifications are subjective, researcher depen-
dent, and thus, that the conclusions are subjective and researcher depen-
dent (Sober, 2002, pp. 22–24; Howson, 2002, pp. 53–61). In the next two
sections two approaches to obtain prior distributions that are not based
on (subjective) prior knowledge will be outlined. The first approach will
be illustrated using a one-way analysis of variance followed by pairwise
comparisons of means. Encompassing priors that are non-informative with
respect to the untransformed parameters of the one-way model will be for-
mulated. The second approach will be illustrated using the selection of the
best of a number of non-nested regression models. Here priors will be for-
mulated using training data. Using these examples it will be shown that
Bayesian model selection is a viable alternative for hypotheses testing.

3. Encompassing Priors

3.1. analysis of variance: data, hypotheses and p-values

One way analysis of variance is often used in psychological research. A
common design is the situation where a researcher has a control group (C),
and two experimental groups (E1 and E2) that differ in the ‘treatment’ that
has been received. If the persons participating in the experiment have been
randomized over the three groups, the dependent variable can be the out-
come of a test given to the persons after the treatment, or, in a design with
a pre-test and a post-test, the gain-score.

In this section a simple one way analysis of variance will be executed.
Hypotheses will be formulated and tested, and the resulting p-values will
be discussed. In the next section, models will be formulated, and poster-
ior probabilities computed and discussed. The data that will be analyzed
come from Toothaker (1993, p. 3). He describes an experiment from devel-
opmental psychology: “A total of 42 first-grade students were randomly
assigned to one of three groups, n = 14 per group. Subjects in the first
group were informed that there was another child alone in the next room
who had been warned not to climb on a chair. This group was called indi-
rect responsibility (C). In addition to the story told to the subjects in (C),
subjects in the second group were informed that when the adult left, they
were in charge and to take care of anything that happened. This group was
called direct responsibility one (E1). Subjects started a simple task, and the
adult left the room. Next, there was a loud crash from the next room and
a short time of crying and sobbing. In the third group, direct responsibility
two (E2), subjects had the same instructions as (E1), but there were also
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Table I. The one way analysis of
variance data

Data C E1 E2

3 3 4
2 5 3
1 4 5
4 3 5
3 5 3
2 3 3
3 4 4
4 3 4
4 3 4
2 5 4
2 5 5
3 4 2
1 1 3
2 3 1

Mean 2.57 3.64 3.57
SD 1.02 1.15 1.15

calls for help. From behind a one-way mirror, two raters gave ratings on
helping behavior. The scale was from 1 (no help) to 5 (went to the next
room).” The data from this experiment and per group the sample mean
and standard deviation are presented in Table I.

Hypotheses testing usually consists of two steps. In the first step H0 :
µC = µE1 = µE2 is tested. In the second step three pairwise comparisons
are tested: H0a : µC =µE1, H0b : µC =µE2 and H0c : µE1 =µE2. Since in the
second step three hypotheses are tested, the risk of an error of the first
kind (incorrectly rejecting one or more of the pairwise null hypotheses) is
larger than level alpha. A wide variety of procedures has been developed
to control the ‘family wise error rate’ that is, the probability of one or
more errors of the first kind. The interested reader is referred to Toothaker
(1993) and Ramsey (2002) for a comprehensive overview. Here the Hayter
modification of Fisher’s LSD procedure (Ramsey 2002) will be used. This
is a protected procedure i.e. the pairwise comparisons are only tested if H0

is significant.
The p-value of H0 (obtained using a F -test for the equality of indepen-

dent means) is smaller than the commonly used alpha-level of 0.05 (see,
Table II). Stated otherwise, it is unlikely that the data result from a pop-
ulation described by H0. As illustrated in Section 2, the conclusion ‘not
H0’ does not necessarily imply H1 or ‘relevant H1’. However, inspection of
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Table II. P -values and posterior probabilities

Hypothesis p-value Model Post. prob. Non sharp

H0 0.025 M0 0.028 0.051
H0a 0.015 M1a 0.025 0.045
H0b 0.022 M1b 0.037 0.073
H0c 0.866 M1c 0.610 0.680

M2 0.301 0.151

the means in Table I shows that µC is quite (subjective evaluation of the
authors) different from the other means (about 1 on a scale running from
1 to 5). For the example at hand it seems save to conclude that ‘not H0’
implies a ‘relevant H1’.

