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Abstract
We present a detailed study of the time-dependent behavior of both the queue-length
process and the workload process of various types of preemptive Last-Come-First-
Served queueing systems, such as the preemptive repeat different and preemptive
repeat identical models recently studied in Asmussen and Glynn (Queue Syst 87:1–
22, 2017) and Bergquist and Sigman (Stoch Models 38:515–544, 2022). Our main
results show that various quantities that provide information about the time-dependent
behavior of these processes canbe expressed in termsof theLaplace-Stieltjes transform
of the busy period, and we show how a natural coupling procedure can be used to
establish, for each preemptive queuewe consider, a recursive procedure for calculating
these busy period transforms on the set of all complex numbers having positive real
part.

Keywords LIFO · Palm distribution · Preemptive resume · Preemptive repeat ·
Queue length · Workload

Mathematics Subject Classification Primary 60K25; Secondary 60G55

1 Introduction

A handful of recently published articles have focused on studying single-server
queueing systems operating under various types of preemptive repeat Last-Come-
First-Served (LCFS) queueing disciplines. In thework of Asmussen andGlynn [7], the
authors establish stability conditions for single-server queues operating under either
the preemptive repeat identical and preemptive repeat different LCFSdisciplines (these
will be defined shortly) when customers arrive in accordance to a Poisson process, as
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well as the more general setting where customers arrive in accordance to a Markovian
Arrival process (MAP). In Bergquist and Sigman [8], the authors study properties of
the limiting distribution of the workload process associated with both the preemptive
repeat identical and preemptive repeat different LCFS disciplines, when customers
arrive in accordance to a Poisson process. Another recent work on this topic is that
of Horváth et al. [14], where the authors study a single-server queue with Poisson
arrivals that operates under a nonpreemptive LCFS with resampling discipline that is
similar in some (but not all) respects to the single-server queue operating under the
preemptive repeat different LCFS discipline.

Our main objective is to build further on Bergquist and Sigman [8] by studying
the time-dependent behavior of both the queue-length process {Q(t); t ≥ 0} and
the workload process {W (t); t ≥ 0} associated with both of the preemptive repeat
LCFS disciplines mentioned above, where for each t ≥ 0, Q(t) and W (t) denote,
respectively, the number of customers found in the system and the remaining amount
of work present in the system at time t . In each of these models, we assume customers
arrive one-at-a-time to a single-server queueing system in accordance to a Poisson
arrival process {A(t); t ≥ 0} having rate λ and points {Tn}n≥1, so that for each integer
n ≥ 1, Tn denotes the arrival time of the nth customer to arrive to the system strictly
after time zero. Here, A(t) denotes the number of points found in the set (0, t] (we set
A(0) := 0), and the one-to-one correspondence between the points {Tn}n≥1 and the
counting process {A(t); t ≥ 0} is reinforced mathematically by noting that for each
real number t ≥ 0, and each integer n ≥ 1,

A(t) :=
∞∑

k=1

1{Tk≤t}, Tn := inf{t ≥ 0 : A(t) ≥ n}

where for each event C , 1C is the indicator function associated with C , in that 1C is
equal to 1 if C occurs and is equal to 0 if C does not occur.

In each queueing model we study, the server always operates in a preemptive LCFS
manner, meaning whenever a customer arrives to the system, the server immediately
suspends working on the current job and devotes its full attention to the new arrival,
only to return servicing the newly neglected jobwhen the new arrival leaves the system.
Oneway to picture how such amodel behaves is to imagine the jobs physically stacked
on top of one another, where new arrivals land on top of the stack, and at any time
instant, the server can only process (at unit rate) the work possessed by the job located
on top of the stack. It also helps to alternatively refer to each position in the stack as
a slot, where an arriving customer always occupies the lowest-numbered unoccupied
slot upon arrival, and the server always provides its full attention to the customer
having, among all present customers, the highest slot position in the stack.

There aremultiple ways in which the server can behave once it returns to a customer
it tried serving previously:

• Preemptive resume: the customer arriving at time Tn brings with it to the system an
amount of work Bn for processing. Whenever a customer’s processing experience
with the server is interrupted, upon revisiting the server it continues from where
it left off. In this model, we assume the sequence {Bn}n≥1 is i.i.d. with cumula-
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tive distribution function (CDF) F and Laplace–Stieltjes transform (LST) β, with
{Bn}n≥1 being independent of the sequence {Tn}n≥1 (and {A(t); t ≥ 0}).

• Preemptive repeat different: the (tagged) customer arriving at time Tn brings with
it to the system a sequence of work {Bn,k}k≥1 for (potential) processing, where the
doubly indexed sequence {Bn,k}n≥1,k≥1 is assumed to be i.i.d. with CDF F and
LST β, and independent of {Tn}n≥1.When this customer first arrives to the system,
it immediately begins having its amount of work Bn,1 processed by the server. If
a new customer arrives before this amount of work has been processed, the server
moves on to the new arrival: when the server returns to the tagged customer, it then
begins processing the amount of work Bn,2. Again, if a new arrival occurs before
the server finishes this amount of work, it moves on to the new arrival, and when it
returns to the tagged customer, it begins processing the amount of work Bn,3. This
behavior continues throughout until the instant where the server finally finishes
processing one of these amounts of work possessed by the tagged customer, at
which time the tagged customer departs from the system.

• Preemptive repeat identical: similar to the preemptive resume case, here the cus-
tomer arriving at time Tn brings with it to the system an amount of work Bn for
processing, where we assume the sequence {Bn}n≥1 is i.i.d. with CDF F and LST
β, with {Bn}n≥1 being independent of the sequence {Tn}n≥1 (and {A(t); t ≥ 0}).
Unlike the preemptive resume case, whenever the server revisits the customer that
arrived at time Tn , it completely restarts processing the job of this customer, mean-
ing all of the previous work performed by the server on that customer is discarded
entirely.

In the interest of improving readability, any reference made to a preemptive
resume queue will correspond to a single-server queueing system operating under
the Last-Come-First-Served preemptive resume discipline. Likewise, any reference to
a preemptive repeat different queue or a preemptive repeat identical queue should be
interpreted in a similar manner.

Throughout our study, we use arguably the most natural definition for the workload
at time t . For each t ≥ 0,W (t) represents the sum of the amounts of work possessed by
each customer present in the system at time t , where the amount of work possessed by
the customer within position j of the stack corresponds to either (a) for the customer
currently being served at time t , the remaining amount of work present associated with
the specific job being processed by the server at that time, or (b) for each customer
waiting in the stack to be revisited by the server, the amount of work the server will
encounter once it returns to that customer. This is how the workload process is defined
in [8].

We associate with each slot k ≥ 1, the random variable Wk(t) that denotes the
remaining amount of work possessed by the customer occupying slot k at time t . Our
main objective is to study the joint distribution of Q(t) and {Wk(t)}k≥1, from which
we can study the joint distribution of Q(t) and W (t) since for each t ≥ 0,

W (t) =
∞∑

k=1

Wk(t).
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Define the setC+ := {α ∈ C : Re(α) > 0}∪{0} as the union of the singleton {0}with
the complex open half-plane consisting of complex numbers having a positive real
part, define C∞+ := {{αn}n≥1 : α ∈ C+} as the set of all sequences having elements
belonging to C+, and define, for each integer n0 ≥ 0 and each integer n ≥ 0, the
function φn0;n : C+ × C

∞+ → C as

φn0;n(α, γ ) :=
∫ ∞

0
e−αt

En0

[
1{Q(t)=n}e−∑n

k=1 γkWk (t)
]
dt, α ∈ C+, γ ∈ C

∞+

where En0 represents conditional expectation, conditional on Q(0) = n0, where each
of the n0 customers present in the system at time 0 begin with an amount of work
having CDF F , independent of everything else.

The method we use to derive the φn0;n functions is a simple modification of the
approach used in [13], where various factorization results were established for what
was referred to in [13] as Preemptive Resume-Production systems, or PRP systems. It
is notable that the overall idea behind the approach found in [13] is similar to ideas used
by thematrix-analytic community (see e.g. [16]), and sowe suspectmany of our results
will also carry over to the case where customers arrive in accordance to a Markovian
Arrival Process, at the cost of more tedious proofs/derivations, in particular having
to establish the invertibility of various matrices that will inevitably be encountered in
this more general setting. We plan to address this more general case in a future study.

