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1Department of Statistics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, U.K.;
2Seminar for Sociology, University of Bonn, Lennéstr. 27, 53113 Bonn, Germany

Abstract. We propose the notion of multivariate predictability as a measure of goodness-of-fit
in data reduction techniques which are useful for visualizing and screening data. For quantita-
tive variables this leads to the usual sums-of-squares and variance accounted for criteria. For
categorical variables we show how to predict the category-levels of all variables associated with
every point (case). The proportion of predictions which agree with the true categories gives
the measure of fit. The ideas are very general; as an illustration we use nonlinear principal
components analysis (NLPCA) in association with ordered categorical variables. A detailed
example using data from the International Social Survey Program (ISSP) will be given in Bla-
sius and Gower (quality and quantity, 39, to appear). It will be shown that the predictability
criterion suggests that the fits are rather better than is indicated by “percentage of variance
accounted for”.
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1. Introduction

Principal components analysis (PCA) is a popular way of displaying rela-
tionships between cases associated with several variables. With categorical
variables, PCA is not immediately available, although it is not unknown
for numerically coded categories to be treated as if they were numerical
ratio-scales. The more appropriate analysis is to use nonlinear principal com-
ponents analysis (NLPCA) in which the categories are replaced by optimal
scores (see e.g., Gifi, 1990; Heiser and Meulman, 1994). The optimal scoring
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process allows order-constraints to be imposed so that ordered categorical
variables get increasing, or at least nondecreasing, scores as the category-lev-
els become increasingly severe. When the responses are not consistent with
the implied ordering, this manifests itself by giving tied optimal scores for
two or more categories. Unlike classical PCA, the number r of dimensions
required in the fit must be specified in advance and the solutions for r and
r + 1 dimensions are not nested. Once the optimal scores have been found,
they may replace the category codes and the remainder of the analysis may
be regarded as a classical PCA. This means that the degree of fit is judged as
the ratio of sums-of-squares in the fitted dimensions to the total, usually, the
number of categorical variables. Indeed, the NLPCA criterion for estimating
the optimal scores is to maximize this ratio for the given value of r.

All the above is well-known. Here we suggest an alternative criterion
for judging the fit of any multidimensional scaling (MDS) analysis of
categorical variables and exemplify its use in conjunction with NLPCA.
As is common, but not universal practice, we subsume methods such as
PCA, NLPCA and multiple correspondence analysis among MDS tech-
niques, noting that PCA may be viewed as a special case of classical scaling
(e.g. Gower, 1966).

We begin with a short recapitulation of those properties of PCA that
are important for our development. In the PCA of a numerical data-matrix
X one obtains an r-dimensional approximation X̂ that minimizes the sum-
of-squares ‖X − X̂‖. The solution is given by Eckart and Young (1936)
based on the singular value decomposition of X but is usually presented,
equivalently, in terms of the eigenvectors of X′X, often normalized to be a
correlation matrix. The essential thing is that X̂ approximates X and may
be regarded as a surrogate for X itself. This surrogate is useful when r is
small, especially when r = 2, and the approximation is a good one. Then,
X̂ presents a mass of multivariate data in a manageable form that allows
ready visual inspection of aspects of the data. We say that X̂ predicts X.
Note that we are not trying to predict an unknown value that might be
observed in the current or some future data-set but to predict known data-
values from an r-dimensional approximation. This use of the word predic-
tion may be perceived as conflicting with its use in other statistical contexts
and to be superfluous to approximate. Indeed, approximate is acceptable for
numerical variables but, in the following, where we are concerned with cat-
egorical variables, predict is the more appropriate, e.g. it would be inappro-
priate to say that the color “red” approximates “blue”. Perhaps it would
be clearer to distinguish the two uses of prediction by referring to inter-
nal prediction (for our usage) and external prediction (classical usage) but
we think this terminology to be too cumbersome and pedantic. In multi-
variate analysis, internal prediction is nearly always used, either overtly or



NONLINEAR PRINCIPAL COMPONENTS ANALYSIS: THEORY 361

implicitly, as a preliminary step in data reduction; without it, it would be
difficult to make further progress.