Usually, a significant H0 is followed by pairwise comparisons of the
means. The p-values obtained using the Hayter modification of Fisher’s
LSD procedure are displayed in Table II. As can be seen the mean of
the control group is significantly different from the means of both exper-
imental groups. The means of the experimental groups are not significantly
different. It seems save to conclude that the mean of the control group is
smaller (both significantly and relevantly) than the means of both experi-
mental groups.

Pairwise comparisons among means may lead to inconsistent results
(Dayton, 2003). Consider, for example, the situation where H0a,H0b and
H0c, have p-values of 0.045, 0.055 and 0.70, respectively. This results in a
set of conclusions that can not all be true: µC �=µE1, µC =µE2 and µE1 =
µE2. There are two drawbacks to the use of p-values (that, as will be illus-
trated in the next section, are not shared by posterior probabilities) that
make it hard to properly deal with inconsistencies: (i) testing non-nested
hypotheses is an underdeveloped area of statistics; and, (ii) the use of a
fixed alpha-level.

To elaborate on (i). Suppose, that the overall F -test indicates that H0

is not true, and that the pairwise comparisons indicate that not all the
means are different (the situation described in the previous paragraph).
This leaves the question which pair of means is the same. However, this
question cannot be answered using p-values: none of H0a,H0b and H0c

is the obvious null hypothesis; and, comparison of non-nested hypotheses
using p-values is not a well-developed area of statistics. As will be illus-
trated in the next section, comparison of non-nested models using posterior
probabilities is straightforward and easy.

To elaborate on (ii). The wish to control the probability of an error of
the first kind at a level of 5% leads to the strict rule that only p-values
smaller than 0.05 lead to a rejection of the corresponding null hypothesis.
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As illustrated above, this may lead to inconsistent results. Common sense
dictates that p-values of 0.045 and 0.055 (or, if you like, 0.049 and 0.051)
should be evaluated in the same way. However, in practice many researchers
(and journals) are ‘happy’ with 0.045, and ‘disappointed’ with 0.055. This
problem can be avoided if researchers are willing to trade control of the
error of the first kind before analysis of the data, for conditional error prob-
abilities, that is, the probability of wrong decisions after observing the data.
As will be illustrated in the next section, the latter can be achieved using
posterior probabilities without needing an arbitrary criterion like ‘0.05’.

3.2. model selection, encompassing priors and posterior probabilities

Model selection usually proceeds in three steps. First, all the models that
are of interest have to be specified. For the situation at hand there are
five models (note, that a comma implies that the preceding or succeeding
parameter is not equal to one of the other parameters):

M0 :µC =µE1 =µE2

M1a :µC =µE1,µE2 M1b :µC =µE2,µE1 M1c :µC,µE1 =µE2

M2 :µC,µE1,µE2.

The second step in model selection is the specification of prior
probabilities for each of the models. As is clear from Equation (2) the size
of the posterior model probabilities is influenced by the prior model prob-
abilities. In the examples in this paper, prior probabilities are chosen to be
the same for each model. The implication is that differences in posterior
model probabilities are caused by differences in the degree to which the
data support the model, that is, P(y |Mm), for m∈{0,1a,1b,1c,2}.

If a model contains unknown parameters the prior distribution of the
unknown parameters has to be specified. This is the third step in model
selection. It is necessary because if not all parameters are fixed at a spe-
cific value, P(y | Mm) can only be computed if the prior distribution g(·)
of the model parameters is specified:

P(y |Mm)=
∫

θ

P(y | θ)g(θ |Mm)dθ . (6)

Note that, θ denotes the parameters of the model at hand, that is, the
three population means and the within group variance σ 2, and that

P(y |µC,µE1,µE2, σ
2)=

∏

A=C,E1,E2

∏

i∈A

1√
2πσ

exp
1
2

(yi −µA)2

σ 2
. (7)

Looking at (6), it is clear that the posterior model probabilities (2)
depend on the prior distributions of the parameters for each model. In the
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sequel it will be explained how prior distributions are chosen in the encom-
passing prior approach.