For each of the three preemptive queueing systems we study in this manuscript,
the formulas we derive for each φn0;n function are in terms of the LST of the busy
period associated with this queue. This is not surprising, as this fact is in-line with
what was observed in a series of papers written by Abate and Whitt in the late 1980s
[1–4, 6] that address the transient (i.e. time-dependent) behavior of the M/M/1 queue,
the M/G/1 workload, and of regulated Brownian motion, as well as in related work
of the author [9–11]. Hence, we also thoroughly discuss how, for each of the three
preemptive queueing systems, the LST of the busy period can be calculated using a
natural iterative scheme, at all complex numbers having positive real part. Through a
single coupling argument, we will derive not only the iteration scheme discussed in
Abate and Whitt [5] for the busy period LST of the work-conserving M/G/1 queue,
but also iterative schemes for both the preemptive repeat different queue, and the
preemptive repeat identical queue.

2 The queue-length process and the workload process

The time-dependent behavior of both the queue-length process and the workload
process is fairly tractable for not only the preemptive resume queue, but also the
preemptive repeat different queue and the preemptive repeat identical queue. We will
observe that while the same argument can be used to study the time-dependent behav-
ior of the queue-length process in isolation of each of these three queues, each queue
needs to be considered separately when we seek to study the time-dependent behavior
of both the queue-length process and the workload process, as well as the distribution
of the busy period of each of these three queueing systems.
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2.1 The queue-length process

Our first goal in this section is to study the marginal distributions of {Q(t); t ≥ 0} in
isolation. In particular, we will focus on deriving, for each α ∈ C,

φn0;n(α, 0) =
∫ ∞

0
e−αt

Pn0(Q(t) = n)dt .

These functions can be expressed in terms of the Laplace-Stieltjes transform π :
C+ → C of the busy period τ0 with respect to P1:

π(α) := E1[e−ατ0 ], α ∈ C+

where for each integer k ≥ 0, and each s ≥ 0,

τk(s) := inf{t ≥ s : Q(t−) �= k, Q(t) = k}

and we follow the convention that τk := τk(0). Clearly, for each integer n0 ≥ 1,

En0 [e−ατ0 ] = π(α)n0 , α ∈ C+

for each of the three preemptive queueing systems we will consider.
Our first result shows that φn0,0 can be expressed in terms of π .

Proposition 2.1 For each integer n0 ≥ 0,

φn0;0(α) = π(α)n0

α + λ(1 − π(α))
. (1)

Proof We begin by verifying (1) for the case where n0 = 0. Using Fubini’s theorem,
we get

φ0;0(α) =
∫ ∞

0
e−αt

P0(Q(t) = 0)dt

= E0

[∫ ∞

0
e−αt1{Q(t)=0}dt

]

= E0

[∫ T1

0
e−αt1{Q(t)=0}dt

]
+ E0

[∫ ∞

τ0

e−αt1{Q(t)=0}dt
]

= 1

λ + α
+ λ

λ + α
π(α)φ0;0(α)

and solving for φ0;0(α) yields

φ0;0(α) = 1

α + λ(1 − π(α))
.
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Furthermore, when Q(0) = n0 ≥ 1, another application of Fubini’s theorem yields

φn0;0(α) =
∫ ∞

0
e−αt

Pn0(Q(t) = 0)dt = En0

[∫ ∞

0
e−αt1{Q(t)=0}dt

]

= En0

[∫ ∞

τ0

e−αt1{Q(t)=0}dt
]

= π(α)n0φ0;0(α)

proving the claim. 	

Our next result shows that φn0;n can be expressed in terms of π . Our proof strategy

will involve showing the φn0;n(α) terms satisfy a particular recursive scheme that can
be solved easily. The same recursive scheme shows up repeatedly throughout this
study, and so we now state an elementary proposition that addresses this recursion.

Proposition 2.2 Suppose {an}n≥1 and {bn}n≥1 are two sequences of complex numbers,
and the sequence of complex numbers {xn}n≥0 satisfies, for each integer n ≥ 1,

xn = bn + anxn−1.

Then for each integer n ≥ 1,

xn =
[

n∏

	=1

a	

]
x0 +

n∑

k=1

bk

n∏

	=k+1

a	.

Proof This can be proven quickly using induction: we omit the details. 	

Theorem 2.1 For each integer n0 ≥ 0 and each integer n ≥ 0, we have that for each
α ∈ C+,

φn0,n(α, 0) = π(α)n0
[

1

α + λ(1 − π(α))

] [
λ(1 − π(α))

α + λ(1 − π(α))

]n

+
n∑

k=1

1{n0≥k}π(α)n0−k
[

1 − π(α)

α + λ(1 − π(α))

] [
λ(1 − π(α))

α + λ(1 − π(α))

]n−k

.

(2)

This result, when n0 = 0, was established for the preemptive resume queue in the
work of Kella et al. [15] using different techniques, and it can be inferred from Fralix
et al. [13] for the preemptive resume queue as well, under any initial condition. Indeed,
the idea behind the proof we present of Theorem 2.1 is virtually identical to the idea
used to establish the main results found in [13], but the particular mechanics of this
proof will be easier to modify later when we study both the queue-length process and
the workload process.
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Proof We begin by deriving φ0;n(α, 0) for each integer n ≥ 1. For each real t ≥ 0,

1{Q(t)=n} =
∫

(0,t]
1{Q(s−)=n−1}1{τn−1(s)>t,Q(t)=n}A(ds). (3)

Taking the expected value of both sides of (3), while applying the Campbell-Mecke
formula to the right-hand-side gives

P0(Q(t) = n) =
∫ t

0
P0(Q(s) = n − 1)P1(τ0 > t − s, Q(t − s) = 1)λds (4)

and after multiplying both sides of (4) by e−αt , for α ∈ C+, then integrating with
respect to t over [0,∞), we get

φ0;n(α, 0) = λE1

[∫ τ0

0
e−αs1{Q(s)=1}ds

]
φ0;n−1(α, 0) (5)

where φ0;0(α, 0) := φ0;0(α). Hence, for each integer n ≥ 1,

φ0;n(α, 0) =
[
λE1

[∫ τ0

0
e−αs1{Q(s)=1}ds

]]n
φ0;0(α)

=
[
λE1

[∫ τ0

0
e−αs1{Q(s)=1}ds

]]n 1

α + λ(1 − π(α))
. (6)

We can also solve for the unknown expected value found in both (5) and (6). Summing
both sides of (5) over the integers n ≥ 1 gives

1

α
− φ0;0(α) = λ

α
E1

[∫ τ0

0
e−αs1{Q(s)=1}ds

]
(7)

and sinceφ0;0(α)was found inProposition 2.1, (7) contains only one unknown: solving
for this unknown yields

E1

[∫ τ0

0
e−αs1{Q(s)=1}ds

]
= 1

λ

[
1 − α

α + λ(1 − π(α))

]
= 1 − π(α)

α + λ(1 − π(α))
.

(8)

Plugging (8) into (6) then gives, for each integer n ≥ 1,

φ0;n(α, 0) = 1

α + λ(1 − π(α))

[
λ(1 − π(α))

α + λ(1 − π(α))

]n

proving (2) for the case where n0 = 0.
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It remains to establish (2) for the case where n0 ≥ 1 and n ≥ 1. For each integer
n ≥ 1,

1{Q(t)=n} = 1{n0≥n}1{Q(t)=n,τn−1>t} +
∫

(0,t]
1{Q(s−)=n−1}1{τn−1(s)>t,Q(t)=n}A(ds)

(9)

and after taking the expected value of both sides and simplifying, we get

Pn0(Q(t) = n) = 1{n0≥n}Pn0(Q(t) = n, τn−1 > t)

+ λ

∫ t

0
Pn0(Q(s) = n − 1)P1(τ0 > t − s, Q(t − s) = 1)ds.

(10)

Multiplying both sides of (10) by e−αt , then integrating with respect to t over [0,∞)

gives

φn0;n(α, 0) = 1{n0≥n}π(α)n0−n (1 − π(α))

α + λ(1 − π(α))
+ λ(1 − π(α))

α + λ(1 − π(α))
φn0;n−1(α, 0).