The idea developed below is to associate a set of predicted category val-
ues X̂ with every point in any MDS. The hope is that these predictions
agree well with actual category-levels X in the data, thus giving a surrogate
set of categorical values that has lost little information. For the present we
assume that X̂ can be computed and discuss how this is done in Section
2. The sum-of-squares criterion ‖X− X̂‖ is meaningless for categorical vari-
ables, so it must be replaced. An obvious measure to use is the proportion,
or percentage, of correct predictions which might be written > X ◦ X̂ < to
emphasize the link with ‖X − X̂‖. In >X ◦ X̂ <, ◦ represents assessment of
agreement between corresponding elements of X and X̂ while >< denotes
that the number of agreements is summed.

The difference between evaluating sums-of-squares and counting agree-
ments, is less than it may seem. The key to both approaches, is the mea-
sure of the distance of a point O, say, from a set of points. When the set of
points form a continuum, such as a line, plane or r-dimensional subspace,
whose points are labeled by some numerical co-ordinate system, then the
shortest distance is given by the orthogonal projection of O onto the set,
together with its numerical label; this is the situation for quantitative vari-
ables. With a finite set of n nominally labeled points, the shortest distance
is merely the shortest of the n distances from O together with its associated
nominal label. As is explained below, the latter, less stringent criterion, is
especially appropriate for use with the discrete nature of categorical vari-
ables. In both cases, one is finding the nearest acceptable value, numerical
or categorical, as the case may be.

In NLPCA and similar methods, the optimal scoring process replaces
the categories by a discrete set of numerical values, thus transforming the
problem into a conventional PCA. The distinction between a discrete set of
quantified nominal values and a continuum of values on a scale is a poten-
tial source of misconceptions. In the following development, we attempt to
respect the discrete nature of the data as much as possible. The prediction
criterion gives a more natural measure of the degree of approximation to
categorical information than does variance accounted for. Ideally, we would
like an MDS method that optimizes the criterion > X ◦ X̂ < in r dimen-
sions, but this seems to be a hard problem. Failing that we can see how
well a method such as NLPCA performs as judged against the new crite-
rion.

In the second part of this paper (Blasius and Gower, to appear) we will
illustrate our ideas using data drawn from the 1995 International Social
Survey Program (ISSP) and compare the traditional fit criterion variance
accounted for with the new predictability criterion.
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2. Methodology

2.1. predicting categorical variable levels

We first outline the basic ideas of prediction in general terms and then
show how they relate to NLPCA. Gower and Hand (1996) as well as
Gower and Harding (1998) introduced the idea of representing the levels of
categorical variables by neighbor regions approximated in MDS representa-
tions by prediction regions. We illustrate their ideas with artificial data (see
Figure 1).

Figure 1 shows prediction regions for a categorical variable Color, with
four levels (or categories). The numbers refer to 25 cases of which 1–6 are
red, 7–11 green, 12–16 yellow and 17–25 blue. The 25 cases are plotted,
say by some form of MDS, together with the four prediction regions. Each
case is labeled by the name of its true color.1 The cases that fall within the
region labeled red are predicted to be that color and so on for the other
colors. Numbers 1–6 are all red and 1–4 are plotted correctly in the “red
region”, but number five is plotted in the “yellow region” and number six
in the “blue region”, these last two are incorrectly predicted. Table I lists
the predicted against the true values for all the colors.

From Table I we see that the correct predictions occur on the diagonal
and sum to 14 = 4 + 3 + 3 + 4. The remaining 11 cases occur off the diag-
onal and give incorrect predictions. Thus, Figure 1 represents 56% correct
and 44% incorrect predictions.