Specification of prior distributions is the bottle-neck of Bayesian model
selection. The use of subjective prior distributions is often criticized
because the resulting inferences are also subjective. See, for example, Sober
(2002, pp. 22–24) and Howson (2002, pp. 53–61) for interesting discussions.
However, irrespective of whether subjective inference is appreciated or not,
the specification of subjective prior distributions is far from easy. Con-
sider, for example, M2. It is rather common (see for example et al. 1995,
pp. 71–76) to use independent normal priors for the population means, and
a scaled inverse chi-square prior for the within group variance. However,
specifying the means and variances of the normal priors, and the scale and
degrees of freedom of the scaled inverse chi-square prior such that these
priors represent a researchers subjective prior knowledge, is a task that is
beyond most researchers (and statisticians).

Both the criticism and the specification problem motivated a search
for prior distributions that are not subjective and easily specified. The
basic idea of encompassing priors is to specify a distribution that is
non-informative (vague, diffuse) with respect to the untransformed means
and variance for the encompassing model, that is, the model within which
all other models are nested. Subsequently, the priors for the nested mod-
els are derived from the encompassing prior. For the application at hand,
M2 is the encompassing model. It contains four parameters: three popula-
tion means and a within group variance. The other models can be obtained
via restrictions on the parameter space of M2 and are thus nested within
this encompassing model. Using independent distributions for each model
parameter, the prior distribution of M2 can be denoted by g(µC |M2)g(µE1 |
M2)g(µE2 |M2)g(σ 2 |M2). The prior distributions of the nested models fol-
low directly from this encompassing prior:

g(µC,µE1,µE2, σ
2 |Mm)=

g(µC |M2)g(µE1 |M2)g(µE2 |M2)g(σ 2 |M2)IMm∫
g(µC |M2)g(µE1 |M2)g(µE2 |M2)g(σ 2 |M2)IMm

dµC,µE1,µE2, σ 2
,

(8)

where the indicator function I has the value 1 if the argument is true, that
is, if the parameter values are in accordance with the restrictions imposed
by model Mm, and 0 otherwise.

Using the encompassing prior approach it can be shown that for specific
models and diffuse encompassing priors, the model selection is hardly
affected by the choice of the prior (Klugkist et al., 2005). This is how-
ever not the case for the models considered in this section. Although the
exact functional form of the encompassing prior is rather irrelevant, the
scale factor has a large effect on the answer. To choose the scale factor for
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the encompassing prior, the following criterion is used: the prior should not
exclude regions of the parameter space with substantial posterior probabil-
ity, but it should also not include too many values that are completely out
of range for the data at hand. Specification of the encompassing prior is
often facilitated if the data are taken into consideration. As can be seen in
Table I, the response format is such that all data are in the interval 1–5.
This implies that the means of the control and both experimental groups
also have to be in this interval. Furthermore, with this response format, σ 2

can not be larger than 4 (if half of the persons in a group responds 1, and
the other half 5). Consequently, non-informative priors for the means and
variance are obtained if g(µC | M2) = g(µE1 | M2) = g(µE2 | M2) = U [1,5]
and g(σ 2 |M2)=U [0,4], where U denotes a uniform distribution with lower
and upper bound as indicated. The resulting encompassing prior distribu-
tion is proper, the same holds for the prior distributions of the other mod-
els that can be derived from the encompassing prior using Equation (8). If
encompassing priors are used, Equation (6) is the likelihood P(y | θ) aver-
aged over intervals specified by the prior distributions. Stated otherwise, the
posterior probabilities are ‘averaged likelihoods’ transformed to probabili-
ties using Bayes theorem.

After specification of the set of models, prior probabilities and the
encompassing prior distribution, the posterior probability of each model
can be computed using Equation (2) with P(y | Mm) as specified in (6).
Due to the integration involved, the computation of (6) is not always
easy. The interested reader is referred to Carlin and Chib (1995) and Kass
and Raftery (1995) for an inventory of methods for the computation of
(6). Newton and Raftery (1994) propose to approximate the integral using
importance sampling based on a sample of parameter vectors from both
the posterior distribution of the model at hand, and, an imaginary prior
distribution. Their method is used for all analyzes executed in this section.