(11)

Finally,we can solve this recursion by applying Proposition 2.2 to (11) and conclude
that for each integer n ≥ 1,

φn0,n(α, 0) = π(α)n0
[

1

α + λ(1 − π(α))

] [
λ(1 − π(α))

α + λ(1 − π(α))

]n

+
min(n0,n)∑

k=1

π(α)n0−k
[

1 − π(α)

α + λ(1 − π(α))

] [
λ(1 − π(α))

α + λ(1 − π(α))

]n−k

proving the claim. 	


2.2 The workload process

Our next objective is to study the joint distribution of Q(t) and {Wk(t)}k≥1, but unlike
our study of Q(t), we will need to use a separate derivation for each of the three
preemptive queueing systems under consideration.

An important quantity associated with each preemptive queue is the function N :
C+ × C+ → C, defined as

N (α, γ ) := E1

[∫ τ0

0
e−αs1{Q(s)=1}e−γW1(s)ds

]
.

This function will repeatedly appear in our study of the φn0,n functions. Each time
we derive a computable expression for N (α, γ ), we will seek to calculate the quantity
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N (α, γ, x), defined for each x > 0 as

N (α, γ, x) := E

[∫ τ0

0
e−αt1{Q(t)=1}e−γW1(t)dt | Q(0) = 1,W1(0) = x

]
.

Note thatW1(0) is simply the amount ofwork possessed by the single customer present
at time zero, as we are also conditioning on Q(0) = 1. Once we have determined
N (α, γ, x) for each x ≥ 0, we can use a simple conditioning argument to conclude
that

N (α, γ ) =
∫

(0,∞)

N (α, γ, x)dF(x).

2.2.1 Preemptive resume queues

While the time-dependent behavior of the preemptive resume queue is much better
understood than the time-dependent behavior of both the preemptive repeat different
and the preemptive repeat identical queues, our objective here is to first present a
procedure for studying the time-dependent behavior of the preemptive resume queue
that can be adapted to study both preemptive repeat queues.

Our first result in this subsection focuses on the derivation of N (α, γ ) for the
preemptive resume queue.

Proposition 2.3 For each α, γ ∈ C+,

N (α, γ ) = β(γ ) − π(α)

α + λ(1 − π(α)) − γ
(12)

Proof The key to calculating N (α, γ ) is to first focus on deriving N (α, γ, x). Observe
first that when Q(0) = 1 and W1(0) = x ,

∫ τ0

0
e−αt1{Q(t)=1}e−γW1(t)dt =

∫ min(T1,x)

0
e−αye−γ (x−y)dy

+ 1{T1≤x}
∫ τ0

T1
e−αt1{Q(t)=1}e−γW1(t)dt

=
∫ x

0
e−αye−γ (x−y)1{T1>y}dy

+ 1{T1≤x}
∫ τ0

T1
e−αt1{Q(t)=1}e−γW1(t)dt . (13)

Taking the expected value of both sides of (13) gives

N (α, γ, x) =
∫ x

0
e−αye−γ (x−y)e−λydy +

∫ x

0
e−αyπ(α)N (α, γ, x − y)λe−λydy

123



40 Queueing Systems (2024) 107:31–61

=e−(α+λ)x
∫ x

0
e(α+λ−γ )ydy+λe−(α+λ)xπ(α)

∫ x

0
N (α, γ, y)e(α+λ)ydy.

(14)

Multiplying both sides of (14) by e(α+λ)x , then taking the partial derivative of both
sides with respect to x yields

∂

∂x
N (α, γ, x) + (α + λ(1 − π(α)))N (α, γ, x) = e−γ x . (15)

Equation (15) is essentially afirst-order linearODE,with initial condition N (α, γ, 0) =
0. Solving this ODE yields

N (α, γ, x) = e−γ x − e−(α+λ(1−π(α)))x

α + λ(1 − π(α)) − γ
. (16)

Integrating both sides of (16) over [0,∞) with respect to dF(x) gives

N (α, γ ) = β(γ ) − β(α + λ(1 − π(α)))

α + λ(1 − π(α)) − γ
= β(γ ) − π(α)

α + λ(1 − π(α)) − γ
(17)

where the last equality follows from the well-known fixed point equation π(α) =
β(α + λ(1 − π(α)) satisfied by π when the service discipline of the M/G/1 queue is
a work-conserving service discipline. This completes the proof of the claim. 	


The next result shows how we can modify the proof of Theorem 2.1 to derive
φn0;n(α, γ ).

Theorem 2.2 For each integer n0 ≥ 0, each integer n ≥ 0, each α ∈ C+, and each
γ ∈ C

∞+ ,

φn0;n(α, γ )

= φn0;0(α)

[
n∏

	=1

λN (α, γ	)

]

+
n∑

k=1

1{n0≥k}π(α)n0−k

[
k−1∏

	=1

β(γ	)

]
N (α, γk)

[
n∏

	=k+1

λN (α, γ	)

]
(18)

Proof The key to establishing this result is to derive the following recursive scheme:
for each integer n ≥ 1,

φn0;n(α, γ ) = 1{n0≥n}π(α)n0−n

[
n−1∏

	=1

β(γ	)

]
N (α, γn) + λN (α, γn)φn0;n−1(α, γ ).

(19)
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Once this recursion has been established, it can be solved using Proposition 2.2 to get
(18).

It remains, then, to derive the recursion. First we observe that for each t ≥ 0, each
integer n ≥ 1, and each γ ∈ C+,

1{Q(t)=n}e−∑n
k=1 γkWk (t)

= 1{n0≥n}1{τn≤t,τn−1>t,Q(t)=n}e−∑n
k=1 γkWk (t)

+
∫

(0,t]
1{Q(s−)=n−1}e−∑n−1

k=1 γkWk (s−)1{Q(t)=n,τn−1(s)>t}e−γnWn(t)A(ds). (20)

Taking the expected value of both sides of (20), while further applying the Campbell-
Mecke formula to the right-hand-side gives

En0 [1{Q(t)=n}e−∑n
k=1 γkWk (t)]

= 1{n0≥n}

[
n−1∏

k=1

β(γk)

]
En0 [1{τn≤t,τn−1>t,Q(t)=n}e−γnWn(t)]

+ λ

∫ t

0
En0 [1{Q(s)=n−1}e−∑n−1

k=1 γkWk (s)]E1

[
1{Q(t−s)=1,τ0>t−s}e−γnW1(t−s)

]
ds.

(21)

Multiplying both sides of (21) by e−αt for α ∈ C+, then integrating both sides over
[0,∞) gives

φn0,n(α, γ ) = 1{n≤n0}

[
n−1∏

k=1

β(γk)

]
π(α)n0−n

E1

[∫ τ0

0
e−αt1{Q(t)=1}e−γnW1(t)dt

]

+ λφn0,n−1(α, γ )E1

[∫ τ0

0
e−αt1{Q(t)=1}e−αγnW1(t)dt

]

i.e.

φn0,n(α, γ ) = 1{n≤n0}

[
n−1∏

k=1

β(γk)

]
π(α)n0−nN (α, γn) + λN (α, γn)φn0,n−1(α, γ )

which is (19). 	

We conclude this subsection by stating the following corollary, which gives us the

Laplace transform of the joint Laplace–Stieltjes transform of Q(t) and W (t). In the
interest of relating this joint Laplace–Stieltjes transform to previous results, we define
the functions κ : C+ → C and ψ : C+ → C, where for α, γ ∈ C+,

κ(α) := α + λ(1 − π(α)), ψ(γ ) := γ − λ(1 − β(γ ).
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Corollary 2.1 For each z ∈ D(0, 1), each α ∈ C+, and each γ ∈ C+,
∫ ∞

0
En0 [zQ(t)e−γW (t)]e−αt dt = π(α)n0

κ(α)

κ(α) − γ

(1 − z)(κ(α) − γ ) + z(α − ψ(γ ))

+ z(β(γ ) − π(α))

(1 − z)(κ(α) − γ ) + z(α − ψ(γ ))
n0∑

k=1

π(α)n0−k(zβ(γ ))k−1. (22)

Proof This result follows quickly from Theorem 2.2, since

∫ ∞

0
En0 [zQ(t)e−γW (t)]e−αt dt =

∞∑

n=0

znφn0;n(α, γ en)

where en is a row vector having n elements, where each element is equal to one.
Indeed,

∞∑

n=0

znφn0;n(α, γ en) = φn0;0(α)