Diagrams such as Figure 1 occur naturally in many representations of
cases described by categorical variables. They are associated with the exis-
tence of category level points (CLPs). A categorical variable with Lk lev-
els has Lk CLPs, each on a different axis, which for the present we shall
assume to be mutually orthogonal. In our example where the kth variable
is Color, Lk =4 and the four CLPs refer to the four levels. The most simple

- yellow

r1
r2

r3

r4

r5

r6

g7

g8

g9

g10

b17

y15

y16

y13

b18
y14

b20

g11

b22

b24

b25

- green

- blue 

- red 

b
y12

b19b23
21

Figure 1. Prediction regions for a variable Color with four levels.
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Table I. The numbers of correct and incorrect
predictions associated with Figure 1

Predictions

True Red Green Yellow Blue Sum

Red 4 0 1 1 6
Green 1 3 1 0 5
Yellow 1 0 3 1 5
Blue 2 2 1 4 9

Sum 8 5 6 6 25

choice of co-ordinates for the CLPs is (1,0,0,0) for red, (0,1,0,0) for green,
(0,0,1,0) for yellow, and (0,0,0,1) for blue; we shall meet other settings
below. Whatever the actual co-ordinate settings for the CLPs, each has an
associated neighbor-region. The one for red consists of all points that are
nearer the CLP for red than they are to any other CLP and normally will
contain all cases that are red; similarly for the neighbor-regions associated
with the other colors. These neighbor-regions are convex. Similar convex
neighbor-regions exist for other categorical variables but with their CLPs
in orthogonal higher dimensional spaces. With p categorical variables and
a total of L=∑p

k=1 Lk category levels, this requires an L dimensional space
and, to continue with the simple choice of CLPs used above for Color,
the whole set of CLPs is given by the rows of the L × L unit matrix I .
More generally, the CLPs have co-ordinates given in a diagonal matrix
D. For example, in multiple correspondence analysis D =L−1/2 where L=
diag(L1,L2, . . . ,Lp) and Lk is an Lk ×Lk diagonal matrix giving the fre-
quencies of occurrence for the levels of the kth variable; for our variable
Color these frequencies take the values 6, 5, 5, and 9, the row sums of
Table I.

When G is an n×L indicator matrix, the rows of GD give the co-ordi-
nates of all the n cases; every case falls into its correct neighbor-region.
Thus, all cases that are red and no cases that are not red fall into the neigh-
bor-region for red. Values of quantitative variables to be associated with a
point (usually representing a case) are found by projecting onto scaled co-
ordinate axes and reading off the correct values. More fundamental than
projection is that one is reading off, on each axis, the nearest scale marker
to the point. Correspondingly, for categorical variables one reads off the
label associated with the nearest CLP. The simplex of CLPs associated with
a categorical variable may be viewed as a generalization of the concept of
a co-ordinate axis for a quantitative variable, an idea developed further by
Gower (2002).
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The set-up just described uses L dimensions. The process of predicting
values of variables associated with points in an r-dimensional approxima-
tion (usually, r =2), using only information in that space, is the concern of
biplots. For quantitative variables and in linear cases biplots are expressed
as vectors and the approximation is often interpreted through singular
value decompositions (Gabriel, 1971, 1981; Greenacre, 1993). Although
mathematically valid, this approach can be simplified; Gower and Hand
(1996) stress that biplot axes may be interpreted just like other co-ordi-
nate axes (i.e. by projection and reading a value off a scale). For categor-
ical variables the process is in some ways more simple and in others more
complicated. It is simple because the prediction of a category level to be
associated with any point is merely a matter of deciding in which neigh-
bor-region the point lies, just as in Figure 1. This is easily calculated but
one also needs a nice visualization. In principle, this is merely a matter
of showing how the neighbor-regions intersect the r-dimensional space to
give a tessellation of convex prediction-regions, again as in Figure 1. Com-
putational procedures for doing this are described in Gower (1993) and in
Gower and Hand (1996).2

With linear biplots, each quantitative variable has one axis, so all p axes
are conveniently shown on a single diagram. However, each categorical var-
iable generates one set of prediction regions, as in Figure 1. Usually it
would be too confusing to superimpose the regions for two or more cat-
egorical variables on the same diagram (see Gower and Hand, 1996, for
an example). The prediction-regions for each variable are best shown sep-
arately; how they overlap, which relates to correlation, may be perceived
through mental visualization or perhaps by stacking transparencies. In the
next section we show how for the case of ordered categorical variables, all
variables may be shown simultaneously, as in the linear case.