The posterior probabilities for the models under consideration in the
example at hand are given in the fourth column of Table II. Models M0,
M1a and M1b have small posterior probabilities, that is, after observing the
data it is rather unlikely that these models are true. The posterior proba-
bilities of models M1c and M2 indicate that there is a posterior probabil-
ity of about 0.9 (0.61 + 0.30) that the mean of the control group differs
from the means of both experimental groups, and, that there is a posterior
probability of about 0.3 that all three means are different.

3.3. a comparison of p-values and posterior probabilities

In this section the limitations of p-values discussed previously will be sum-
marized. It will also be elaborated how these limitations can be overcome
using posterior probabilities.
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1. As indicated in Section 2 a small p-value does not necessarily imply
that H0 has to be rejected in favor of the alternative hypothesis. As
several authors have indicated before, the p-value usually overstates
the amount of evidence against the null hypothesis (Berger and Sellke,
1987; Cohen, 1994). The reason for the latter is that P(T (Y ) > t(y) |
H0) �=P(H0 | y). This phenomenon can also be observed in the exam-
ple at hand. The p-value for testing H0 vs. H1 is 0.025, which is usually
considered to be a substantive amount of evidence against H0. How-
ever, if only M0 and M2 are considered, the posterior probability of
the corresponding model is 0.085 (0.028/(0.028+0.301)), which does not
imply a straightforward rejection of M0.

2. In contrast to p-values, the comparison of non-nested models is not
a problem if posterior probabilities are used. Looking at Table II it is
evident that M1c is superior to M1a and M1b.

3. In contrast to p-values posterior probabilities that differ only slightly in
size are not evaluated differently because of the requirement to adhere
to a criterion (like an alpha-level of 0.05) that has to be fixed before the
analysis. Posterior probabilities can be interpreted as conditional error
probabilities (Cohen, 1994; Sellke et al., 2001). To elaborate on the latter,
consider only M0 and M2. The posterior probabilities if only these two
models are considered are 0.085 and 0.915, respectively. Stated otherwise,
the probability after observing the data that M0 is true is 0.085, that is,
the probability of incorrectly rejecting M0 after observing the data (the
conditional error of the first kind) is 0.085. It is interesting that this prob-
ability is larger than the common level alpha of 0.05. However, since
there is no pre-specified criterion that has to be used to evaluate pos-
terior probabilities, each researcher can make his own decision whether
0.085 is small enough to discard M0.

4. It is relatively easy to define and evaluate models that are relevantly
different from each other using posterior probabilities. In the next sec-
tion this topic will be elaborated and illustrated using the data at hand.

3.4. the nil hypothesis and non-sharp null models

As mentioned before, both Frick (1996) and Wainer (1999) present exam-
ples where it is sufficient to determine whether data are consistent with H0

or not. The null hypotheses they consider are of the kind ‘an average is
zero’ and ‘the difference between two averages is zero’, that is, so called
‘nil-hypotheses’ (Cohen, 1994), or sharp or point null hypotheses (Berger
and Sellke 1987). The examples given by Frick (1996) and Wainer (1999)
are convincing. However, there are also examples where the evaluation of
a sharp H0 does not make sense. Cohen (1994) clearly takes the position
that ‘the difference between two averages’ is never zero, and thus, that it
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is meaningless to test the corresponding null hypothesis. Apparently many
researchers agree with Cohen, because the evaluation of a significant null
hypothesis is often supported by the evaluation of an effect size measure
in order to be able to replace the conclusion H1 by relevant H1.

Model M0 introduced in Section 3.1 could be called a sharp model.
Models M1a, M1b and M1c contain ‘sharp elements’. The criticism on ‘nil-
hypotheses’ also applies to these models. Whether or not M2 is relevantly
better than M0 can only be determined using effect size measures in addi-
tion to the posterior probabilities. However, it also possible to reformulate
these models such that effect sizes are included. All a researcher has to do
is determine which difference between two means is considered to be rele-
vant. Here a difference of 0.4 (which is 10% of the distance of the scale on
which helping behavior is rated) is considered to be relevant. Furthermore,
the prior expectation that helping behavior should increase from C via E1
to E2 is used during the construction of M1a, M1c and M2. Note that M1b

is not in agreement with this prior expectation. This leads to the following
counterparts of the models used sofar:

M0 : |µC −µE1|≤0.4, |µC −µE2|≤0.4, |µE1 −µE2|≤0.4,

M1a : |µC −µE1|≤0.4, µE2 −µC ≥0.4, µE2 −µE1 ≥0.4,

M1b :µE1 −µC ≥0.4, |µC −µE2|≤0.4, µE1 −µE2 ≥0.4,

M1c :µE1 −µC ≥0.4, µE2 −µC ≥0.4, |µE1 −µE2|≤0.4,

M2 :µE1 −µC ≥0.4, µE2 −µC ≥0.4, µE2 −µE1 ≥0.4.