1 − λN (α, γ )z
+ N (α, γ )z

1 − λN (α, γ )z

n0∑

k=1

π(α)n0−k(zβ(γ ))k−1

and since

N (α, γ ) = β(γ ) − π(α)

κ(α) − γ
, φn0;0(α) = π(α)n0

κ(α)

and

1 − λzN (α, γ ) = 1 − λz

[
β(γ ) − π(α)

κ(α) − γ

]
= κ(α) − γ − λz(β(γ ) − π(α))

κ(α) − γ

= (1 − z)(κ(α) − γ ) + z(κ(α) − γ − λβ(γ ) + λπ(α))

κ(α) − γ

= (1 − z)(κ(α) − γ ) + z(α + λ − γ − λβ(γ ))

κ(α) − γ

= (1 − z)(κ(α) − γ ) + z(α − ψ(γ ))

κ(α) − γ

we conclude that

φn0;0(α)

1 − λN (α, γ )z
+ N (α, γ )z

1 − λN (α, γ )z

n0∑

k=1

π(α)n0−k(zβ(γ ))k−1

= π(α)n0

κ(α)

κ(α) − γ

(1 − z)(κ(α) − γ ) + z(α − ψ(γ ))

+ z(β(γ ) − π(α))

(1 − z)(κ(α) − γ ) + z(α − ψ(γ ))

n0∑

k=1

π(α)n0−k(zβ(γ ))k−1
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which completes the derivation. 	

Readers should observe that the Laplace transform of the joint LST of Q(t) and

W (t) was also derived, for the case where Q(0) = 0, in Theorem 2 of [12], and when
n0 = 0, (22) agrees with the expression found there. In fact, it was further shown in
[12] that when Q(0) = 0, the joint LST of Q(t) andW (t) is the same for all symmetric
M/G/1 service disciplines: the preemptive resume queue is an example of a symmetric
M/G/1 queue.

2.2.2 Preemptive repeat different queues

The joint Laplace–Stieltjes transform of Q(t) and {Wk(t)}k≥1 can be analyzed for the
preemptive repeat different queue as well using a similar proof technique, in fact the
analysis is in some ways simpler than the analysis used above to study the workload
process of the preemptive resume queue.

Our first result in this section is an expression for N (α, γ ).

Proposition 2.4 For each α, γ ∈ C+,

N (α, γ ) = β(γ ) − β(α + λ)

(α + λ − γ )(1 − λ
λ+α

(1 − β(λ + α))π(α))
(23)

Proof We begin by expressing N (α, γ, x) in terms of N (α, γ ). Conditioning on the
fact that Q(0) = 1 and W1(0) = x , for x > 0, we get

∫ τ0

0
e−αt1{Q(t)=1}e−γW1(t)dt =

∫ x

0
e−αy1{A(y)=0}e−γ (x−y)dy

+ 1{T1≤x}
∫ τ0

T1
e−αt1{Q(t)=1}e−γW1(t)dt . (24)

Taking the expected value of both sides of (24), while further simplifying the right-
hand-side gives

N (α, γ, x) =
∫ x

0
e−αye−λye−γ (x−y)dy + π(α)

[∫ x

0
e−αyλe−λydy

]
N (α, γ )

or

N (α, γ, x) = e−γ x − e−(α+λ)x

α + λ − γ
+ λ

λ + α
(1 − e−(λ+α)x )π(α)N (α, γ ). (25)

Integrating both sides of (25) over [0,∞) with respect to dF(x) yields

N (α, γ ) = β(γ ) − β(α + λ)

α + λ − γ
+ λ

λ + α
(1 − β(λ + α))π(α)N (α, γ )

and solving for N (α, γ ) gives (23). 	
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Having Proposition 2.4 in hand, we are now ready to derive the φn0;n functions
associated with the preemptive repeat different queue.

Theorem 2.3 For each integer n0 ≥ 0, and each integer n ≥ 1,

φn0;n(α, γ ) =
[
n−1∏

	=1

β(γ	)

]
N (α, γn)

n∑

k=1

1{n0≥k}π(α)n0−k
[

λ(1 − π(α))

α + λ(1 − π(α))

]n−k

+
[
n−1∏

	=1

β(γ	)

]
N (α, γn)

N (α, 0)
π(α)n0

[
1

α + λ(1 − π(α))

] [
λ(1 − π(α))

α + λ(1 − π(α))

]n
. (26)

Beforewe give the proof, it is instructive to use this result to determine the stationary
joint distribution of Q(t) and {{Wk(t)}k≥1. Multiplying both sides of (26) by α, then
letting α ↓ 0 yields

E[1{Q(∞)=n}e−∑Q(∞)
k=1 γkWk (∞)] =

[
n−1∏

	=1

β(γ	)

]
N (0, γn)

N (0, 0)
P(Q(∞) = n)

which implies that conditional on Q(∞) = n, the random variablesW1(∞),W2(∞),

. . . ,Wn(∞) are independent, where for each k ∈ {1, 2, . . . , n − 1}, Wk(∞) has LST
β, and Wn(∞) has LST

E[e−γWn(∞) | Q(∞) = n] = N (0, γ )

N (0, 0)
= λ(β(γ ) − β(λ))

(λ − γ )(1 − β(λ))
.

Letting B be a generic r.v. having CDF F , and Eλ be an exponential r.v. having rate λ,
we can see that this conditional LST is the conditional LST of B− Eλ, given B > Eλ,
where B and Eλ are assumed to be independent. This result agrees with Proposition
2.3 of Bergquist and Sigman [8].

Proof The proof of this result is actually much simpler in many respects than the
derivation of the φn0;n functions associated with the preemptive resume queue. For
each integer n ≥ 1,

1{Q(t)=n}e−∑n
k=1 γkWk (t) = 1{n0≥n}e−∑n−1

k=1 γkWk (0)1{τn≤t,τn−1>t,Q(t)=n}e−γnWn(t)

+
∫

(0,t]
1{Q(s−)=n−1}

e−∑n−1
k=1 γkWk (t)1{τn−1(s)>t,Q(t)=n}e−γnWn(t)A(ds). (27)

Taking the expected value of both sides of (27), while applying the Campbell–Mecke
formula to the right-hand-side gives

En0

[
1{Q(t)=n}e−∑n

k=1 γkWk (t)
]

= 1{n0≥n}

[
n−1∏

k=1

β(γk)

]
En0 [1{τn≤t,τn−1>t,Q(t)=n}e−γnWn(t)]
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+ λ

[
n−1∏

k=1

β(γk)

] ∫ t

0
Pn0(Q(s) = n − 1)E1

[
1{Q(t−s)=1}e−γnW1(t−s)

]
ds (28)

and after multiplying both sides of the equality by e−αt , then integrating with respect
to t over [0,∞), we get

φn0;n(α, γ ) = 1{n0≥n}π(α)n0−n

[
n−1∏

	=1

β(γ	)

]

N (α, γn) + λ

[
n−1∏

	=1

β(γ	)

]
N (α, γn)φn0;n−1(α, 0) (29)

implying

φn0;n(α, γ ) = 1{n0≥n}π(α)n0−n

[
n−1∏

	=1

β(γ	)

]
N (α, γn)

+ λ

[
n−1∏

	=1

β(γ	)

]
N (α, γn)

min(n0,n−1)∑

k=1

(1 − π(α))π(α)n0−k

[
1

α + λ(1 − π(α))

] [
λ(1 − π(α))

α + λ(1 − π(α))

]n−1−k

+ λ

[
n−1∏

	=1

β(γ	)

]
N (α, γn)π(α)n0

[
1

α + λ(1 − π(α))

]

[
λ(1 − π(α))

α + λ(1 − π(α))

]n−1

(30)

and since from (8)

λN (α, 0) = λ(1 − π(α))

α + λ(1 − π(α))
(31)

we arrive, after some algebra, at the claim. 	

Remark Readers should note that the joint distribution of Q(t) and {Wk(t)}k≥1 for the
‘nonpreemptive-LIFO with restart’ model of Horvath et al. [14] is exactly the same as
the joint distribution of Q(t) and {Wk(t)}k≥1 for the preemptive repeat differentmodel.
Hence, we can recover Theorem 1 of [14] from Theorem 2.3 above by multiplying
both sides by α, letting α ↓ 0, and setting γk = 0 for 1 ≤ k ≤ n − 1.