2.2. prediction regions for nonlinear principal components analysis

It is convenient to develop our discussion of the form taken by CLPs
and prediction regions for ordered categorical variables in the context of
NLPCA. Initially, we assume that levels are unordered. So far, we have
assumed that the CLPs have orthogonal co-ordinate representations on L
axes and that D is diagonal. This restriction is not necessary. For example,
in NLPCA D = diag(z1, z2, . . . , zp) where zk is a column-vector of length
Lk, giving the optimal quantifications for the kth variable, so that in this
case D has dimensions L×p. With (ordered or unordered) categorical data
coded as a binary indicator matrix G, GD converts the data to numeri-
cal scores, giving an n×p matrix which may be analyzed by conventional
PCA, though most NLPCA computer output provides this automatically
(see SPSS, 1999, CATPCA, formerly PRINCALS).
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In line with conventional PCA, the quantified variables are scaled
to have zero mean and normalized to have unit sum-of-squares, thus∑Lk

i=1 lkizki = 0 and
∑Lk

i=1 lkiz
2
ki = 1, or in matrix notation 1′LkZk = 0 and

z′
kLkzk = 1, for k = 1, 2, . . . , p. With this scaling of the scores, the prin-

cipal components are the eigenvectors of a correlation matrix D′LD with
trace p. In NLPCA the scores are chosen to give a best PCA in some spec-
ified number, r, of dimensions (in our case r =2) by maximizing the sum of
the r principal eigenvalues relative to the total trace, p. Because the CLPs
for a single variable are given in a vector zk (the quantifications), it fol-
lows that they have a linear representation even though the category-lev-
els are unordered. Therefore the CLPs for the kth variable are Lk points
lying on a line ξk, say, through the origin. The CLPs are placed distances
zk1, zk2, . . . from the origin. This gives what looks very much like a conven-
tional co-ordinate axis. However, the similarity is deceptive because inter-
mediate values are undefined (e.g. what meaning is there to saying that a
person is between single and divorced?). It would be misleading to project
onto such a pseudo-linear axis and read off scale values.

In the example to be discussed in Blasius and Gower (to appear), where
the category-levels are ordered, the CLPs for the kth variable are also
ordered, to give something looking even more like a conventional co-ordi-
nate axis. Nevertheless, values intermediate to the CLPs remain undefined.
The geometrical setup is shown in Figure 2.

Assume a four-point variable with ordered categories: N (none), L
(little), S (some) and M (much). In Figure 2, the ordered category quan-
tifications are shown on an axis ξk. If we label the plane holding the
r-dimensional display Lr , the normal planes at points half way between the
category quantifications defining the CLPs are the boundaries of the neigh-
bor-regions. These intersect with Lr to give the shaded prediction-regions
bounded by a series of parallel lines, as shown in Figure 2. This would
complete the calculation for the more general convex prediction-regions,
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ξ
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Figure 2. Category level points for an ordered categorical variable.
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as shown in Figure 1, that arise from nonlinear CLPs. In the important
case of pseudo-linearity induced by ordinal variables a great simplification
is possible. Then, we may replace the prediction regions for a variable by a
single line βk orthogonal to the intersections, marking the positions of new
CLP*s (N*, L*, S* and M* in Figure 2) in the approximation space Lr . It
is then only necessary to decide which CLP* is nearest a point represent-
ing a case, to decide in which prediction region it lies. The great advan-
tage of this representation is that it allows the variables to be shown as a
set of intersecting lines β1, β2, . . . , βp just as for linear biplots, thus avoid-
ing the difficulties of superimposing sets of convex prediction regions that
occur with the full generality of CLPs permitted for categorical variables.
When an order constraint has been applied for the calculation of the CLPs,
they will not only be linear but also properly ordered as is shown in Fig-
ure 2. In the case of ties, say when L and S have the same quantifications,
one may make an infinitesimal perturbation between both, thus keeping the
original order of the levels and predicting L for points to the left of L*/S*
and S for points to the right. It might be argued that this is not appro-
priate and that in reality one cannot distinguish between predicting either
L or S. Then, if the original data gave either an L or an S, one would
have a correct prediction and, if not, prediction would be incorrect. Of
course, when there are three or more ties, the central categories are never
predicted. When there is preponderance of ties, the indication is that the
data are not consistent with ordinality and then one should not be impos-
ing ordinal constraints.