Using Equations (2), (6) and (7) the posterior probabilities of these mod-
els can be computed. Note that, the prior distributions for the parame-
ters of these models can still be derived using Equation (8), even if the
encompassing model itself is no longer part of the models under investiga-
tion. As can be seen in the last column of Table II, model M1c ‘the average
in group C is relevantly different from the averages in groups E1 and E2’
has a higher posterior probability than the counterpart discussed in Sec-
tion 3.2 (one but last column of Table II). Model M2 ‘all the averages are
relevantly different’ has a substantially lower posterior probability. Stated
otherwise, M1c has by far the highest posterior probability, but the other
models can not completely be ruled out.

Giving a difference between two means of more than 0.4 the label
relevant is of course subjective. However, nothing prevents other researchers
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from using a different number. As long as the threshold value used is
reported, the meaning of the corresponding posterior probabilities is clear.
Comparison of hypotheses corresponding to the five models using p-values
can, as far as the authors know, not be found in the literature. The main
problems here are null models where the parameters of interest are not
fixed at zero, and, a test-statistic that has power against the alternative
hypotheses specified. A point of departure to solve these problems might
be developments in testing hypotheses with inequality constraints among
the parameters. The interested reader is referred to Robertson et al. (1988),
who give a comprehensive overview of order restricted inference, that is,
hypotheses that are more informative than the traditional null and alterna-
tive hypotheses.

4. Training Data

4.1. multiple regression

Stevens (1992, pp. 578–585) describes the Sesame street data. These data
contain measurements of the knowledge of body-parts, numbers, forms and
the like, before and after the first year of the television program, for 240
children in the age range between three to five. The research question of
interest in this section is whether knowledge of letters after watching Ses-
ame street for a year is better predicted using knowledge of letters (a topic
that receives a lot of attention in the series) before watching Sesame street,
using the Peabody picture vocabulary test which is not related to topics
presented in Sesame street, or both.

The research question at hand is representative for a class of ques-
tions that is often encountered: is one set of predictors superior to another
set, or, should the sets be combined (see for example Congdon 2001,
pp. 139–142, and Tabachnick and Fidell, 2001, pp. 131–139). The main
results of straightforward multiple regression analyzes are presented in
Table III. Not the whole data matrix was used, but N = 122 randomly
selected children. This part of the data matrix will subsequently be called
the calibration sample. Irrespective of the model used, all predictors have
a positive relationship with knowledge of numbers after watching Sesame
street for a year. The models with one predictor explain, 34% (Letters) and
27% (Peabody) of the variation of the dependent variable, the model with
two predictors explains 43%. For each model the null hypothesis that the
predictors can not be used to predict the dependent variable is rejected
(each p-value is 0.00).

Two questions remain: are both one predictor models about equally
good, or, is one better than the other; and, is the two predictor model
better than both one predictor models, or, is the increase in explained
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Table III. Analyzing three models using multiple
regression and training data

Predictor Letters Peabody Both

Constant 12.41 5.40 2.52
Regr. Coeff. Letters 0.83 0.63
Regr. Coeff. Peabody 0.46 0.29

R2 0.34 0.27 0.43
p-value 0.00 0.00 0.00
R2-Cross Validated 0.27 0.21 0.35

P(Mm |x) 0.001 0.000 0.999
P(Mm |x) 0.98 0.02

variation not that impressive considering the fact that the model contains
an extra predictor compared to the other models. For the example at
hand, the second question could be investigated via the testing of nested
regression models (Tabachnick and Fidell, 2001, pp. 165–170). However, in
related but more elaborate situations (more than two sets of predictors, and
various combinations of these sets) this does not provide a solution since
mostly non-nested models have to be compared. Even for the example at
hand (two non-nested models with one predictor) this is not easily done via
hypothesis testing. It is not clear which are the null and alternative model,
and, the actual testing of non-nested models is an underdeveloped area in
statistics.