2.2.3 Preemptive repeat identical queues

The workload process of the preemptive repeat identical queue behaves in a manner
that makes its analysis more difficult than that for the preemptive resume queue,
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and the preemptive repeat different queue, in that we will have to first study the
joint distribution of Q(t) and {Wk(t)}k≥1 for a related preemptive repeat identical
queueing system where each customer brings an amount of work that has a discrete
distribution. This intermediate step is needed, because the preemptive repeat identical
service discipline features an additional dependency that needs to be accounted for
when the joint distribution of Q(t) and {Wk(t); t ≥ 0} is analyzed, and if we assume
each service time is a finite, discrete random variable, we can use the well-known
thinning property of Poisson processes to think of arrivals as being broken up into
‘types’, where a customer who is of type-k brings a deterministic amount of work
equal to xk . This trick is helpful, because each time a type-k customer’s service is
interrupted by a new arrival, when the server returns to that type-k customer, the
amount of work possessed by that customer that the server must process (before the
next interruption) is xk . Once we derive results for this system, analogous results will
be established for the original preemptive repeat identical system through a natural
limiting procedure.

Given our original preemptive repeat identical queueing system, we define, for each
integer m ≥ 1, the sequence of random variables {B(m)

n }n≥1, where for each integer
n ≥ 1,

B(m)
n :=

∞∑

k=1

k

2m
1{(k−1)/2m<Bn≤k/2m }.

For each integer m ≥ 1, the mth queueing system is a single-server queue operating
under the preemptive repeat identical discipline, where customers arrive in accordance
to the arrival process {A(t); t ≥ 0} (meaning each of these systems have the same
arrival process) and the nth arrival to the system arrives at time Tn , and brings an
amount of work B(m)

n for processing. Finally, we let Q(m)(t) denote the number of
customers present in themth queueing system at time t , and for each integer k ≥ 1, we
let W (m)

k (t) denote the remaining amount of work possessed by the customer present
in slot k at time t .

Given each customer in the mth queueing system brings a random amount of work
for processing that has a discrete distribution, it is also useful to associate with each
such customer a label that tells us precisely how much work was originally brought
to the system by the arriving customer. We say that an arriving customer to the mth
queueing system is a type- j customer with probability

pm, j := F( j/2m) − F(( j − 1)/2m).

By introducing this labeling scheme, we may say that each type- j customer bring to
the system a deterministic amount of work xm, j := j/2m for processing. For each
integer k ≥ 1, and each t ≥ 0, let Lk(t) denote the customer type of the customer
present in slot k at time t .

Next, we introduce the functions 
(m)
n0;n : C+ × C

∞+ × N
∞ → C+, defined as

follows: for each α ∈ C+, each γ ∈ C
∞+ , and each i = (i1, i2, . . .) ∈ N

∞ (where N
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denotes the set of positive integers)


(m)
n0;n(α, γ , i) := En0 [1{Q(m)(t)=n,L(m)

1 (t)=i1,...,L
(m)
n (t)=in}e

−∑n
k=1 γkW

(m)
k (t)].

Ourfirst objective is to derive computable expression for the
(m)
n0:n functions, andwe

will see shortly that these functions be expressed in terms of the N (α, γ, x) quantities
defined above. In the process of studying this joint distribution, we will first need to
examine the joint distribution of Q(t) and {Lk(t)}k≥1. Throughout, we let πm denote
the LST of the busy period of the mth queueing system, and we let

Nm(α, γ, x) := E(1,x)

[∫ τ
(m)
0

0
e−αt1{Q(m)(t)=1}e−γW (m)

1 (t)dt

]
.

Proposition 2.5 For each α ∈ C+, and each i ∈ E∞, we have for each integer n ≥ 1,


(m)
n0;n(α, 0, i) = φ

(m)
n0;0(α)

[
n∏

	=1

λpm,i	Nm(α, 0, xm,i	 )

]

+
n∑

k=1

1{n0≥k}πm(α)n0−k

[
k∏

	=1

pm,i	

]
Nm(α, 0, xm,ik )

[
n∏

	=k+1

λpm,i	Nm(α, 0, xm,i	 )

]
(32)

Proof This result can be proven using a method analogous to that used to establish
Theorem 2.1, in that the key to proving the claim is to show that the 

(m)
n0;n(α, 0, i)

terms satisfy the following recursion: for each integer n ≥ 1,


(m)
n0;n(α, 0, i) = 1{n0≥n}πm(α)n0−n

[
n∏

	=1

pm,i	

]
Nm(α, 0, xm,in )

+ λpm,in Nm(α, 0, xm,in )
(m)
n0;n−1(α, 0, i). (33)

Once this recursion has been established, we can use Proposition 2.2 to arrive at (32).
It remains to establish (33). Fix i ∈ N

∞, and observe that for each integer n ≥ 1,

1{Q(m)(t)=n,L(m)
1 (t)=i1,...,Ln(m)(t)=in}

= 1{n0≥n}1{L(m)
1 (0)=i1,...,L

(m)
n (0)=in ,τ

(m)
n ≤t,τ (m)

n−1>t,Q(m)(t)=n}

+
∫ t

0
1{Q(m)(s−)=n−1,L(m)

1 (s−)=i1,...,L
(m)
n−1(s−)=in−1}1{Q(m)(t)=n,τ

(m)
n−1(s)>t}Am,in (ds)

(34)
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where {Am,i (t); t ≥ 0} denotes the thinned Poisson process of type-i arrivals. Taking
the expected value of both sides of (34), while further applying the Campbell–Mecke
formula to the stochastic integral on the right-hand-side yields

Pn0(Q
(m)(t) = n, L(m)

1 (t) = i1, . . . , L
(m)
n (t) = in)

= 1{n0≥n}P(L(m)
1 (0) = i1, . . . , L

(m)
n (0) = in, τ

(m)
n ≤ t, τ (m)

n−1 > t, Q(m)(t) = n)

+ λpm,in

∫ t

0
P(Q(m)(s) = n − 1, L(m)

1 (s) = i1, . . . , L
(m)
n−1(s) = in−1)

P(1,xm,im )(Q
(m)(t − s) = 1, τ (m)

0 > t − s)ds. (35)

Multiplying both sides of (35) by e−αt , then integrating with respect to t over [0,∞)

gives


(m)
n0;n(α, 0, i) = 1{n0≥n}

[
n∏

	=1

pm,i	

]
πm(α)n0−nNm(α, 0, xm,in )

+ λpm,in Nm(α, 0, xm,in )
(m)
n0;n−1(α, 0, i)

which establishes the recursion. 	

The next result completes the derivation of the 

(m)
n0;n functions associated with the

mth preemptive repeat identical queue.

Proposition 2.6 For each α ∈ C+, and each γ ∈ C+,


(m)
n0;n(α, γ , i) = 1{n0≥n}πm(α)n0−n

[
n∏

	=1

pm,i	

]
e−∑n−1

k=1 γk xm,ik Nm(α, γn, xm,in )

+ φ
(m)
n0;0(α)

[
n−1∏

	=1

λpm,i	Nm(α, 0, xm,i	 )

]
λpm,in

e−∑n−1
k=1 γk xm,ik Nm(α, γn, xm,in )

+
min(n0,n−1)∑

k=1

πm(α)n0−k

[
k∏

	=1

pm,i	

]
Nm(α, 0, xm,ik )

[
n−1∏

	=k+1

λpm,i	Nm(α, 0, xm,i	 )

]

× λpm,in e
−∑n−1

	=1 γ	xm,i	 Nm(α, γn, xm,in ) (36)

Proof Fix t > 0, and observe that for each γ ∈ C
∞+ , and each i ∈ N

∞, we have for
each integer n ≥ 1,

1{Q(m)(t)=n,L(m)
1 (t)=i1,...,L

(m)
n (t)=in}e

−∑n
k=1 γkW

(m)
k (t)
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= 1{L(m)
1 (0)=i1,...,L

(m)
n (0)=in ,τ

(m)
n ≤t,τ (m)

n−1>t,Q(m)(t)=n}e
−∑n−1

k=1 γk xm,ik e−γnW
(m)
n (t)

+
∫

(0,t]
1{Q(m)(s−)=n−1,L(m)

1 (s−)=i1,...,L
(m)
n−1(s−)=in−1}e

−∑n−1
k=1 γk xm,ik

e−γnW
(m)
n (t)1{Q(m)(t)=n,τ

(m)
n−1(s)>t}Am,in (ds). (37)