Note that the SVD plays no part in the interpretation and that the plot-
ted points CLP* are not projections of the true CLPs onto the PCA space,
indeed they are back projections (see Gower and Hand, 1996). The abil-
ity of providing CLP*s within Lr itself is a consequence of the linearity
of the CLPs and is not a property that extends to nonlinearly arranged
CLPs. The use of biplot axes for NLPCP is illustrated in Figure 3 which
shows two variables “1” and “2” each described by four ordered categories
(N = none, L = little, S = some, M = much).

The prediction for a case R by nearness to the CLPs is shown in
Figure 3 and contrasted with projection. Things to notice are:

(i) each axis stops at the extremes of each scale, thus emphasizing the
meaninglessness of points beyond,

(ii) there are no horizontal and vertical axes because these would add
nothing to the information given by the biplot axes,3

(iii) the predictions (S1, L2) for R by nearness to the CLP*s can also be
achieved by projecting onto the axes and finding the CLP*s nearest
the projections, and
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Figure 3. Prediction with two ordered categorical variables “1” and “2”. Variable i has
CLP*s Ni , Li , Si and Mi . The arrowed lines give the nearest CLP*s predicted for the
case labeled R.

(iv) that the projections given by the dashed lines differ from the nearest
CLP*s given by arrowed lines.

Regarding (i) we might add that the lines between the extremes should
also be suppressed. Not only would this discourage interpretation of
projected points, but it would do so without impairing nearness interpre-
tations. On balance, we feel that the lines are justified as a visual aid in
linking successive ordinal levels.

As discussed above, prediction regions are not shown because with
ordered categorical variables they are bounded by lines as shown in
Figure 2. The representation of ordered categorical variables has charac-
teristics both of quantitative and of unordered categorical variables; the
linearity of axes (here pseudo-linearity) is retained but scale markers are
replaced by category names.

To sum up: with quantitative variables we predict the responses of
an individual by projecting onto the different axes and reading off the
scale values of the variables. This procedure is valid for both the original
co-ordinate axes and the biplot axes. We have seen that with unordered
categorical variables things are quite different but with ordered categorical
variables we come close to the classical usage. The category levels appear
on linear axes but the intervening points do not have the associated scale
values required to justify projection; projection may be replaced by near-
ness to CLP*s.

In practice, to calculate the proportion of correct and incorrect predic-
tions as in Table I we need to compute how close is each case in the
approximation space Lr to the true CLPs. The details of how to do this
are given in Appendix A.

2.3. some general remarks

To close this section, we add a few remarks about the more general uses of
CLPs. One dimensional sets of CLPs, as for NLPCA, and sets occupying
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Lk dimensions whose co-ordinates are represented in a diagonal matrix, are
two extreme types of representation; many intermediates are possible. For
example, we could allow Lk to be a general Lk ×Lk matrix, in which case
the Lk CLPs may be regarded as occurring on oblique axes, i.e. they form
a simplex as in Figure 4b rather than the simplex shown in Figure 4a.

Also, in NLPCA every variable can be replaced by two or more dimen-
sions, so that the vector zk becomes a matrix Zk with two or more col-
umns, the so-called multiple quantifications of CATPCA (see Gifi, 1990,
SPSS, 1999). Indeed, it would be sensible to use multiple quantifications
with unordered categorical variables, since otherwise a spurious ordering
may be implied by the pseudo-linearity of optimal scores set along a single
axis. In these representations, the axes for all pairs of variables are assumed
to lie in mutually orthogonal subspaces, but even this restriction could be
dispensed with by allowing the CLPs of two variables to share part of one
another’s space. However, this degree of generality destroys the nearness
properties that are important for interpretation.