Nevertheless, both questions can be addressed using non-Bayesian meth-
ods via cross-validation (Camstra and Boomsma 1992; Stevens 1992, pp.
96–98). There are several kinds of cross-validation. In the simplest form the
data matrix is randomly split into two parts: the calibration sample and the
validation sample. The calibration sample is used to estimate the regression
coefficients of each model of interest. Subsequently, the validation sample
(here N = 118) is used to compute for each model the squared correlation
between the dependent variable and its predicted value using the regression
equations obtained in the calibration sample. The result is called the cross-
validated proportion of variance explained. It is a measure of the predic-
tive performance of a model that is not biased by the number of predictors
in the model, or the step-wise or other ‘trial and error’ methods by which
models are constructed and the regression coefficients estimated. As can be
seen in Table III, the cross-validated R2 of the model with both predictors
is 0.08 higher than the model containing only Letters, and 0.14 higher than
the model containing only Peabody. It appears (based on our subjective
evaluation of the increase in cross-validated R2) that the model with two
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predictors gives better predictions than the models with one predictor. The
decision whether the model containing only Letters is relevantly better than
the model containing only Peabody is left to the reader.

Possibly the only drawback of the cross-validated R2 is the lack of a for-
mal comparison of the models. Questions like is one model ‘significantly
better’ or ‘more probable’ than the others, have not yet been addressed. In
the next section it will be explained how these questions can be answered
using posterior model probabilities.

4.2. posterior probabilities computed using training data

To compute posterior probabilities, for each model the prior distribution of
each parameter that is not fixed at a specific value has to be specified. One
of the goals of this paper is to show that prior distributions can be spec-
ified such that they do not represent the subjective view of the researcher,
but nevertheless are useful and informative. As illustrated in Section 3,
encompassing priors are one way to achieve this. In this section training
data (Berger and Pericchi, 1996) or, if you like, the calibration sample, will
be used to specify objective priors.

One of the interpretations given to prior knowledge is that it should
reflect the current state of affairs with respect to the research questions
and models at hand. It is rare (if it happens at all) that previous research
can be used to specify prior distributions for the parameters of the models
of interest. However, it does occur that researchers have enough data to
randomly assign each person to a training and a validation set. If cross-
validation is used, training (calibration) data are used to construct and
estimate the parameters of multiple regression models. If the goal is to
compute posterior model probabilities, training data are used to construct
and summarize the information with respect to the parameters of multiple
regression models. This summary is the posterior distribution of the model
parameters for the training data, which will serve as the prior distribution
of the model parameters for the validation data. Stated otherwise, the train-
ing data are used to summarize the knowledge with respect to the current
state of affairs for each of the models under consideration, and the valida-
tion data are used to compute posterior probabilities.

For the multiple regression model

P(y|x1, . . . ,xP , β0, . . . , βP , σ 2)=
N∏

i=1

1√
2πσ

exp−1
2

(yi −β0 −∑P
p=1 βpxip)2

σ 2
, (9)

where xip denotes the response of the ith person to the pth predictor, yi

the response to the criterion variable, βp the regression coefficient of the
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pth predictor, and σ 2 the residual variance. Subsequently, the superscripts
t and v will be used to denote prior distributions and data for the training
and validation data set, respectively.

Different regression models are obtained using different subsets of the
total set of predictors. For each model it is known which predictors
are included. In the sequel Mm will be used to denote the set of pre-
dictors included for model m. More specifically, M1 = {Letters}, M2 =
{Peabody} and M3 ={Letters,P eabody}. The parameters of these models
will be denoted by θm ={β0m, . . . , βPm, σ 2

m}, where P denotes the number of
predictors in the model at hand.

In the Bayesian approach the information with respect to the parame-
ters of a model is summarized in the posterior distribution (Gelman et al.
1995, pp. 32–33):

Post(θm |y t ,Mt
m)∝P(y t |Mt

m, θm)gt (θm), (10)

which combines the information provided by the training data with the
prior information with respect to the model parameters that is available
before the training data are analyzed. Because it is in accordance with
the goal to compute posterior probabilities that are independent of subjec-
tive choices, a non-informative prior will be used. For multiple regression
models non-informative prior distributions can be chosen in various ways
(Gelman et al. 1995, Chap. 8). In this paper the improper non-informative
prior gt(θm)= 1 will be used. This renders a proper posterior distribution
that is proportional to the likelihood of the data.