After taking the expected value of both sides of (37), while applying the Campbell–
Mecke formula to the integral on the right-hand-side, we get

En0

[
1{Q(m)(t)=n,L(m)

1 (t)=i1,...,L
(m)
n (t)=in }e

− ∑n
k=1 γkW

(m)
k (t)

]

=
[

n∏

	=1

pm,i	

]
e− ∑n−1

k=1 γk xm,ik En0

[
e−γnWn(t)1{τ (m)

n ≤t,τ (m)
n−1>t,Q(m)(t)=n} | L(m)

n (0) = in
]

+ λpm,in

∫ t

0
Pn0 (Q

(m)(s) = n − 1)e− ∑n−1
k=1 γk xm,ik E(1,xm,in )

[
e−γnW1(t−s)1{τ (m)

0 >t−s,Q(m)(t−s)=1}
]
ds. (38)

Multiplying both sides of (38) by e−αt , the integrating with respect to t over [0,∞)

gives


(m)
n0;n(α, γ , i) = 1{n0≥n}πm(α)n0−n

[
n∏

	=1

pm,i	

]
e−∑n−1

k=1 γk xm,ik Nm(α, γn, xm,in )

+ λpm,in e
−∑n−1

k=1 γk xm,ik Nm(α, γn, xm,in )
(m)
n0;n−1(α, 0, i). (39)

Applying Proposition 2.5 to (39) proves the claim. 	

We are now ready to study the joint distribution of Q(t) and {Wk(t); t ≥ 0} for the

original preemptive repeat identical queueing system. A proper limiting argument is
somewhat cumbersome to state properly, as it requires a significant amount of new
notation, so we will provide an overall sketch of the idea in order to help readers better
understand how it works.

Letting {Q(m)(t); t ≥ 0} and {{W (m)
k (t); t ≥ 0}} denote the queue-length process

and the remaining amounts of work of each customer present in each slot at time t ,
one can see from the construction of these queueing systems that on the set where no
arrivals and service completions (within the original queueing systemwe are interested
in studying) ever occur simultaneously, and the number of arrivals in the interval (0, t]
is finite (this event occurs with probability one), there exists an integerm0 ≥ 1 (which
may depend on the outcome in the set) where the order at which customers depart from
the system, among those arriving in the interval (0, t], is the same for each integer
m ≥ m0. Once this fact has been observed, a bit of thought reveals that for each
m ≥ m0, the customer found in slot k at time t is the same for all queueing systems
m ≥ m0 (here m0 may depend on t as well as the outcome), and so Q(m)(t) = Q(t)
(again these statements are true for all outcomes on a set having probability one), and
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by the dominated convergence theorem, for each α ∈ C+, and each γ ∈ C
∞+ ,

lim
n→∞En0 [1{Q(m)(t)=n}e−∑n

k=1 γkW
(m)
k (t)] = En0 [1{Q(t)=n}e−∑n

k=1 γkWk (t)].

The next step of the argument is to show that for each α ∈ C+, and each γ ∈ C+,
when Q(m)(0) = 1 for each m ≥ 1, with that initial customer possessing an amount
of work

B(m)
0 :=

∞∑

k=1

(k/2m)1{(k−1)/2m<B0≤k/2m }

where B0 has CDF F and is independent of everything else,

∫ τ
(m)
0

0
e−αt1{Q(m)(t)=1}e−γW (m)

1 (t)dt
a.s.→

∫ τ0

0
e−αt1{Q(t)=1}e−γW1(t)dt (40)

as m → ∞, and

e−γ B(m)
0

∫ τ
(m)
0

0
e−αt1{Q(m)(t)=1}dt

a.s→ e−γ B0

∫ τ0

0
e−αt1{Q(t)=1}dt (41)

as m → ∞. The argument required to show this is somewhat tedious, but the basic
idea is to consider a decreasing sequence {εr }r≥1 ⊂ (0, 1/Re(α)) that converges to
zero as r → ∞, and for each integer r ≥ 1, set tr as that unique positive integer
satisfying

∫ ∞

tr
e−Re(α)t dt = εr

so clearly tr depends on εr , and tr → ∞ as r → ∞. Next, note that for each r ≥ 1,

− εr +
∫ min(τ (m)

0 ,tr )

0
e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e−Re(γ )W (m)

1 (t) cos(Im(γ )W (m)
1 (t))dt

≤
∫ τ

(m)
0

0
e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e−Re(γ )W (m)

1 (t) cos(Im(γ )W (m)
1 (t))dt

≤ εr +
∫ min(τ (m)

0 ,tr )

0
e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e−Re(γ )W (m)

1 (t) cos(Im(γ )W (m)
1 (t))dt

and on the event where there are a finite number of arrivals in (0, tr ] for each r ≥ 1,
and no arrivals and service completions ever occur simultaneously,

− εr +
∫ min(τ0,tr )

0
e−Re(α)t cos(Im(α)t)1{Q(t)=1}e−Re(γ )W1(t) cos(Im(γ )W1(t))dt
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≤ lim inf
m→∞

∫ τ
(m)
0

0
e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e−Re(γ )W (m)

1 (t) cos(Im(γ )W (m)
1 (t))dt

≤ lim sup
m→∞

∫ τ
(m)
0

0
e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e−Re(γ )W (m)

1 (t) cos(Im(γ )W (m)
1 (t))dt

≤ εr +
∫ min(τ0,tr )

0
e−Re(α)t cos(Im(α)t)1{Q(t)=1}e−Re(γ )W1(t) cos(Im(γ )W1(t))dt

for each r ≥ 1. Letting r → ∞ then yields

∫ τ0

0
e−Re(α)t cos(Im(α)t)1{Q(t)=1}e−Re(γ )W1(t) cos(Im(γ )W1(t))dt

≤ lim inf
m→∞

∫ τ
(m)
0

0
e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e−Re(γ )W (m)

1 (t) cos(Im(γ )W (m)
1 (t))dt

≤ lim sup
m→∞

∫ τ
(m)
0

0
e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e−Re(γ )W (m)

1 (t) cos(Im(γ )W (m)
1 (t))dt

≤
∫ τ0

0
e−Re(α)t cos(Im(α)t)1{Q(t)=1}e−Re(γ )W1(t) cos(Im(γ )W1(t))dt

which proves

∫ τ
(m)
0

0
e−Re(α)t cos(Im(α)t)1{Q(m)(t)=1}e−Re(γ )W (m)

1 (t) cos(Im(γ )W (m)
1 (t))dt

a.s.→
∫ τ0

0
e−Re(α)t cos(Im(α)t)1{Q(t)=1}e−Re(γ )W1(t) cos(Im(γ )W1(t))dt

as m → ∞. A similar argument can be used three additional times, in order to
account for the other cosine and sine terms associated with the real and complex parts
of each complex number occurring in the integrand, which will eventually lead to (40).
Once (40) has been proven, (41) follows as a simple consequence of (40), coupled
with B(m)

1 → B1 almost-surely as m → ∞. Finally, by the dominated convergence
theorem, we get

lim
m→∞E

[∫ τ
(m)
0

0
e−αt1{Q(m)(t)=1}e−γW (m)

1 (t)dt

]
= E

[∫ τ0

0
e−αt1{Q(t)=1}e−γW1(t)dt

]

(42)

and

lim
m→∞E

[
e−γ B(m)

0

∫ τ
(m)
0

0
e−αt1{Q(m)(t)=1}dt

]
= E

[
e−γ B0

∫ τ0

0
e−αt1{Q(t)=1}dt

]
.

(43)
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In other words,

lim
m→∞ Nm(α, γ ) = N (α, γ ), lim

m→∞ Mm(α, γ ) = M(α, γ ).

We now have all of the necessary ingredients needed to state our main result for the
joint distribution of Q(t) and {Wk(t)}k≥1 for the preemptive repeat identical queueing
system.

Theorem 2.4 For each α ∈ C+, and each γ ∈ C
∞+ , we have that for each integer

n0 ≥ 0, and each integer n ≥ 1,

φn0;n(α, γ ) = φn0;0(α)λn

[
n−1∏

	=1

M(α, γ	)

]
N (α, γn)

+
n∑

k=1

1{n0≥k}π(α)n0−k

[
k−1∏

	=1

β(γ	)

] [
n−1∏

	=k

M(α, γ	)

]
λn−k N (α, γn).