Finally, we draw attention to Guttman’s ideas on facet theory which
bear some relation to our proposals (see, for example, Guttman, 1965; Borg
and Shye, 1995; Borg and Groenen, 1997). The regional interpretations
in facet theory are associated with an MDS diagram in any convenient
way that has a substantive interpretation in terms of the original variables.
Boundaries are allowed to have any shape determined in the light of the
user’s judgment, rather than by any mathematical methodology. The predic-
tions we make above are associated with prediction-regions, which may be
regarded as a species of facet for ordered categorical variables. Our predic-
tion-regions are mathematically derived and are bounded by parallel lines.
With unordered categorical variables, the prediction regions become convex

RED
RED

BLUE BLUE

GREENGREEN

(a) (b)

Figure 4. CLPs for a categorical variable with three levels, (a) relative to orthogonal
axes giving a diagonal matrix L and (b) relative to oblique axes giving a general 3×3
matrix L.
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figures with linear boundaries (see Gower and Hand, 1996; Gower and
Harding, 1998). Thus, our regions are more restrictive than the generality
allowed by facet theory but they are more objective and are associated with
an intuitively appealing criterion.

In the second part of the paper (Blasius and Gower, to appear) we
will give an example using data from the ISSP to demonstrate how
the proposed procedure works and to compare our results with those
retained from NLPCA and classical PCA. Comparing the solutions will
also allow for some comments on the quality of data from the participating
countries.

3. Discussion

We have proposed a measure of fit based on multivariate predictability. Pre-
dictions may be made by finding the nearest one of a set of CLPs to each
case represented in a low-dimensional representation. The set of predic-
tions may then be compared with the values given in the raw data, giv-
ing a measure of the number of correct predictions to be associated with
the low-dimensional representation. The ideas have been set in the context
of ordered categorical variables in NLPCA, but can be readily extended to
most other forms of MDS and to other kinds of variable. Numerical and
graphical illustrations using two sets of questions with ordinal response
scales, drawn from 23 countries participating in the 1995 ISSP will be given
in Blasius and Gower (to appear).

In this paper we will show that when the quality of the data is
good, prediction performs well. When they are bad, as judged in NLPCA
by recourse to many ties, prediction can be poor. In contrast, variance
accounted for will give some good fits to bad data and some bad fits
to good data. Further, the notion of (internal) predictability has intui-
tive appeal and is more directly related to what is required of a surrogate
approximation to the data than are criteria based on variance accounted
for. The predictability criterion itself may be used as a basis for defining
new forms of analysis (Gower, 2002).

Appendix A: The Computation of Predictions with Special Reference to
CATPCA in SPSS

In the CATEGORIES software of SPSS (1999) one can select the option
optimal scaling and using the option some variables are not multiple nominal
select CATPCA (categorical principal components analysis; in earlier ver-
sions PRINCALS). In our case all variables are treated as ordinal with sin-
gle quantifications. For each variable, CATPCA gives the quantifications of
all levels zki where k refers to the variable and i to the level of the variable.



370 JOHN C. GOWER AND JÖRG BLASIUS

We have chosen a two-dimensional space to represent the cases (e.g. the
respondents).

The output is not immediately in the form we require, it needs some
additional calculations as described in the following. We shall be concerned
with the normalizations of the quantified scores and with the normaliza-
tions of the eigenvalues and eigenvectors.

The scores are already normalized so that 1′Lkzk =0 and z′
kLkzk =1, k=

1, . . . , p. This means that the columns of the matrix of quantifications Z
have zero means and unit variances, so that Z′Z is a correlation matrix.
The fitted two-dimensional co-ordinates X(n × 2) of the respondents are
also immediately available.