The posterior distributions constructed using the training data represent
the prior knowledge with respect to the current state of affairs before the
validation data are used to compute posterior probabilities for each model
in the set of models under consideration, that is, gv(θm)=Post(θm |y t ,Mt

m).
These, resulting from ‘previous research’ and thus objective prior distribu-
tions can be used to compute (6) for the multiple regression model, that is,

P(yv |Mv
m)=

∫

θm

P (yv |Mv
m, θm)gv(θm) dθm. (11)

Combined with equal prior probabilities for each of the models, this is
sufficient to compute objective posterior probabilities using Equation (2):

P(Mv
m |yv)= P(yv |Mv

m)∑
m P (yv |Mv

m)
. (12)

The integral in Equation (11) can be evaluated if the integral with respect
to θm is replaced by a summation over a sample θq

m, for q =1, . . . ,Q from
gv(θm), that is,
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P(yv |Mv
m)≈ 1

Q

Q∑

q=1

P(yv |Mv
m, θq

m). (13)

This sample can be obtained using the Gibbs-sampler. The interested
reader is referred to Gelman et al. (1995, pp. 235–239, 326–329).

As can be seen in Table II, if all three models are compared the model
with both predictors has by far the largest posterior probability. Since
posterior probabilities implicitly penalize models with more parameters
(Ockham’s razor, see Kass and Raftery (1995)) the result is not just caused
by the fact that an extra predictor usually leads to an increased amount of
variance explained in the sample. It is caused by the fact that the extra pre-
dictor leads to an increased amount of variance explained in the popula-
tion. If only both one-predictor models are compared (the last line of Table
III), M1 has a substantially higher posterior probability than M2. Stated
otherwise, after observing the data, the (conditional error) probability that
M2 is the best model is so small, that it is save to conclude that Letters is
a better predictor than Peabody.

In this section it was illustrated that prior distributions can be specified
using training data. The interested reader is referred to Berger and Pericchi
(1996), who show that this procedure can be refined in various ways. One
way is to split a data file in a training and validation sample not once, but
many times and combine the results. The other way is to adjust the for-
mer such that the training data contain as few persons as possible. In this
section it was shown that training data based posterior probabilities can
be used in addition to cross-validation, to select the best of a number of
non-nested regression models. As far is known to the authors, there are no
onsets in the literature to do the same using hypothesis testing.

5. Summary and Remaining Issues

The goal of this paper is to show the potential of posterior probabilities
and model selection as an alternative for the use of p-values and hypothe-
ses testing. As was illustrated using a simple model for the evaluation of a
population mean, a one-way analysis of variance followed by pairwise com-
parisons of means, and multiple regression, posterior probabilities have a
number of advantages over p-values:

1. Posterior probabilities are computed for each of the models in the set
of models under consideration. This avoids (possibly incorrect) indirect
conclusions of the kind ‘not H0’ implies ‘H1’.

2. Posterior probabilities can be used to compare non-nested models, and
in doing so incorporate the complexity (number of parameters) of a
model (Ockham’s razor).
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3. Posterior probabilities do not need arbitrary criteria like 0.05 in order
to be evaluated.

4. Posterior probabilities can be interpreted as conditional error probabil-
ities, that is, the error probabilities after observing the data.

5. Posterior probabilities can be used to evaluate models that are rele-
vantly different from each other.

A difficulty using posterior probabilities is that for each model the prior
distribution of the parameters of that model has to be specified. This paper
illustrated two methods that can be used to derive priors that are easy to
apply.

Unlike hypotheses testing and p-values, posterior probabilities have not
yet found their way into the toolkit of psychological researchers. Only in
the last decade (see for example Carlin and Chib 1995; Kass and Raftery
1995; Berger and Pericchi 1996) computational developments have enabled
the calculation and use of posterior probabilities. Research with respect
to application of posterior probabilities is still ongoing, and the standard
software packages used by psychological researchers have not yet included
modules and models for which posterior probabilities can be computed.
Readers interested in using the methods proposed, can write an e-mail to
the authors describing their data and research questions.
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