Proof From Proposition 2.6, it is easy to show that

φ
(m)
n0;n(α, γ ) =

∑

(i1,...,in)∈En

[
n∏

	=1

p(m)
i	

] ∫ ∞

0
e−αt

En0

[
1{Q(m)(t)=n,L1(t)=i1,...,Ln(t)=in}

e−∑n
k=1 γkW

(m)
k (t)

]
dt

= φ
(m)
n0;0(α)λn

[
n−1∏

	=1

Mm(α, γ	)

]
Nm(α, γn)

+
n∑

k=1

1{n0≥k}πm(α)n0−k

[
k−1∏

	=1

βm(γ	)

] [
n−1∏

	=k

Mm(α, γ	)

]
λn−k Nm(α, γn)

Letting m → ∞ proves the claim. 	

Our next objective is to find simpler expressions for both N (α, γ ) andM(α, γ ). The

following proposition provides us with a computable expression for both N (α, γ, x)
and M(α, γ, x).

Proposition 2.7 For each α, γ ∈ C+, and each real x > 0, we have

N (α, γ, x) = e−γ x − e−(λ+α)x

(λ + α − γ )(1 − λ
λ+α

π(α)(1 − e−(λ+α)x ))
. (44)
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Likewise,

M(α, γ, x) = e−γ x − e−(γ+λ+α)x

(λ + α)(1 − λ
λ+α

π(α)(1 − e−(λ+α)x ))
. (45)

Proof Assuming Q(0) = 1 and W1(0) = x , we see that

∫ τ0

0
e−αs1{Q(s)=1}e−γW1(s)ds =

∫ min(T1,x)

0
e−αse−γ (x−s)ds

+ 1{T1≤x}
∫ τ0

T1+τ1(T1)
e−αs1{Q(s)=1}e−γW1(s)ds

(46)

Taking the expected value of both sides of (46) and simplifying further gives

N (α, γ, x) =
∫ x

0
e−αse−λse−γ (x−s)ds +

∫ x

0
e−αyπ(α)N (α, γ, x)λe−λydy

= e−γ x (1 − e−(λ+α−γ )x )

λ + α − γ
+ π(α)

λ

λ + α
(1 − e−(λ+α)x )N (α, γ, x)

and after solving for N (α, γ, x), we arrive at (44). Likewise,

M(α, γ, x) = e−γ x N (α, 0, x)

which proves (45). 	

Corollary 2.2 For each α, γ ∈ C+,

N (α, γ ) = E

[
e−γ B − e−(λ+α)B

(λ + α − γ )(1 − λ
λ+α

π(α)(1 − e−(λ+α)B))

]

and

M(α, γ ) = E

[
e−γ B − e−(γ+λ+α)B

(λ + α)(1 − λ
λ+α

π(α)(1 − e−(λ+α)B))

]

We close this section by verifying that our results can be used to rederive the
steady-state results recently found in [8]. First,

N (0, 0) = E1

[∫ τ0

0
1{Q(t)=1}dt

]
= β(−λ) − 1

λ

which in turn implies that for each integer n ≥ 0,

P(Q(∞) = n) = (λN (0, 0))n(1 − λN (0, 0)) = (β(−λ) − 1)n(2 − β(−λ)).
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This agrees with the results found in [8], and note in particular 0 < P(Q(∞) = 0) < 1
if and only if β(−λ) = E[eλB] < 2, meaning the amount of work brought by each
customer must be light-tailed, and have a finite moment generating function that is
also well-defined at λ. Clearly E[eλB] > 1 since F(0) = 0.

Next, observe that for each integer n ≥ 1,

E[1{Q(∞)=n}e− ∑n
k=1 γkWk (∞)] = (2 − β(−λ))

[
n−1∏

	=1

λM(0, γ	)

]
N (0, γn)

= (2 − β(−λ))(β(−λ) − 1)n
[
n−1∏

	=1

M(0, γ	)

N (0, 0)

]
N (0, γn)

N (0, 0)
.

This formula reveals that, conditional on Q(∞) = n,

E[e−γkWk (∞) | Q(∞) = n] = M(0, γk)

N (0, 0)
= β(γk − λ) − β(γk)

β(−λ) − 1

for 1 ≤ k ≤ n − 1, and

E[e−γnWn(∞) | Q(∞) = n] = N (0, γn)

N (0, 0)
= λ(β(γn − λ) − 1)

(λ − γn)(β(−λ) − 1)
.

This is in agreement with the results found in [8].

3 Calculating �(˛)

We conclude by discussing the problem of calculating π(α) for each α ∈ C+. For
preemptive resume queues, it is very well-known that π satisfies the following fixed-
point equation: for each α ∈ C+,

π(α) = β(α + λ(1 − π(α))). (47)

Unfortunately, (47) cannot in general be used to derive a useful expression for π(α),
yet it is still possible to use (47) to approximate π(α), assuming β(α) can be evaluated
easily.

Suppose first that α > 0. In this case (as explained at the beginning of [5]) we can
approximate π(α) by working with the function Tα : [0, 1] → [0, 1], defined as

Tα(x) := β(α + λ(1 − x)), x ∈ [0, 1]

with T (n)
α : [0, 1] → [0, 1] defined, for each integer n ≥ 2, as the n-fold composition

of Tα with itself. Tα is clearly a nondecreasing, continuous function on [0, 1], andwhen
α > 0, π(α) satisfies T (n)

α (x) → π(α) as n → ∞. In particular, when 0 ≤ x < π(α),

T (n)
α (x) ≤ T (n+1)

α (x)
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for each integer n ≥ 1. Likewise, when π(α) < x ≤ 1,

T (n)
α (x) ≥ T (n+1)

α (x)

for each integer n ≥ 1, which means π(α) can be calculated using the stopping
criterion T (n)

α (1) − T (n)
α (0) < ε for some chosen error tolerance ε > 0.

This justification no longer works when α ∈ C has a complex component, and so
the main point of Abate and Whitt [5] is to justify, using probabilistic methods, that
T (n)

α (x) → π(α) as n → ∞ for each x ∈ [0, 1], and each α ∈ C+. Our objective
in this section is to show that a very simple coupling argument can be used to derive
a convergence scheme for calculating π(α) for not only the preemptive resume case,
but both preemptive repeat cases. The same coupling argument works for all three
preemptive queues we analyze.

3.1 Constructing the coupling

For each integer N ≥ 1, let {QN (t); t ≥ 0}be the queue-length process of a preemptive
queue fed by the same Poisson arrival process {A(t); t ≥ 0}, but assume this queueing
system cannot handle more than N customers at a time. Next, label each arrival as
either altruistic with probability p, or selfish with probability 1 − p, independently
of everything else. Both altruistic and selfish customers enter the system without
hesitation whenever they observe N − 1 customers or less in the system upon arrival:
however, if an altruistic customer observes N customers in the system upon arrival,
he/she departs without affecting the system in any way, and if a selfish customer
observes N customers in the system upon arrival, he/she enters the system, and this
action causes the server to shut down permanently, and everyone in the system is stuck
there forever (meaning QN (t) = N + 1 for all t past the arrival time of the selfish
customer). Assume that QN (0) = 1 for each N ≥ 1, and let

τN ;k := inf{t ≥ 0 : QN (t) = k}

for each integer k ∈ {0, 1, . . . , N + 1}. Finally, for each integer N ≥ 1, we define the
LST πN : C+ → C as

πN (α) := E1[e−ατN ;0 ].

Theorem 3.1 The sequence of hitting times {τN ;0}N≥1 converges almost-surely to τ0
as N → ∞. As a consequence, for each α ∈ C+,

lim
N→∞E[e−ατN ;0 ] = E[e−ατ0 ].

Proof Fix an outcome ω ∈ B, where

B :=
{
lim

m→∞ Tm = ∞
}

.
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Clearly P(B) = 1, so in order to prove this claim, it suffices to show τN ;0(ω) → τ0(ω)

as N → ∞, for each ω ∈ B.
Case 1: Suppose first that ω ∈ B satisfies τ0(ω) < ∞. Given such an ω, there must
exist an integer n0 (possibly depending on ω) such that for each integer n ≥ n0,

Tn(ω) ≥ τ0(ω).