For a conventional PCA we need the eigenvalues and eigenvectors sat-
isfying (Z′Z)V = V� to be normalized so that V′V = I and

∑p

k=1 λk = p.
CATPCA currently offers several different normalizations of eigenvectors
VP (referred to as component loadings), and some small adjustments may
be needed to ensure the above normalizations, before proceeding with the
calculations described below.

We have to compute the distances of every case, as represented in two
dimensions, from each of the CLPs. Each variable has four collinear CLPs.
The occurrence of ties needs special attention when calculating predictions.
When two levels of a variable have tied quantifications, their CLPs coin-
cide, so there is ambiguity over which level to predict. We have resolved
this by making a small perturbation to the adjacent CLPs. The conse-
quence is that all points to the “right” will be predicted with the higher
level and all points to the “left” will be predicted with the lower level. With
three or more tied levels, we do a similar perturbation and then the cen-
tral level(s) will hardly ever be predicted. In this way the separation of the
CLPs is ensured. The geometry is shown in Figure 5.

In Figure 5, C is the CLP for a quantification ζ on the kth variable. C
has co-ordinate values ζek (where ek is a unit row-vector with one in its
kth position and zero elsewhere). X represents one case with co-ordinates
(x1, x2) in its two-dimensional representation; the values (x1, x2) are sup-
plied by the program and can be stored along with the original data. Y is
the projection of C onto Lr . Let us denote the loadings of the variables on
the two axes by vkr (k is the variable and r = 1,2, the dimension) and by
V2 the first two columns of V. We require the distance dCX, which from
Figure 5 we see is given by:

d2
CX =d2

CY +d2
XY.

Thus, to calculate the distance dCX requires the following steps:
(i) Calculate the projection Y of C onto the plane of approximation.

This is given by y = ζekV2. This operation picks out the kth row of
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Lr

ξk

ζek

Y

X

C

Figure 5. The geometry of prediction

V2 and multiplies it by ζ . Thus, y = (y1, y2) are the coordinates of Y.
(ii) Next d2

CY = ζ 2 −d2
OY = ζ 2 − (y2

1 +y2
2).

(iii) d2
XY = (x1 − y1)

2 − (x2 − y2)
2 so that the required squared distance is

given by d2
CX = (x1 − y1)

2 − (x2 − y2)
2 + ζ 2 − (y2

1 + y2
2) which simplifies

to
(
x2

1 +x2
2

)−2 (x1y1 +x2y2)+ ζ 2.
(iv) The quantity obtained in step (ii) should be computed for each value

(zk1, zk2, zk3 and zk4) of ζ corresponding to the four quantifications
of the kth variable. The term

(
x2

1 +x2
2

)
in step (iii) remains constant

so may be ignored. The value of zki giving the smallest distance, pre-
dicts the level i for the kth variable, for the case denoted by X.

Steps (i) to (iv) have to be done for all p variables (k=1, . . . , p) and for all
n cases X, finally giving an (n×p) matrix of predictions. Simple cross-tab-
ulation of the prediction variables with the original variables provides the
number of correct and incorrect predictions, as in Table I.

The biplot axis for the kth variable is essentially computed at step (i),
above. As ζ varies (y1, y2) trace out the biplot axis and markers may
be shown at each of the four quantification values (zk1, zk2, zk3 and zk4).
Remember, that these calculations must be done using the properly scaled
values of V, �; this means that special attention has to be paid to ensure
that the output of CATPCA is in the required form. Any rescaling needed
may be done either at the outset or incorporated into the formulae given
in steps (i)–(iv).

Notes

1. An improved display would be to color the cases and the prediction regions. Then, cases
which do not match their background would show-up better and cases which do match
their background would show as small open circles (see e.g. Gower and Harding, 1998).
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2. A program in Genstat (see Genstat 5 Committee, 1993; Payne et al., 1998) has been writ-
ten by Simon Harding, another one in S-plus (see Chambers, 1998) by Roger Ngouenet.

3. This point applies to any factorial type representation relative to principal axes.
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