Define the random variable M as

M(ω) := sup
t∈[0,τ0(ω)]

Q(t)

and note that for such ω,

M(ω) ≤ n0(ω) < ∞

which, from the construction of QN (t); t ≥ 0}, implies τN ;0(ω) = τ0(ω) for each
N ≥ n0(ω), and so

lim
N→∞ τN ;0(ω) = τ0(ω).

Case 2: Next, suppose ω ∈ B satisfies τ0(ω) = ∞, but M(ω) < ∞. In this case, for
each integer N ≥ M(ω), τN ;0(ω) = τ0(ω) = ∞ and so again, we trivially get

lim
N→∞ τN ;0(ω) = τ0(ω).

Case 3: Finally, suppose ω ∈ B satisfies τ0(ω) = ∞, and M(ω) = ∞. In this
case, we can see that for each integer N ≥ 1, {Q(t, ω); 0 ≤ t ≤ τN ;N+1(ω)} =
{QN (t, w); 0 ≤ t ≤ τN ;N+1(ω)}, which implies

τN+1(ω) = τN ;N+1(ω) ≤ τN ;0(ω)

and since {τN ;N+1(ω)}N≥1 must be a subsequence of {Tk(ω)}, it follows that

lim inf
N→∞ τN ;0(ω) ≥ lim inf

N→∞ τN ;N+1(ω) = lim inf
N→∞ τN+1(ω) = ∞

so again, τN ;0(ω) → τ0(ω) as N → ∞. This proves τN ;0 converges almost surely
to τ0 as N → ∞, and the remaining part of the theorem follows quickly from the
dominated convergence theorem. 	


We are now ready to consider the problem of calculating π(α) for each α ∈ C+.
For each α ∈ C+, and each x > 0, we define the function ϕ : C+ × (0,∞) → C as

ϕ(α, x) := E1[e−ατ0 | B0 = x]
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where B0 denotes the amount of work possessed by the single customer present at time
zero. Likewise, for each integer N ≥ 1 we define the function ϕN : C+×(0,∞) → C

as

ϕN (α, x) := E1[e−ατ
(N )
0 | B0 = x].

Clearly, for each α ∈ C+, it follows that for each integer N ≥ 1,

π(α) =
∫

(0,∞)

ϕ(α, x)dF(x), πN (α) =
∫

(0,∞)

ϕN (α, x)dF(x).

3.2 The preemptive resume case

First, observe that when N = 1 and B0 = x , the preemptive resume queue can only
empty if no selfish customers arrive during his/her service time. In other words,

ϕ1(α, x) = e−αx e−λ(1−p)x = e−(α+λ(1−p))x

from which we get

π1(α) =
∫

(0,∞)

e−(α+λ(1−p))xdF(x) = β(α + λ(1 − p)).

Next, suppose N ≥ 1: conditioning on the first arrival time after time zero yields

ϕN+1(α, x) = e−αx e−λx +
∫ x

0
e−αyπN (α)ϕN+1(α, x − y)λe−λydy

= e−(λ+α)x + πN (α)

∫ x

0
e−α(x−y)ϕN+1(α, y)λe−λ(x−y)dy

= e−(λ+α)x + λπN (α)e−(λ+α)x
∫ x

0
e(λ+α)yϕN+1(α, y)dy.

Multiplying both sides of the equation by e(λ+α)x , then taking the partial derivative of
both sides with respect to x yields, after simplifying,

∂

∂x
ϕN+1(α, x) + (λ + α)ϕN+1(α, x) = λπN (α)ϕN+1(α, x).

Solving this linear, first-order ODE yields

ϕN+1(α, x) = e−(α+λ(1−πN (α)))x

and so

πN+1(α) = β(α + λ(1 − πN (α))). (48)
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This coincides with the recursion found in [5]. Finally, note that our coupling argument
yields limN→∞ πN (α) = π(α) as N → ∞ for each α ∈ C+, and the argument used
to establish (48) can be used to show π(α) satisfies, for α ∈ C+,

π(α) = β(α + λ(1 − π(α))).

3.3 The preemptive repeat different case

We next use our coupling construction to devise a recursive procedure for calculating
π(α) for the preemptive repeat different queue. In [14], the authors show how to
express π(α) explicitly in terms of λ and the service time LST β for each positive real
number α ≥ 0, and we will build on their work slightly by addressing the case where
α ∈ C+.

It is not difficult to show that π(α) is a root of a quadratic polynomial, even when
α ∈ C+. Proceeding as in [14], we find that for each x > 0,

ϕ(α, x) = e−(α+λ)x +
∫ x

0
e−αyπ(α)2λe−λydy

= e−(α+λ)x +
[
λ

∫ x

0
e−(α+λ)ydy

]
π(α)2

= e−(α+λ)x + λ

λ + α
(1 − e−(α+λ)x )π(α)2.

Integrating both sides over [0,∞) with respect to dF(x) gives

π(α) = β(α + λ) + λ

λ + α
(1 − β(α + λ))π(α)2

which means π(α) satisfies

λ(1 − β(α + λ))π(α)2 − (α + λ)π(α) + (α + λ)β(α + λ) = 0.

The challenge now is to rigorously determine which root corresponds to π(α). If
we restrict π so that it is defined on (0,∞) instead of C+, we get (as shown in [14])

π(α) = λ + α − √
(λ + α)2 − 4λ(1 − β(α + λ))(λ + α)β(α + λ)

2λ(1 − β(α + λ))
(49)

because this restricted version of π is both continuous and nonincreasing on (0,∞).
We suspect (49) is still true for each α ∈ C+, but this needs to be verified rigorously.

Fortunately, our coupling construction can be used to get around this issue. Observe
first that for each α ∈ C+, and each x > 0, the same argument we used for the
preemptive resume queue reveals

ϕ1(α, x) = e−(α+λ(1−p))x
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and so π1(α) = β(α + λ(1 − p)). Next, for each integer N ≥ 1, conditioning on the
first arrival time after time zero gives

ϕN+1(α, x) = e−αx e−λx +
∫ x

0
e−αyπN (α)πN+1(α)λe−λydy

= e−(λ+α)x + λ

[∫ x

0
e−(λ+α)ydy

]
πN (α)πN+1(α)

= e−(λ+α)x + λ(1 − e−(λ+α)x )

λ + α
πN (α)πN+1(α).

Integrating both sides over (0,∞) with respect to dF(x) yields

πN+1(α) = β(λ + α) + λ(1 − β(λ + α))

λ + α
πN (α)πN+1(α)

i.e.

πN+1(α) = β(λ + α)

1 − λ(1−β(λ+α))
λ+α

πN (α)
.

We have already established from our coupling that πN (α) → π(α) as N → ∞ for
each α ∈ C+, so one way to calculate π(α) is to use this recursion to determine which
root the πN (α) terms appears to converge toward for large N , then use that root as the
value for π(α).

3.4 The preemptive repeat identical case

It remains to derive a recursive procedure for calculating the LST π(α) associated
with the preemptive repeat identical queue. Again, we begin by observing that for
each α ∈ C+, and each x > 0,

ϕ1(α, x) = e−αx e−λ(1−p)x = e−(α+λ(1−p))x

which implies

π1(α) = β(α + λ(1 − p)).

Next, for each integer N ≥ 1, conditioning on B0 gives

ϕN+1(α, x) = e−αx e−λx +
∫ x

0
e−αyπN (α)ϕN+1(α, x)λe−λydy

= e−(λ+α)x + λ

[∫ x

0
e−(λ+α)ydy

]
πN (α)ϕN+1(α, x)

= e−(λ+α)x + λ(1 − e−(λ+α)x )

λ + α
πN (α)ϕN+1(α, x)
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which yields

ϕN+1(α, x) = e−(λ+α)x

1 − λ
λ+α

(1 − e−(λ+α)x )πN (α)
.

Finally, integrating over [0,∞) with respect to dF(x) yields

πN+1(α) = E

[
e−(λ+α)B0

1 − λ
λ+α

(1 − e−(λ+α)B0)πN (α)

]
. (50)

Unfortunately, the expected value found on the right-hand-side of (50) may not
be tractable in general, so numerical integration methods will be needed in order to
approximate the expectation at each step of the recursion. On the other hand, if B0
is a finite, discrete random variable, the recursion becomes somewhat easier to use.
Obviously, the limit π(α) satisfies

π(α) = E

[
e−(λ+α)B0

1 − λ
λ+α

(1 − e−(λ+α)B0)π(α)

]
.
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